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A recently proposed method for solving scattering equations is generalized to the case of multichannel scattering
equations, In the present work we write the final result of the method for multichannel scattering equations in such a
way that it has all the important features of a related method for single channel Lippmann-Schwinger-type equations
proposed by Kowalski and Noyes but is more general in practice. The method relies on the introduction of an
auxiliary equation containing an arbitrary function, The kernel of the auxiliary equation is in general weaker in
nature than the original kernel and hence the auxiliary equation is expected to have a (rapidly) convergent iterative
solution. It is suggested that the method could be an efficient method for solving three-body scattering equations.
Using the iterative solution of the auxiliary equation, the method is used numerically to compute fully off-shell t
matrix elements for the spin doublet and the spin quartet neutron-deuteron scattering in the Amado model. The
iterative solution of the auxiliary equation is found to converge significantly faster than the conventional Pade
technique-an unexpected result-if the freedom in the choice of the arbitrary function is exploited.

BINUCLEAR REACTIONS Multichannel scatteri. ng equations, iterative solution,
spin 2 and spin 2 neutron-deuteron scattering, Amado model, off-shell t matrix

elements and phase shifts computed.

I. INTRODUCTION

%'e reexamine a recently proposed method" for
solving fully off-shell multichannel scattering
equations. The method relies on solving an auxil-
iary equation whose kernel contains an arbitrary
flexible function. The solution of the original
equation is then related to that of the auxiliary
equation. If the freedom in the choice of the, arbi-
trary function is exploited the kernel of the auxil-
iary equation can be made sufficiently weak in
order to have a convergent iterative solution.
Another advantage of the method is that certain
types of fixed point singularities can be removed
from the kernel of the original equation so that
the kernel of the auxiliary equation has a less
singular or nonsingular structure.

The essence of the method of Ref. 1 (I) and Ref.
2 (II) is the following. A single-channel one-
variable partial-wave Lippmann-Schwinger-type
equation can be written as

t(p, y;E) = gp, r)

+ q2 q p, q G q t q, r; E ,

with G (q) =(k'-q'+ie) ', k'=E in units k =2P =1,
where p, q, r are momentum variables and p

is the reduced mass. Unless otherwise specified,
the integration limits in Eq. (1.1) and in the rest
of the paper are from 0 to ~. The function f(q)
is some weight function, which in the case of
partial-wave Lippmann-Schwinger equations is a
constant &. Following I and II we introduce the

operators', ~, and H, defined by

&p IA(E) Iq& =I:&plvlq& &plvlk»(k, q) JG (q),

(1.2)

&plv Iq& =&plvl»,

&ply. (E) lq& =~(p-q)G. (q)r(k, q),

where y(k, q) satisfies

I(k, k) =1.
Now Eq. (1.1) is rewritten as"

t(E) = V+ VFI (E)t(E) +A(E) t(E),

2nd we introduce the auxiliary equation

1(E) = V+A(E)1(E), ( 1.'7 )

with the kernel A(E) which does not have the fixed
point singularity of G,(q). Then t(E) can be ex-
pressed in terms of I'(E) as"
(p lt(E) Ir& = &p lr(E) I~& +(p lr(E) lk&f(k, ~) (1.8a)

&plr(E) lk&, &r r&E) lk&

&k lr(E) lk& (k r(E) lk)

(plr(E) k)(k lr(E) j~&

(k r(E) jk&

(1.8b)
where

J dq q'f(q) r(k, q) G.(q) &q lr(E)~&
1 —) dq q'f(q) ~(k, q) G,(q)&q lr(E) lk&
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t(k) =(k ~f(E) (k)

=((I~(~)l() (- ja~f(~)8(, ~(

x G,(q)(q (r(z) ~a)
J

(1.10)
Equations (1.8)-(1.10) are the fundamental re-

sults of I and II. The form (1.8b) has certain ad-
vantages as have been first pointed out by Kowal-
ski and Noyes' (KN). The quantity in the square
bracket of Eq. (1.8b) is separable and is known
in the literature as the KN approxim. ation and is
exact for half-on-shell values of momentum varia. —

bles. The second term in the curly bra, cket of
Eq. (1.8b) is.real if &is real and is zero for half-
on-shell values of the momentum variables. A
multichannel generalization of Eq. (1.8a) has al-
ready appeared in I. Here we propose a multi-
channel generalization of Eq. (1.8b), which has the
advantages of the KN method in the single channel
case.

