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Effective interactions and the coupled reaction channel formalism
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Many-body scattering theory is used to derive coupled reaction channel-type equations. With the choice of the Alt,
Grassberger, and Sandhas off-shell extension for the rearrangement transition operators, the effective interactions
which enter these equations are shown to be free of all relevant two-cluster channel unitarity cuts and satisfy well-
behaved dynamical equations which possess an explicit multiple scattering structure. Several approximations to
these equations are presented and the importance of various nonorthogonality effects is discussed. Symmetrized
forms of these equations which take into account the effects of particle identity are found. This permits the inclusion
of the Pauli principle in coupled reaction channel calculations in a simple and practical manner.

NUCLEAR REACTIONS Generalized coupled reaction channel and resonating
group formalisms. Dynamical connected-kernel integral equations for effective

potentials. Pauli principle and channel nonorthogonality effects.

I. INTRODUCTION

Over the past few decades two-cluster descrip-
tions of nuclear reactions, such as the distorted
wave Born approximation' (DWBA) or the coupled
reaction channel method' ' (CRC), have provided
the basis for the analysis of a large variety of
physical phenomena. These methods, though often
very successful in fitting the experimental data
and in the determination of various features of
nuclear structure, suffer from some serious lim-
itations. In particular, they do not include a con-
sistent prescription for assessing their accuracy
or for calculating systematic improvements upon
them.

A proper formulation of such approximations
can be obtained in many-body scattering theory, 4'
and several studies in this direction have been
reported recently. ' " Approximate many-body
equations based on the truncation of the asymptotic
channel space and various coupling schemes are
developed in the Refs. 6-9. The multiple scatter-
ing structure of the exact and approximate many-
body equations is discussed in Refs. 10 and 11,
respectively. A reformulation of the many-body
equations which includes explicitly the effects of
distortions is presented in Ref. 12. Recently,
Greben and Levin have reported calculations"
comparing the DWBA and CRC approximations' '
in various forms and the bound state approxima-
tion (BSA) to the X-body equations of Baer, Kouri,
Levin, and Tobocman (BKLT)" for a number of
systems and reactions. The primary difference
between the CRC and BELT equations in the BSA
is the absence of so-called nonorthogonality terms
in the latter. " The differences due to the neglect
of these terms can be considerable. However,
due to the lack of an exact model of comparison no

definitive conclusions about which set of equations
is preferable are reached in Ref. ,I3.

In this work we present the derivation of cou-
pled-reaction-channel-type equations using the
many-body equations of Ref. 10 as the starting
point. "'" The effective interactions which exciter
into these equations satisfy a set of coupled con-
nected-kernel integral equations. Our discussion
of these interactions contains two important new
features not contained in earlier discussions of
this problem. ' We demonstrate that the Alt-
Grassberger-Sandhas choice" of the transition
operator leads to a definition of effective interac-
tions which are continuous across the elastic unitarity
cuts corresponding to the channels included in the re-
action model. Also, ourequations fortheseeffective
interactions have an explicit multiple scattering
structure which allows a systematic consideration of
various low-density approximations. We find that
some of these lead to approximate equations which
are similar to those of the CRC method. "' Fin-
ally, our equations are shown to be label trans-
forming"'" and are therefore readily sym-
metrized. This allows for a straightforward in-
clusion of the Pauli principle in the theory.

An interesting aspect of these considerations is
that in the lowest order in the interaction our ap-
proximate equations contain nonorthogonality
terms. This appears relevant to questions con-
cerning the occurrence of such terms in various
approximate theories. "'" We also note that,
since our equations are exact and well defined, it
is possible to generate from them, at least in
principle, solvable approximate equations to any
desired level of accuracy.

This paper is organized as follows. Section II
contains our notation and the many-body scattering
integral equations. ' In -Sec. III we define the ef-

1980 The American Physical Society



2342 R. GOLDF LANI AND K. L. KOWALSKI

fective interactions with the aid of the idea of the re-
action mechanism. ' This approach allows a compact
description of the problem as well as generalizations
to include excited states in a rather simple manner.
The integral equations for the effective interac-
tions are derived in Sec. IV. The antisymmetrized
forms of these equations are obtained in Sec. V.
The wave function equations which result from the
present treatment are found in See. VI. Some ap-
proximations based on the low-density expansion
of our equations are considered in Sec. VII. Our
results are summarized in Sec. VIII. The details
of some of the derivations have been placed in
several Appendices.