It is easily realized that the applicability of the
present method is not restricted to the case of
the two-body equations if one is interested only
in the iterative solution of scattering equations.
Qf course, in the case of three-body problems,
special care is needed to make the kernel of the
auxiliary equation nonsingular above the breakup
threshold as has been shown in Ref. 4. Otherwise
the method can be immediately applied to the case
of three-body equations with finite-rank two-body
interactions, since in this case the three-body
equations are known' to reduce to multichannel
scattering equations of the form given by Eq.
(1.1) in a single momentum variable. The auxil-
iary equation, which we solve by iteration, is
nonsingular below the breakup threshold. But
this does not mean that the applicability of the
method is limited for energies below the breakup
thre shold.

It is usually difficult to develop an approximate
method for three-body equations compared to a
similar method for two-body equations because
the approximate solution has to reproduce the
complicated singularity structure of the ampli-
tude correctly, especially above the breakup
threshold. This makes certain three-body meth-
ods difficult to implement in practice. We shall
not face this problem here because we use itera-
tive solution of the auxiliary equation which will
correctly reproduce all the singularity struc-
tures. This was known from the analysis of Ref.
6 which shows how the iterative solution of an in-
tegral equation preserves the analytic structure
of the solution.

Next we test the method numerically in the sim-
ple case of ela.stic neutron-deuteron scattering

with separable interaction with Yamaguchi form
factors' —commonly known as the Amado model'—
for energies below the breakup threshold. Itera-
tive solutions of these equations are known to
diverge except at very high energies. ' Similar
calculation for phase shifts was performed by
Whiting and Fuda" who used a Gaussian form fac-
tor for the separable two-body interactions. The
present calculation is more general and efficient
than that of Whiting and Fuda for the following
reasons. The present method is equally applicable
for fully off-shell values of momentum va.riables
whereas that of Whiting and Fuda" is limited to
half-on-shell values of momentum variables.
Another interesting difference in the ease of the
spin & neutron-deuteron scattering is that Whiting
and Fuda made a subtra. ction in the kernel only
in the more important nucleon-nucleon spin triplet
(deuteron) channel of the problem. This makes
the kernel real for energies below the breakup
threshold. But over and above this subtraction
we make another subtraction in the spin singlet
(virtual nucleon-nucleon state) channel. This
introduces a zero in the kernel of the auxiliary

/

equation corresponding to the spin singlet nucleon-
nucleon channel which is intrinsically coupled to
the spin triplet nucleon-nucleon channel in the
spin 2 neutron-deuteron Amado model. ' This
makes the kernel of the present formulation much
weaker than that considered by Whiting and
Fuda" for the more difficult spin & case. Hence
we find a, much better convergence for the itera. -
tive solution of the auxiliary equation.

We also compare the present convergence rate
with that obtained by Brady and Sloan" using the
conventional Pade technique. " We find that the
rate of convergence of the present method could
be significantly faster than that obtained by using
the Pade technique for exactly the same mathe-
matica, l equations. The present method is also
slightly simpler to implement in practice than the
Pade technique because it is numerically some-
what more tedious to construct the Pade approxi-
mants using the iterative solution than to construct
the solution using that of the auxilia, ry equation
in the present method.

In Sec. II we describe the present method for
multichannel scattering and write the final result
in the form first presented by Kowalski and
Noyes. ' In Sec. III we apply the present method
to the case of three-body equations, develop the
present method in the simple case of neutron-
deuteron scattering in the Amado model, ' and
solve the equations numerically using iterative
solution of the auxiliary equation. Finally in Sec.
IV we give a brief discussion and concluding re-
marks.
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II. THE METHOD

The multichannel scattering equations have in general the same form as Eq. (1.1), but now the various
variables have the channel indices over and above the momentum labels. ln explicit notation the multi-
channel generalization of Eq. (1.1) becomes [see Eq. (22) of I]

t t (ttt r„;E) = qt (d t r) t Q f dq q'f (q, ) Vt (pt q) G(q )t„(q„r„;E), (2.1)

where G, (q ) =(k,' —q' +is) ' carries the possible singularities of the a' channel, while f,(q, ) is a weight
function, which in this case is a constant ~, and k' is the on-shell value of momentum for channel &.