H, =HO+V, ,

where

(2.5)

(2,6)

is the interaction internal to partition a. The
interaction external to partiti. on a is defined as

V' —= H H-, =Q 6, )iV;~
gt

(2.7)

In what follows we also require the idea of an in-
teraction which is both external to parti. tion a and

internal to partition &, viz. ,

H. N-BODY EQUATIONS
Vy = Q b o, )' Va'+a, &'

gl
(2.8)

= 0, otherwise, (2.1)

In this section we review the notation of many-
body scattering theory and present a particular
form of the scattering integral equations for the
transition operators. The detailed discussion of
this notation and the relevant combinatorial math-
ematics can be found elsewhere. '' "'"'"

We define a partition a as the grouping of E
distinguishable particles into n, distinct clusters.
We use the Latin letters a, 6, c, . .. to denote the
partitions of the system and the Greek letters
0., p, y. .. to designate the two-cluster partitions.
The unique partitions for which n, = 1 and n, =N
will be denoted as 1 and 0. We say that a partition
b is contained in another partition a, b (:a, if b

can be obtained from a by subdividing one or more
of its clusters. We write pc a to include the pos-
sibility of equality. The alternative possibility,
where & is not contained in or equal to a is de-
noted by bg a. These relations are conveniently
expressed in terms of the matrices b, and E with
the elements. "'"

and we write V" =V'-V', .
The transition operator corresponding to the re-

action b-a is given by

y(+) VQ+ Vc g VQ
aI b y (2.9)

where

(2.10)

if the full N-particle Green's function and s is a
complex parametric energy, the dependence upon
which we suppress unless necessary. In writing
(2.9) it is important to realize that the choice of
the transition operator is not uniquely determined
by the values of the on-shell matrix elements
( P, (v, )k, i T.",,' i &, (v, )R,). Here i g, (v, )k,) de-
notes the eigenstate of H, with eigenvalue E(v, ,
%, ) in which all the clusters of the partition a are
bound. The collection v, of the internal quantum
numbers defines a c&a««, and k, are the mo-
menta associated with the relative motion of the
n, clusters. For example, an alternative on-shell
equivalent definition of the transition operator has
been introduced by Alt, Grassberger, and Sand-
has (AGS),"viz. ,

b, b
—1-6 (2.2) a&b c&b b ~c, b (2.11)

The N-particle Hamiltonian H is taken to be the
sum of the kinetic energy H., and the potential V: where

II=H, +V . (2.3)

We assume that V can be written as the sum of
two-particle interactions V;i, i.e.,

(2.4)

where i' denotes a particle pair [i.e., an (N -1)-
cluster partition] .

The partition Hamiltonian H, is defined by

~a. b 1 ~a, b

The operators (2.11) possess a symmetrical re-
lationship to the total Green's function. " This
property has been found to be crucial for the in-
clusion of the Pauli principle into the theory of
the optical potential. " The choice (2.11) is also.
essential in generalizing the optical potential idea
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to rearrangement collisions. We discuss this
point in more detail in the next section.

In order to obtain integral equations for the
transition operators which possess an explicit
multiple scattering structure, it is useful to in-
troduce the operators"

+t3 b yO b+'Vagyb (2.12)

which are related to the AGS transition operators
by

W"' =g W"'(I ) G G -'
b

+g W"'(y)G, V$ —V,"
y

(2.19)

and Eqs. (2.13) and (2.14) we also obtain integral
equations for the AGS operators

I

T„,8
= 5„, () Gs '+Q W"' '( )G, G()

' 5„„
~a»b a»b~b ~b (2.13) + W" '(P)G, G() '++W"'(y)G, T

In the absence of many-body forces the two-clust-
er partition-labeled operators 7"' 8 satisfy the
co~pled integral equations"

& (», 8 Wn, 8+ Wa(, 0( &) G &y.8 (2.14)
MS 0

y

The remaining operators &"" with n „nb&2 can
be obtained from 7 ' by quadrature. Scattering
equations which couple only two-cluster partition
labeled operators are called minimally coupled. 4

In (2.14), W" '(c) denotes the c-connected part
of the operator 7'b. Also

I

W"' = W"' (a)
MS a

(2.15)

where the prime indicates that the a =1 partition
has been omitted from the sum. We recall that
an operator 6 is said to be c Onnected if its
momentum-space matrix elements have struc-
ture4 » 6» 10»11»21

n
C

(p,".p, lel p, ".p.)- 6(p„-Z„')

x6 (p. . .p lp' . .p') .
(2.16)

(2.17)

where

Here p& refers to the momenta, of the. individual
particles, ~„denotes the momenta associated with
the relative motion of the clusters of c, and
6, (p, . . .p„ l p,

' . . '. p'„) does not contain any 6-func-
tion singularities. The least connected contribu-
tions, to (2.15) are the single-scattering terms

(2.20)

Equations (2.20) are used in the next section as
the starting point for the derivation of the effect-
ive potentials for rearrangement collisions.