Following I we can write the solution of Eq. (2.1) as

ts (pa, r; E) = I'8 (p8, r„;E) + Q I ~G(p(), k, ; E)I,„(k,r„;E), (2.2)

where I is the solution of

I8 (k8, r; E) =do„(k8,r„;E) + Q d8, (k8, k„E)I,(k„r„;E), (2.3)

with

d „(k„r„;E) = f dq, q, 'f (q )G, (q )y, (k,q, )t',„(q„r„E),
and where I'8„(P8,r„;E) is the solution of the following auxiliary equation:

I' 8„(p,s r; E) = Vs (p8, r )+ Q dq, q, 'f, (q, )A8, (ps, q„E)I',„(q„r„;E).
a

Here

A s.(P8, q.; E) = [I'8.(p~, q.) —~8.(P8, k.)y.(k., q.)]G.(q.),
and y,(k„q) is a function which satisfies

y,(k„k) =1.

(2.4)

(2.5)

(2.6)

(2.7)

Equations (2.2) to (2.7) are the fundamental equations of the multichannel formulation of I. We write
the final result given by Eq. (2.2) in the KN form. The half-on-shell version of Eq. (2.2) can be written
as

t, (p, k;E) = gi,.(p„k,;E)[5.„+I.„(k., k„;E)J, (2.8)

and the on-shell version is written as

t „(k,k„;E) = QI' (k, k, ; E)[5, +I,„(k„k;E)]. (2.9)

Eliminating I,„between Eqs. (2.8) and (2.9) we get

t,„(P„k„;E) = Q r,.(P„k.; E)e.,(k., k„E)t,„(k„k„;.E),
a,p

where 8 is a matrix whose momentum variables only take the on-shell values and satisfies

e '(k, k p, E) = I'(k, k p, E),
or

(2.10)

gr8, (ks, k„E)Oq(k„kq,E)= Qeq, (k B, k„E)I' (k„k;E)=
CJ a

Equation (2.2) for P =k can be written as

t,„(k„r„;E) r,„(k„r.; E) = gr, .(k„k.; E)I.„(k., r„;E)

(2.11)

(2.12)

which, using Eq. (2.11), gives the following formal solution for I,„:
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f,„(k,r„;E) = +6,p(k„kp,E)Itq (kp, r„;E) —I q (kp, r; E)].
p

Now recalling that

t „(k,r„;E) = t„(r„,k; E),
and using Eq. (2.13), Eq. (2.2) can be written as

W

ta„(Pa,r; E) = I"a„(Pa,r„;E) —Q I'a, (Pa, k„E)6,p(k„kp,E)I'p„(kp,r„;E)
ap

(2.13)

(2.14)

+ Q I"a,(Pa, k„'E)O,p(k, ) k~; E)t„p(r„,k~; E), (2.15)

Using Eq. (2.10) in Eq. (2.15) we get

ta„(Pa,r„;E) = g I'a, (Pa, k; E)6,&(k, kz, E)I'~(r„,k, ; E)6a„(ka, k„;E)t„(k„,k; E)
&p ~p

'g PB, „,' — I'g PB, k;Ee p k, kp I'p„kp,y„;E
cy p

(2.16)

Equation (2.16) is the desired equation and is a multichannel generalization of Eq. (1.6b). The quantity
in'the square bracket is similar to the KN approximation in the case of multichannel problems and because
of Eqs. (2.10), (2.11), and (2.14) is exact half-on-shell. The second term in the curly bracket of Eq.
(2.16) is the fully off-shell residual term and because Eq. (2.11) is zero half-on-shell. The residual term
is real for usual momentum space multichannel Lippmann-Schwinger equations. But the applicability pf
the present equations is easily extended to the case of Faddeev type equations""' with finite-rank
two-body interactions as we shall see in Sec. III.

III. THREE-BODY METHOD

A. Finite-rank potential

VYe consider the Alt, Grassberger, and Sandhas
equation'~ for the three-body scattering amplitude
U.

Ua„—- ha„GO '+ + 5 aqtyGoUq„,
y

(3.1)

where e, p, y denotes a pair; & 8=& —~„8,' ty
the usual two-body t matrix for pair y. Here
G, =(s —H, )

' with H, the three particle kinetic
energy and + the complex energy parameter de-
fined by s =8+is, where E is the three-body cen-
ter of mass energy. Multiplying Eq. (3.1) from
both sides by G, we have

GOUa Go:6 a Go+ Q 6ayGoty(GOVT Go) ~ (3 2)

which has the same structure as the Lippmann-
Schwinger equation. Let us consider a finite rank
expansion for ty given by

with

yn'& v-y„,„&yn,
n'n

(3.3)

& p ', I,„„ l p,&
= 6(p ', -p, )E,„,„(—p, '/2M, ),

(3.4)
where Wy is the relative ma.ss between the pair y

I

and the remaining particle. p, and p,' refer to the
momentum of the spectator particle in the center
of mass frame. Defining

Xa. , (ia, p.) =&ia I&an'IG. Ua. G. l~n& lp.&, (3.5)

Xa", .(pa, i )=&a. , (pa, i )

+ g f djyzm. y (p&, py)
y t1210

xF, „.(s —pp/2M, )

(3.7)I

xx&~ «(pz, p„).
~e see that Eq. (3.7) is an integral equation in

one vector variable and the unknown X's of this
equation a,re related to the physical scattering
amplitudes. Moreover, below the breakup thres-
hold Z's are real, and after partial wave pro-
jection Eq. (3.7) reduces to a system of coupled
equations in one va, riable and ha. s the same struc-
ture' as the multichannel scattering equations we
considered in Sec. II. Hence we can apply the
method we considered in Sec. II to solve Eq.

Za„„„(pa,p„)=&pa l&pn'I6a„G Inn&li„&, (3.6)

where
~

o'n&'s refer to the form factor of the two
particles in the pair & and taking the matrix ele-
ments of Eq. (3.2) between appropriate momentum
states, we have
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(3.'t). In the next subsection we shall, consider
the problem of neutron-deuteron scattering in the
simplified Amado model where the nucleon-nu-
cleon interaction is taken to be a sum of two S-
wave separable terms —one for the spin one state
and another for the spin zero state —and demon-
strate analytically and numerically the applica-
bility of the present method.

B. Amado model

(3.8)
n=o

In this subsection we write a simple model for
the three nucleon system with the two nucleon
interaction taken to be of spin-dependent S-wave
separable form. This model was first proposed
by Amado' from a field theoretic consideration,
was studied by Aaron, Amado, and Yam, "by
Aaron and Amado, "and later was shown by Love-
lace' to be identical to the Faddeev equations"
with separable two-body interactions.

The model we consider is of three identical nu-
cleons of mass ~ interacting through a spin and

isospin dependent 8-wave separable two-body
potential of the form

I

&q'I ~, lq) =- Z &.g.(~')g.(~)&.,

(3.10)

~o and ~, are fixed to give the correct energies
for the triplet and singlet states such that'

&. =[I~.l(~. + p.)] ' (3.11)

We take" ~o =.231 713 fm ', ~, = —.039 925 fm ',
P, = 1.405 52 fm ', and P, = 1.177 12 fm '. a', is
the deuteron binding energy and n', is the energy
of the singlet state. In this work we use units in
which 5 =yn=—1.

The two-body t matrix t~ has the form

F '(s) = ——+ 4(( q'dq —((a '(e)
o & 4

(3.13)

The on-shell three-body momentum k is de-
fined by

"F.(s —'p, ')a.(-e&, ),
(3.12)

where q is the relative momentum of two parti-
cles in the pair and p has the same meaning as
in Sec. IIIA. E„is defined by

where Po is the spin-isospin projection operator
for the deuteron and P, is the corresponding op-
erator for the singlet state. The form factors
g„((q()are of the Yamaguchi' form

With this definition, F„(s——,p') has the form

(3.14)

a.( )4=&.(~' +P.') ', (3.9) F.(s —'p') = — , f.-(p) G.(p)—, (3.15)

where P„is a, range parameter, &o is chosen to
normalize the deuteron wave function, and N, is
arbitrary and eventually drops out of the physical
scattering problem. However, if we define N,
like Ho in our numerical calculation we get'

where

G, (p) = (k' -p'+ ic) ', (3.16)

G, (p) = ——,(in, i+ [o. '+-'(p' —k')]'/'] ' (3 17)

n=0, 1.

~ +[& '+ z (p'- l ')]"']'(I~.l+[~.'+ z (p'-/, ')]"&
ql

I
Q nl (lx n+ p „)[2 p „+&„+[G o + n (p —k ) ]

(3.18)

The integral equation (3.7) for this case, after antisymmetrization and partial wave analysis, takes the

explicit form"""
(pllx„'„,'Ilp'& =(plz„'„'lllp'&+g f q'qq(pllz™lq&f„(q&n (q&(qllx„'„lllp'&,

m 0

(3.19)

with

8x'
&piz„'„',ip') =

-1

~ /

p'(q&z"
q

'p I z"' +p ))

p +p. +ppx —s
(3.20)

where x is the cosine of the angle between p and
p'. The values of the parameters &y Py &o and

Po are taken from Ref. 16. The nonzero spin-
isospin overlap factors are Joo/"- -~, Joo'- J

and J~'=J~'= ——'. The physical elastic scat-
&"l&oo Ik) =e' z. ssin5 /0. (3.21)

so that the elastic neutron-deuteron scattering

l

tering amplitude is related to elastic scattering
. phase shift by
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length a~ is defined by

a~ = -&OIX~'(s= —o. ')IO) . (3.22)

with

Because of the spin-isospin factors, Eq. (3.19)
reduces to a single equation for the spin quartet
case and to a set of two coupled equations for the
spin doublet case.