III. EFFECTIVE INTERACTIONS

The definition of effective interactions for re-
arrangement collisions is facilitated by the intro-
duction of the idea of a reaction mechanism
(RM)' ' ' "as a set A of physically important
channels. We consider, henceforth, RM's which
include only two-cluster channels; the generali-
zation to include breakup channels in A is non-
trivial and will be considered elsewhere. The
structure of such a RM is conveniently represent-
ed by the subset of the set 0 of all two-cluster
pal tltlons '

We note that d'„(A) =— 0 unless n cS. For any off-
shell extension T„~ of the transition operator,
effective interactions 'u„q(A) can be introduced
via

T„8='tt„8(A)+ Q & y(A)gy(A)T'y () (3.3a)
y E's

where

= e„,(A)+ P T „,(A)g, (A) m, , (A),
yee

(3.3b)

& =-f o( E (8 l v„cA J . (3.1)

We now introduce the RM projector' "' "
~.(~) F. f ~(» (=v )Tc) (» (» „)%„( . (».»)„„

&~C A

I;, =V,'+V,'G0P, (2.18) g, (A) =4', (A)G, . (3.4)

is the ordinary two-particle transition operator
on the 1V-particle Hilbert space. We note that the
free Green's function 60 contains the kinetic ener-
gies of all the particles but no interactions.

Using the relation"

Evidently Eqs. (3.3) yield effective two-body equa-
tions of the coupled-reaction-channel type' "in
which only the channels included in the RM are
coupled. These equations are discussed in more
detail in Sec. V. When the BM is restricted to a
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xT~ ~(z), (3.5)

where z = F. + i0 and we have defined

5(z —H, )=Q f dk)g, (v, )k)
"c

X(y, (v, )k ( 6[E -E(p, , k)] .
(3.6)

From (3.3) and (3.5) we find"

m„()(A) —u, g(A)

= —2((i+&, (A) g, (A)6(E -If, )&, t)(A),

where

g, (A) =1-6', (A) .

(3.7)

(3.8)

In writing (3.7) we have ignored the contributions
of any possible pole singularities in u„, 8(A) to
the right side. Equations (3.6)-(3.8) show that the

effective interactions %.„S(A) defined using the
AGS scattering operators are continuous across
all the unitarity cuts corresponding to the chan-
nels v&eA, all y(=.

It is important to realize that both the on-shell
and off-shell matrix elements of L„()(A) enter
into (3.3). Thus different off-shell extensions of
the transition operators T„8 in (3.3) yield differ-
ent effective interactions M „q(A) which may not

be free of all A-type discontinuities. " This is the
case for the conventional off-shell extension (2.9).
For this reason we confine ourselves henceforth
only to the potentials 'u„() (A) defined using the
AGS transition operators (2.11), i.e., we set T„()
= T„ () in (3.3).

From the preceding discussion it is evident

single (elastic) channel v~, then %I, „~(A)
= 6„~It~ 8, where 'Rs 8 is the usual optical poten-
tial for elastic scattering. "'"

As the generalization of the theory of the optical
potential" "we require the operators 'll „8(A)
to be continuous across all the unitarity cuts as-
sociated with the (two-cluster) reaction channels
from A. This requirement is motivated by the
unitarity constraints satisfied by the AGS transi-
tion operators and yields a clean separation of the
effects of the channels included in A. from those
which are excluded.

From the definition of the AGS transition opera-
tor (2.11) we find the unitarity relation"

T„ (ts)) —Tt q(z)= —2)(i+' T„,(z)5(E- f,f)

that the use of the AGS transition operators in our
development represents the essential ingredient
required to obtain effective interactions free of
all A -type discontinuities. This generalizes the
work of Ref. 16, where it has been shown that the
AGS operator can be used to obtain a mell-defined
theory of the optical potential which not only in-
cludes all the effects of the Pauli principle but
also possesses no discontinuities across any of
the two-cluster elastic unitarity cuts which are
physically equivalent due to particle identity.
These results suggest that the AGS off-shell ex-
tension should be used as the standard definition
of the rearrangement scattering transition opera-
tor.

The practical usefulness of Eq. (3.3) is limited
unless one can derive well-behaved (i.e., solvable
in principle) equations for the effective interac-
tions &„()(A) or determine them by some other
methods (e.g. , phenomenologically). " In the next
section we develop such dynamical equations
which possess an explicit multiple scattering
structure. These equations permit the systematic
development of approximations for the descrip-
tion of rearrangement collisions. This provides
a significant improvement over the traditional
developments of the CRC' ' and optical poten-
tial"' "formalisms.

IV. DYNAMICAL EQUATIONS FOR 'l4, p(~ )

We now derive coupled integral equations for
the effective interaction operators &„, () (A) with
kernels which become connected upon iteration.
These integral equations should be manifestly free
of all A. -type discontinuities. We begin our deriva-
tion by introducing the operators"' "
A „()(A) = 6„()

+ W' * yt"o —V g A. A 8 A

(4.1)
Here Vz g&(A) is the A-discontinuous" part of
W"' '(y) G, (see Appendix A). Thus the kernels
of (4.1), and hence the operators'„, q(A), are
free of all A-type discontinuities. We also note
that

+g A (A) I W~'(P) G, -V) g, (A)] .
(4.2)

The arguments of Ref. 16 are easily extended to
show that Eqs. (4.1) and (4.2) have connected ker-
nels after one interation.

From (4.1) and (2.20) we find"
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T„B=I„8(A)+Q A (A) V&~g~(A)z'q 8,

(4.3)

where the inhomogeneous term is given by

I„,(A)

conventional formulations' ' " of coupled reaction
channel problems in that they provide a realistic
opportunity for calculating systematic corrections
to low-order approximations. Further aspects of
these equations and their utilization are taken up
in the next few sections.

V. ANTISYMMETRIZATION

(4.4)

The only A. -type discontinuity which could arise
in (4.4) comes from the discontinuous part,
V~~ g&, of W~' '(P) 6,. This term is multiplied

by G~
' and the product is shown in Appendix A

to possess no A. -type discontinuities. Several
alternate forms of I „8(A) exist" and some of
these are contained in Appendices B and D.

Equation (3.3b) can be rewritten in the form

e„,(A) =P T„,[5, () -g, (A)e, , (A)] .

(4.5)

This allows us to convert (4.3) into a set of integral
equations for the effective interactions:

'lt„, s(A) =I„,s(A)+Q E„~( A)%(~ 8(A),

(4.6)

Here K„, 8 (A) is (cf. Appendix B):

K, «(A) = j«, « -ZA, «(«))

I
x 1++ w"(b)G, E„., 6'8(A) .

b.

(4.7)

Alternative forms of K„s(A) are given in Appen-
dix B. It is also shown there that Eqs. (4.6) are
coupled connected-kernel integral equations for the
operators 'u ()(A), n, p(=$, with kernel and in-
homogeneous terms which are manifestly free of
all A. -type discontinuities. This implies that the

() (A) are also free of all such singularities and

remain so, even when approximated.
The connected kernel property is a necessary

condition for compactness. Integral equations with
compact kernels are essentially Fredholm equa-
tions and as such they can be solved either exactly
or approximately in a well-defined and systematic
fashion. Thus dynamical equations such as (4.6)
represent a significant advantage over alternative,

Up to this point we have assumed that all the
particles are distinguishable. When this is not
the case, all channels which are physically equi-
valent because of the particle identity must be
treated simultaneously. This can be accomplished
in a rather simple manner if we can show that the
dynamical equations of the previous two sections
are label transforming. "'" This concept is de-
fined in Appendix C where we also introduce the
notation and review the relevant results of Refs.
16 and 18. For the sake of simplicity, we shall
restrict ourselves to the case where all particles
are identical (such as N nucleons). The more
general case including several particle species
represents a straightforward generalization of the
present results (see also Refs. 16 and 16).

We define the antisymmetrization procedure by
choosing the RM A such that it contains all chan-
nels related by permutations, i.e. , for any chan-
nel v„FA, the channels v~& &, Pc S are also in-
cluded in A. With such a choice of the RM the
reaction set is closed under permutations; i.e. ,
for any partition peon, P(z)(=$. We denote by (B

the set of equivalence classes of partitions includ-
ed in .

We now introduce the antisymmetrized effective
inter action operators

'its 8(A) =17@,f) 2 & &„ lt(A) . (5.1)

&„" (f(A) =I((( 8(A)

(5.2)

where

I„".8(A) =5'@
~ (t Z S„I,()(A),

a6 n
(5.3)

(5.4)

One can verify" that the operators I„8(A) and

K„B(A) are label transforming; (4.6) then implies
that the 'u„&(A) are also label-transforming
operators. The antisymmetrized form of (4.6) is
then (cf. Appendix C)
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The antisymmetrized AGS transition operator
18

T@ pi=An s Q 6I„T„s(A) .
ng n

(5.5)

We infer from (5.6) that the us s(A) represent
the effective interactions appropriate to a CRC-
type description of rearrangement collisions in-
volving identical particles. Furthermore, the
singularity structure of 'u„s(A) implies that
'u„- g(A) is free of all A-type discontinuities.
Equations (5.1)-(5.6), together with the defini-
tions of Is s(A) and K@ s(A) given in the pre-
vious section, represent the generalization of
the results of Ref. 16 to encompass rearrange-
ment collisions.