Suppressing the I., S labels, Eq. (3.19) now has
the same form as Eq. (2.1) and hence the tech-
nique of Sec. II is directly applicable. Now we
introduce the equation for I' in the following way:

&pl z.".*II'& =&»lz'..'*Ip'&: Q f zz z'&p&z". 8
I z&

x&qli'lip &,

&pip'..'I q& =,&plz" I q&f„(q)-&plz". I a'&f.(a')

f (q)x r„(&',q) "Z, G.(q), (3.26)

which helps in the choice of y . As in Ref. 10,
we choose a simple algebraic function for the ex-
pression in the curly brackets, which should have
the property of approximating the q dependence of
&plzo«'Iq&f, (q) such that the difference in the square
brackets of Eq. (3.25) has the lowest operator
norm. Then the operator A will have all the
eigenvalues less than one in magnitude and the
Neumann series of Eq. (3.23) is expected to con-
verge.

First we choose a particular y as has been done
intuitively by Whiting and Fuda" for the case
m =0. In particular we use

&pla„' I q& =I&plz'„.'Iq& -&plz'„.'Iu'&r (&', q)]

xf (q)G„(q). (3.24) or

f (p) t'0" +o.
f (k') && p'+o& (3.26)

This completes the definition of the basic equa-
tions of the present method.

The method of Whiting and Fudaio is a special
ease of the equations presented in this section
with y, =O and for half-on-shell t matrix ele-
ments. The present method is equally good for
on-shell, half-on-shell, and off-shell t matrix
elements, whereas the method of Ref. 10 is only
good for half-on-shell t matrix elements. In Ref.
10 the authors introduced only a subtraction in
the more important nucleon-nucleon spin 1 chan-
nel and, consequently, y, =O always. But here
we shall introduce a y, 40 over and above a
y, t 0 and this will improve the rate of convergence
of the iterative solution of Eq. (3.23). In Sec. II,
G„always had a fixed point singularity but in Eq.
(3.19) only G, has such a singularity and G, does
not have this singularity. Still we can make a
subtraction for n =1 in order to improve the rate
of convergence of the iterative solution.

C. Numerical results

Now we are left with the problem of choosing
the functions y, and y, . We have no fundamental
theory about how to choose these functions. The
function y, which is related to the deuteron pole
is more important for achieving convergence.
This has also been found by Whiting and Fuda"
who found a convergent result by varying only y, .
First we shall choose y, = 0 and vary y, in order
to obtain the best convergence. Then we shall
use this particular yo and choose a nonzero y& in
order to improve the rate of convergence. Before
choosing y's we rewrite the Eq. (3.24) for L = 0
with A„ in the following way:

)
f (k ) k + o&

f.(p) P'+~ (3.27)

where M and n are two arbitrary parameters to
be found out from numerical experimentation.
Although these equations are written in a slightly
different way from those in Ref. 10, the choice
for r, given by Eq. (3.27) has the same functional
form as the choice (16) of Ref. 10.

Next we tried to choose a y based on the simple
idea that we would like to make some power of the
difference

I.&plz'„.'I q& -&piz'„„'ln'&r.(~', q)] (3.28)

as small as possible for all values of n and P.
considered the square of this expression and, as
y (&I,",q) is not a function depending on n and p, we

sum and integrate over these variables and claim

—&plz'..'I&'&r.(&', q)]'= o,

(3.29)

where 5 denotes small variations of y and ~„(p)
isaweight function. The Eq. (3.29) yields the fol-
lowing functional form for y:

Z f~ (p)dp&plz „„'ln'&&plz „'Iq&

y„(&',q) =

g J' ~.(P)dP&Plz'„„'lu'&&Plz'&ll '&

(3.30)

INote that in Eq. (3.30) the numerical value of
y depends on the spin state. ] We shall mainly use
these two choices of y given by Eqs. (3.27) and
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(3.30) in the present work.
From an analysis of the multiple series by