Equations similar to (5.6) have been found for
identical particle scattering in Ref. 18. These
equations, however, involve all the two-cluster
channels and an off-shell extension for the transi-
tion operators which does not lend itself to the
formulation of multiple-scattering approximations.

VI. GENERALIZED CRC METHOD

In this section we rewrite Eqs. (3.3) and (5.6)
in wave function form to demonstrate the relation-
ship of the present formalism to the standard
CRC approaches. '' W'e start by noting that for
all partitions at, y we have

(6, y+G T., y)i ey(vy)ky&= leg(vy)ky& (6.1)

Here ig z(vz)kz& is the full scattering many-body
wave functiorr which evolved from the asymptotic
state i Qz(vz)%. &&

in the infinite past. From (6.1)
and (6.3) it is thus straightforward to obtain the
projected wave function equations

Since both '4 ~ 6 and 7 ~ are label transforming,
the antisymmetrized forms of Eqs. (3.3) are then

Ts, tf= a„" s(A)+ Q 'a@
~ (A)g~(A)T~ g

(5.6a)

=&.
~
s(A) ~. T., ;g-, (A)~;, ~(A) .

ye
(5.6b)

s(v Q i vsks) =(P&(v&)k& its(vs)%s&, (6.3)

which asymptotically describe the relative motion
of the clusters of the y partition. We also define
the complex, energy-dependent cluster-cluster
potentials (y, pc(s)

s(v k ivs ks)=(g (v )k i a s(A)its(vs)ks&

(6.4)

where the dependence on A has been suppressed.
Equation (6.2) can then be rewritten as (v~, vseA):

[E-&( ~ k~)lXx, s( ~&~i sks)

f dk' k»»»(»»k»(» k')
y Q~ vyQ+

xX& s(vzkzlvsks) ~

(6.5)

In coordinate space, (6.5) are exact, one-vector-
variable integrodifferential equations for the
wave functions Xy 8. Given the potentials 'Uq y,
(6.5) can be solved by standard CRC methods. ' '
Usually the ~ y

are approximated, e.g., by
phenomenological cluster-cluster potentials. ' '
In the next section we discuss some possible ap-
proximations to U z y

which follow from the mul-
tiple-scattering structure of the operators
'u~ y(A).

In practical applications the description of nu-
clear reactions is further complicated by the ef-
fects of particle identity. We now show, using the
results of Sec. V and Appendix C, how these ef-
fects can be incorporated in (6.1)-(6.5). As be-
fore, we restrict ourselves to a system composed
of single species of identical particles, such as
nucleons.

The antisymmetrization of (6.2) can be carried
out straightforwardly since (E Hz) 6z z

an-d

(A) are both label transforming. Using the
methods of Appendix C, one finds that

g (Z;)"[(E -a-,)6-„;
ye8

g [(E -If,)6, , , -6', (A) ~. , (A)l

yg
x6, (A)its(vs)t s&=&. (6.2)

where

-6'-„(A)%f;(A)g-, (A) j i js(~)ks& = 0,

(6.6)

Equations (6.2) are exact and represent the multi-
channel generalization of the Feshbach optical po-
tential formalism.

I et us define the wave functions

I 4(&%II& =It IPIt(~s)k s& (6.7)

is the normalized fully antisymmetrized many-body
scattering wave function. In deriving (6.6) we
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have assumed that the channel states
~
g„(v,)k)

are properly antisymmetrized with regard to their
internal structure.

We now introduce the antisymmetrized projected
wave functions

g(v-k —
~ ~kg) =(Q—(v y)ky ~g g(v p)k lt) . (6.8)

Equation (6.6) then can be rewritten in the form

[(E -E(mg, kX)]X1 l(vÃkXIvltk E)'

f dk' u~
z (vIkxI vzk —'j

yc4
Xy X X y

g(v&k ~l vs k~ ) (6.9)

Here 'U&
&

is the antisymmetrized cluster-cluster
effective interaction

where we have used the superscript CRC to signi-
fy the approximate nature of the wave function.
The standard CRC equations' ' of the form (6.5)
are obtained by taking the scalar product of (6.14)
with (Q~(v ~)k ~ ~

. The antisymmetrized counter-
parts of (6.14) are the resonanting group equa-
tions. " One finds, using (6.13) and (5.1), that
(6.6) becomes

Nfd'y, (A) R(E K) 6'y(A)
~ $ ~~ (vl|)kp) 0

y

(6.15)

I

The relationship of (6.13) to other systematic ap-
proximation procedures is discussed in the next
section.