Sloan' it is known that Eq. (3.19) for I, x 0 con-
verges smoothly and hence in this work we con-
centrate on the case of I.=0 only. In order to see
how the choice (3.27) works in practice first we
solved Eq. (3.23) for the neutron-deuteron sys-
tem. We know from the work of Ref. 11 that Eq.
(3.19) for the spin ~z state diverges at zero inci-
dent neutron energy, the limit of the ratio of the
successive terms in the multiple scattering series
u being -2.68, whereas in the spin —,

' case the
corresponding value of u is 2.45. But we expect
that Eq. (3.23) will have a convergent iterative
solution. Next we solve the Eq. (3.23) numerically
at incident neutron laboratory energies E),b = 0
and 2.45 MeV by mapping the integral in it to the
interval -1 to +1 and approximating it by a 32-
point gaussian quadrature. We solve Eq. (3.23)
with yy 0 old k'=k, because 0'=k has the added
advantage of removing the fixed point singula, rity
from the propagator G, of Eq. (3.24), and hence
making the kernel nonsingular below the breakup
threshold.

First we consider y, of Eq. (3.27) and solve Eq.
(3.23) by iteration for the spin quartet state. We
obtain a good convergence rate for M =1, 2, 3,
and for a reasonably wide range of values of n.
In the case of the spin doublet state the good con-
vergence of the Neumann series of Eq. (3.23) was
more difficult to obtain. After some experimen-
tation we find that M = 2 and a =4.0 fm ' give the
best convergence in this case. We can somewhat
justify the value of A1 = 2 in Eq. (3.27) because
with this value of M the asymptotic form of the
two terms in the square brackets of Eq. (3.25)
for q-~ are the same. Equation (3.23) also gave
very good convergence for the spin quartet state
with this y, .

Next we fix p, to be that given by Eq. (3.27) with
M=2 and a=4.0 fm ', and consider y, to be given
by Eq. (3.27) in order to improve the convergence
of Eq. (3.23) for the spin doublet case. The kernel
corresponding to the channel m =1 does not have
a pole as in the case w. = 0 channel and hence we
have no advantage in choosing Jw|'=k for this chan-
nel. Such subtraction in the kernel will introduce
a zero in the kernel and we choose 0' to be the point
where (P~Z„~q) has a maximum. It was always
at q=0 and so we choose k'=0.0003 fm ' in this
case. Again we experiment for n and M for
vi=1, and we find that @ =10.0 fm ' and M=2
give the best convergence, with y, defined with
o. =4.0 fm ' and M=2. The result for the spin
quartet state is independent of y, and stays un-
changed.

We tried a second form for y, . We realized that

(p~Z~'~~ q) for various n and m are roughly pro-
portional apart from an overall scaling factor.
So if y, defined by Eq. (3.27) gave good conver-
gence, such a function will also give good con-
vergence if used in place of y, . So we choose

(3.31)

The difference between this y, and the one de-
fined by Eq. (3.27) is in the first term on the right
hand side of Eq. (3.31). Equation (3.31) has
the first factor as f,(k')Ifo(p) whereas Eq. (3.27),
as in our first choice of y„has the factor f,(It' )/
f, (P). Without varying our previous y, defined
by Eq. (3.27) with o. = 4.0 fm ' and M = 2, we ex-
periment with y, defined by Eq. (3.31) and we find
that we obtain the best convergence with ~ = 5.2
fm ', M =2, and ~mt'=0. 0003 fm '. .In this connec-
tion it is to be remembered that y, does not enter
into the equations for the spin quartet case.

Next we used y given by Eq. (3.30) in our nu-
merical calculation. For &u (P) we took simple
functions independent of n, such as ~ (P) =P',
where l is an integer. First we took y, =0 and
found that y„given by Eq. (3.30), gave the best
convergence for cu, (p) = p' for both the spin doublet
and quartet states. Then we took this particula, r
y, and we found that for p, given by Eq. (3.30) we

get the best convergence for the spin doublet
equations for &u, (p) =p'.

In this paper we only consider two energies,
E., =0 and E» =2.45 MeV, and the auxiliary
equation (3.23) we solve for this purpose is non-
singular, whereas at energies above the breakup
threshold Eq. (3.23) will have complicated lo-
garithmic singularities in the kernel and in the
Born term. The present method can be easily
extended for energies above the breakup threshold
but as we have complicated singularities for the
real momentum variables we shall need special
prescription such as contour rotation" "for this
purpose. Otherwise the rate of convergence will
be faster at higher energies. In order to show the.
convergence of the Neumann series for Eq. (3.23)
we choose not to consider energies above the
breakup threshold which will only complicate the
method numerically.