From the definition of 'lt1 f(A), Eq. (5.1) we
find

(6.10)

&1.,"(~f~l~k-, )=N~, ; ~ '0~, —,(~k-, l~k-, )

x5(P„-,), (

where 6(P~ -„) is defined in Appendix C.
Equations (6.1)-(6.11) together with the dynami-

cal equations for 'ltd z(A) found in Sec. IV consti-
tute an exact and well-defined formulation of the
nuclear coupled reaction channel problem. It is
of considerable interest, however, to see how the
standard CRC formalisms' ' "can be recovered
from (6.2) and (6.6). The conventional CRC ap-
proximation is derived directly from the Schro-
dinger equation

& f. ;(v~k ~ I
~k-, ) =& p-(~)k- I& & ~;(A)I I,(~~)k-, ) . — VII. APPROXIMATIONS

The exact determination of the effective inter-
actions requires the solution of anN-body scatter-
ing problem. This is impractical for large R.
It is necessary, therefore, to seek approximations
appropriate to different physical situations which
can result in practical calculations.

One class of such approximations are the low-
density multiple scattering expansions. "'"'"
These approximations have been used extensively
in studies of nucleon-nucleus and pion-nucleus
scattering at intermediate energies. We now con-
sider similar approximations within the framework
of the present formalism. The simplest approxi-
mations of this type in our equations is to ignore
all but the N, (N —1)-connected terms in Eqs.
(4.4) and (4.7). This corresponds to retaining only
the two-particle scattering terms in the partition
sums. One then finds that (4.6) reduces to the ap-
proximate form (cf. Appendix D):

(E -K)i |t (v )k ) = 0 (6.12)
8 (A)—:Q 6~;~ t; 68, +l lg + 5 „~Qs

i, l

in a manner which does not suggest how one can
formulate systematic improvements. This short-
coming is removed by our demonstration of how the
CRC is embedded in our general results.

If one makes the approximation

r ,. F~, ~„,. a.)yes i'

x6' (A)u ~(A) . (7 1)

'lip y(A)=V~ -&g,
y Gy

' .

Eq. (6.2) reduces to the standard CRC form
j

Z 6', (A)(E -K)6', (A)le;"'( ) v&k=o,

(6.13)

(6.14)

Equation (7.1) represents the basis for our dis-
cussion of the various low-density approximations
obtained in the present formalism. We note that
the result (7.1) follows directly from either (4.4)
and (4.7) or (B4) and (B5).

Let us consider now the integral equations for
the effective potentials & 8 defined by (6.4) which
follow from (7.1). Let us define (v„, v&~A):
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~., 8(v.k. lvsks)=Z~. „'&e.(v.)k. lt, ~~, , +~,'~~„'le, (v, )k,),
~l

x„,g(v): )asks)=((„(v )K„Q Z„,, t, Gg, g(vs)kg),

(7 2)

(7.3)

& n. s (vnk al v[)k [) ) =- ( 4n(vn)k a I 4a (vt) )"s ) & n, s ~ (7.4)

Then Eq. (V.l) can be written as (v„, vz(= A)

'0 „()(v„k„[v&k [)) = 7'„()(v„k„~ v& k 8)+ [tE E(vt„—k[))]X„[)(v„kJ v[[k 8)

or in obvious matrix-operator notation,

'U = 7'+X(E —h) —("%+X ) &.

Here 8 has the elements 5z s5„„6(kr -k t))
E(v[), k 8). After a partial wave analysis Eqs.
(7.6) reduce to a set of coupled one-dimensional
integral equations. Given the input functions f',
K, and 3' these equations can be solved numerically
provided the number of coupled reaction channels
is not too large.

It is interesting to consider the generalization of
the impulse approximation which follows from
(7.6). To obtain this we introduce the operator"

'u= &+X(E —8) . (7.12)

Equation (7.12) represents a multichannel general-
ization of the impulse approximation. Calculations
based upon (7.12) are well within the present day
computational capabilities. It should be noted that
the two-particle transition operator t, i in (7.1)-
(7.12) is defined solely in terms of two-nucleon
information. Also, the kinematics relating the to-
tal c.m. system to the two-nucleon c.m. is unique-
ly defined. In other formulations of the impulse.
approximation"' "the recovery of similar low-
order approximations is often complicated by am-
biguities in the definition of the appropriate kine-
matics.

Equation (7.12) yields effective potentials very
similar to those employed, implicitly, in standard
CRC calculations [cf. Eq. (6.13)] if we make the
further approximation I;, =V; . We then obtain
from (6.2)

6= U —(I+X)-'X(E —b) .

From (7.6), g can be shown to satisfy the integral
equation

g =(I+31)-'7 -RX(E —h) -R(l+X)6. (7.8)

In (7.8) we have defined

X = (I +2 ) ' X(I +X ) ' . (7.9)

The advantage of (7.8) over (7.6) lies in the fact
that all the single-scattering terms (i.e., those
linear in t,. ) arise only from the inhomogeneity.
A form of the impulse approximation can then be
obtained from (7.8) by neglecting the kernel term,
namely,

+6'.(&)(E -II)6', (&)l0',"(vs)k a&
y(7.10)'Q = (I + X ) ' 7 —X 3t(E —8) . ,

F. fdi'[R„„(v„i„[vie[)+x,„(vie I" i')[U„, s("~) [I~sis), ()5)
y~ VyQA.

f

nonperturbative fashion, while the target-project-
ile dynamics (contained in the two-body potentials
V;~ and t matrices t, ~ ) appear only in the lowest
order. The nonorthogonality effects may be
small. ' '" If this is the case then it is consistent
to retain only terms linear in Ot, V', and X in
(7.11). We then obtain the matrix version of the
inhomogeneous terms of (7.1),

Combining (7.7) and (7.10) we finally obtain

u=(I +31) '[7'+31(E —8)]-RK(E —h) . (7.11)

Equation (7.11) contains channel nonorthogonality
effects arising from the overlap kernel X in a

=2 6'~(&)(G, '+G~ ')t, (&)ls'8" (vB)k [)),
gee g

(V.13)

where we have used the superscript IA. to signify
the approximate nature of the wave function.
Equation (V.13) differs from (6.14) in that its
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right-hand side is not zero. If we rewrite (7.13)
in momentum space [cf. (6.5)], its right-hand
side becomes

QI dt'„[RE E-(v~%~,) Z(-v~k~,)]

(&yk yI "& k &)& &, s(~PI I ask 8) ~

(7.14)

Although (7.14) may be negligible if K~ z is
sharply peaked about the on-shell values of k q

and k z, it is not obvious for what types of frag-
ment wave functions this will be true. Calcula-
tions comparing (6.14) and (7.13) are needed to
settle the question of the importance of the term
(7.14) which provides the measure of their differ-
ence. This comparison should present no more
difficulty than standard CRC numerical calcula-
tions [based on (6.14)] because (7.14) is nearly
of the same form as the nonorthogonality correc-
tions which appear in these works. '3' "

It must be stressed that (6.14) and (7.13) are the
different end results of two distinct series of ap-
proximations. Thus, the significance of a com-
parison between the predictions of (6.14) and (7.13)
lies in the possible superiority of one approxima-
tion over the other under a given set of physical
circumstances. The usual CRC formalism, em-
bodied in Eq. (6.14), is a consequence of variation-
al reasoning applied directly to the Schrodinger
equation (6.12). It is not easy to see how (6.13)
and (6.14) result from a plausible series of approx-
imations within our particular N-particle formula. -
tion" since the physical significance of the term
(7.14) is, at present, not understood. Nonethe-
less, we have shown how both (6.14) and (7.13) are
embedded in a full dynamical description wherein
higher-order corrections can be executed in a
consistent and systematic fashion.

It is also interesting to note that Eqs. (7.13) con-
tain explicit nonorthogonality terms Xz &. This
may be relevant to the recent controversy" con-
cerning the presence of such terms in many-body
formulations of the CRC-type equations. Such
terms appear in our formalism because of our
constraints on the discontinuity structure of %le, y

Specifically, the nonorthogonality terms are gen-
erated by the ~q, &G&

' piece of the AGS off-shell
extension (2.11). Evidently the appearance and

structure of the nonorthogonality terms depend
crucially upon the off-shell extension of Tq, ~ used
in (3.3) for the definition of 'U~

~ z.
A cl.ass of higher-order approximations to

g(A) can be obtained if we include the (N —2)
(N —3).. .connected terms in the inhomogenity and
kernel. of the integral equations for g, 8. Such a

procedure is limited primarily by its computation-
al feasibility, and actual numerical calculations
are expected to be restricted to the equations not
much more complicated than those of the type
given in this section. It should be noted that the
practical utilization of the approximation discussed
here j.s based on the assumption that the nu-
cleon-nucleon interaction and the bound-state
wave functions are known. In practice, this is
often not the case and an approximate cluster
description is used, e.g. , an inert core plus two
external nucleons interacting via effective poten-
tials whose parameters are adjusted to fit the ex-
perimental separation energies. ' " Finally, we
note that the results of this section can be easily
extended to include the effects of particle identiy
using the results of the previous two sections.