Next we exhibit the numerical results. Table I
exhibits spin doublet S=-,' and quartet S=~ neu-
tron-deuteron scattering lengths (results at

Z„b= 0) and Table II exhibits the elastic scattering
phase shifts at E„„=2.45 MeV for the following
choices of y:

(A) y, defined by Eq. (3.27) with k'=k, o.'=4.0
fm ' and M=2 y =0

(B) y, as above and y, given by Eq. (3.27) with
k —0.0003 fm ', + =10.0 fm, and M —2.
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TABLE I. Neutron-deuteron elastic scattering lengths for spin doublet and quartet states
for differentN and various choices of y. N = 0 corresponds to no iterations and refer to I'
=V in Eq. (1.7). . The row labeled AAY is the exact result taken from Ref. 15. The column la-
beled Pade gives the results of diagonal Pade approximants taken from Ref. 11.

Spin doublet state
(B) (t-) Pade

Spin quartet state
(A) (D) Pade

0
1
2
3
4
5
6
7
8
9

10

14.0264
4.8221

.2.0324
0.1560

-0.6205
-0.9232
-1.0109
-1.0326
-1.0363
-1.0362
-1.0358

6.7165
1.9019

-0.1782
-0.8227
-1.0160
-1.0402
-1.0408
-1.0380
-1.0364
-1.0357
-1.0355

6.5390
1.2462

-1.1249
-1.0261
-1.0341
-1.0331
-1.0345
-1.0351
-1.0353
-1.0353
-1.0354

-1-04

6.7096
2.3633

-2.3825
-1.6926
-1.1052
-1.0299
-1.0336
-1.0357
-1.0355
-1.0354
-1.0354

7.08

-0.68

-1.01

-1.04

4.2334
6.1471
6.3317
6.3160
6.3185
6.3178
6.3180
6.3179
6.3179
6.3179
6.3179

4.3360
6.2763
6.3246
6.3164
6.3184
6.3179
6.3178
6.3179
6.3179
6.3179
6.3179

6.32

6.642

6.321

6.317

6.317

(C) y, as in choice (A) and y, defined by Eq.
(3.31) with k'=0.0003 fm ', a. =5.2 fm ', and
M =2.

(D) y, and y, defined by Eq. (3.30) wit»0(p) p',
&u, (p)~p', and k' as above.

We also show the results for the exact solution
of Eq. (3.19) taken from Aaron, Amado, and
Yam" for E» = 0. The entry in the column
labeled Pads in Table I is the solution of Eq.
(3.19) calculated by the technique of Pads approxi-
mants. " The result for the diagonal Pade ap-
proximants labeled [m, m] in Ref. 11 corresponds
to 2m iterations and is exhibited for N = 2m.
A =0 corresponds to taking I' =Z in Eq. (3.23).

In, Figs. 1 and 2 we show some fully off-shell
t matrix elements, for the spin doublet and quar-
tet states, respectively, forE b =0. In Fig. 1
we show X',;~'(p, 0.65) and Xo«~2(0.65,p) for various
iterations, which were calculated using Eq. (2.2).

In Fig. 2(a) we show results for Xo~'~'(0.07, p) and
X,';~'(p, 0.07) calculated using the more symme-
tric equation (2.16). These matrix elements are
equal for graphical purposes and hence only one
set of curves is shown. In Fig. 2(b) we show the
same matrix elements as in Fig. 2(a) but calcu-
lated using the nonsymmetric formulation (2.2).
The final convergence is good in both Figs. 2(a)
and 2(b) but the result for small values of A' is
clearly better in Fig. 2(a).

A glance at Tables I and II and Figs. 1 and 2
show that for all the choices of y the iterative
solution of the auxiliary equation converges quite
well and the converged result agrees with the
exact result of Aaron, Amado, and Yam" and
also with the Pade technique at E„„=O.The rates
of convergence in Tables I and II are also much
faster than those obtained by Whiting and Fuda, "
but the equations they solve are different because

TABLE H. Neutron-deuteron elastic scattering phase
shifts at Ebb =. 2.45 MeV for spin doublet and quartet
states for different N and. various choices of y. N has
the same meaning as in Table I.

'
N ~ 3(exact)

N ~ 0

N 2.3(exdct)
N~I

/
N. O

Spin doublet state
(A) (B) (C) (D)

Spin quartet state
(A) (D)

oo e(p

act)

0
+oo ( &5,P)

0 4.3267 1.6213
1 2.1062 2.3611
2 2.4395 2.6691
3 2.7415 2.7925
4 2.8630 2.8317
5 2.8742 2.8405
6 2.8554 2.8410
7 2.8423 2.8403
8 2.8382 2.8397
9 2.8381 2.8395

10 2.8389 2.8394

1.6650
2.4758
2.8107
2.8407
2.8402
2.8394
2.8393
2.8393
2.8393
2.8394
2.8394

1.6379
2.3912
2.8350
2.8564
2.8419
2.8397
2.8394
2.8394
2.8394
2.8394
2.8394

2.4349 2.4208
2.0294 2.0099
1.9996 2.0022
2.0030 2.0030
2.0029 2.0029
2.0029 2.0029
2.0029 2.0029
2.0029 2.0029
2.0029 2.0029
2.0029 2.0029
2.0029 2.0029

(a)

0.5 p (f~-&) I.O

(b)

I

p(frn-' )

FIG. 1. Off-shell spin doublet t matrix elements (a)
p, 0.65) and (b) +00 (0.65,p) at E~~=Q, calculated

using Eq. (2.2) for choice {C) of y for various ¹ M=0
refers to +=V in Eq. (1.7).
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0,0
I I

0.5 p(fm ') 1,0 p(fm ') 10

FIG. 2. Same as in Fig. 1 for the spin quartet state
for choice (A) of p. (a) X"0 (0.07,p) =X00 (p, 0.07)
calculated using Eq. (2.16). Only one set of curves are
shown because both these elements are practically the
same. (b) The dashed line shows X0003 (0.07,p) and the
full line shows Xoo (p, 0.07) calculated using Eq. (2.2).

they use exponential form factors in the two-body
separable potential in place of the more com-
monly used Yamaguchi form factors. In Table I
we also show the result of Pade approximants
taken from the work of Brady and Sloan." For
all the choices of y the convergence is faster than
that of Pade approximants for both spin doublet
and quartet eases. The difference between the
rate of convergence of the present method and
Pade approximants is particularly striking in the
spin doublet case. In the spin doublet case the
best convergence is obtained with choice (C) of y.
In this case the converged value of the spin doublet
scattering length (0.25Vo error) is achieved with

four iterations whereas in the case of Pade ap-
proximants the same convergence is achieved
with ten iterations. This good trend of con-
vergence is maintained for the spin quartet case
and also f r Eib=2.45 MeV.

IV. SUMMARY AND CONCLUSION

Here we critically analyze a recently proposed
method for scattering integral equations both
analytically and numerically. The method uses
the solution of an auxiliary equation whose kernel
is, weaker than that of the original equation. In
particular we consider the multichannel generaliza-
tion of this formulation and write the final solution
in a form which enjoys all the advantages of a
method for single channel Lippmann-Schwinger
equation proposed by Kowalski and Noyes. ' The
method presented in Sec. II of this paper should
be considered as a multichannel generalization
of the method presented by us in Ref. 2. We

apply the multichannel method of this paper to
the solution of three-body equations with finite
rank interactions. In Sec. III we illustrate the
method numerically in the case of the three-body
equations with separable two-body interactions, -

commonly known as the Amado model. ' We use
an iterative solution of the auxiliary equation
and find that with a proper choice of the arbitrary
function the auxiliary equation has a rapidly con-
vergent Neumann series solution. The choice
of the arbitrary function y is crucial in order to
obtain a good convergence. Here we corisider
several choices of y, the choices (A), (B), and

(C) being somewhat arbitrary. The simple idea,
which led to choice (D), on the other hand, gives
a definite criterion to choose the function y and
still remain valid when arbitrary attempts like
choices (A), (B), and (C) do not give good con-
vergence. Here we conclude that the present
method should be considered as a viable alterna-
tive to the Pade technique for solving multichan-
nel scattering integral equations. In particular,
as we show in Table I, the present method gives
results with much higher precision as compared
to the Pade technique using the same number of
iterations.

The applicability of the present iterative method
ean be extended to the case of three-body prob-
lems with two-body local interactions. It is well
known that the three-body equation in the case of
general local two-body interactions is an equation
in two vector variables which can be reduced to
an equation in two scalar variables after partial
wave projection. Still in this case we can write
an auxiliary equation in two variables whose
kernel is weaker than that of the original equa-
tion and which will have a convergent iterative
solution. This will be a problem of future in-
terest.

Rote added in proof: In this calculation we used
n, =0.231713 fm ', n, =-0.039925 fm ', P,
= 1.40552 fm ', I3, =1.177 12 fm ', and I'/m =41.47
Me V fm'.
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