It should be emphasized that all the approxima-
tions discussed in this section are expected to be
valid at relatively high energies at which the
effects of target binding and multiparticle corre-
lations are small, i.e., where the terms of higher
connectivity in I &, &

and &q
&

can be neglected.
Approximations to %„(8A) corresponding to other
physical situations cannot be discussed within the
present, multiple scattering approach and other
formulations of the problem must be developed.
However, the present study suggests that any such
approach should use the AGS off-shell extension
(2.11) and (3.3) to define the effective interactions.
This ensures that the 'u„s(A) are free of all A-
type discontinuities and remain so even when ap-
proximated. This is not the case with many ap-
proximations' ' "'"often used in analyses of
nuclear reactions.

VIII. SUMMARY

In this paper we have presented an N-body theory
of rearrangement collisions. This theory is ex-
pressed as a coupled reaction channel formalism
and includes all effects of the Pauli principle in a
practical fashion. As in Ref. 16, it is seen that
the use of the AGS transition operator in the def-
inition of the effective interactions is essential in
order that the effective interactions be free of all
discontinuities corresponding to the channels in-
cluded in the reaction model. The effective clust-
er-cluster interactions are shown to be matrix
elements of operators which satisfy connected-
kernel integral equations with an explicit multi-
ple-scattering structure. This feature of the
theory suggests various systematic approxima-
tions. For example, in the lowest order of a den-
sity-type expansion we obtain equations, similar
to the standard CRC equations, which represent
a generalization of the impulse approximation to
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rearrangement collisions. The effects of particle
identity are handled consistently and straightfor-
wardly in all orders of approximation.

We have shown exactly how the standard CRC
formalism is embedded in a full and consistent
X-body scattering theory. However, we were
not able to obtain this approximation from our
equations in an entirely plausible fashion. We
have suggested some specific numerical calcu-
lations which should help to decide whether the
standard CRC or our lowest-order approxima-
tion constitutes a better starting point for formu-
lating higher-order corrections. Whatever the
conclusion of such an investigation, the present
formulation of the many-nucleon scattering prob-
lem or a formalism equivalent to it provides a
vehicle for carrying out such calculations in a
well-defined and practical manner.

This work was supported in part by the National
Science Foundation under the Grant No. PHY78-
26595.

APPENDIX A: CONNECTIVITY STRUCTURE
OF W'b(e~

these singularities.

APPENDIX B: KERNEL AND INHOMOGENEITY
OF (4.6)

If we combine (2.21), (4.3), and (4.5), the ker-
nel of (4.6) is found to be

X„,(A) = gA.„,(A)
y

I-g Wy o(b)G, G„-'E„„g,(A) .
n& ~ 2

(B1)

Then using (4.2) in combination with (B1) we ob-
tain

I(„,«(«)) = {5„,» -QA„, («))

We consider the connectivity structure of the
W"'(c) operators. Let [6], be the c-connected
part of 6. By definition W" ~ (c) is given by"'"'"

Wa a (c) [ Va, ()+VaGV() ] [ Va, («+ VaG V(j«

(A1)

The only discontinuous part of W~'(c) is the term
[ V; G, V, ],. Since A contains only two-cluster
channels, this term cannot have any A-type dis-
continuities unless c =y(=. The part of G dis-
continuous across the A. -type cut is the sum of the
pole terms 6'z(A)G&=gz(A). We therefore con-
clude that

(B2)

which is manifestly free of all A-class singular-
ities. Equation (B2) can be rewritten in an alter-
nate form using the identity

Q A„(A)[6 q —W&'o(X)G ]5q ()6(XEe(()
X, y

='5„,6(o(ea) (I)
and we find

&a, )(A)= ~n, ~ —Q&n, ~(A)
yE,I

-gA„,(A) g W)' '(b)G, 6', (A) .
y

'
~&e

W"'(y) =-W"'(y) —V' g (A)V'
y y y

is continuous across all A. -type unitarity cuts.
Consider now b=0. Since V' = V and

y y

(A2)

(A3)

(B4)

Here 6(y(=$) =1 if y(=I, and zero otherwise. Also,
6(y (E I)= 1 —6(y (= (Z). Similarly, the inhomoge-
neous term (4.4) can be written in an alternative
form using (B3). We find

we conclude that

W"'(y) = [W"'(y)G, -V~g~(A)]G ~+ V'„6'~(A)

(A4)

is continuous across 311A.-type unitarity cuts.
Since V~6'~(A) is a nonsingular operator it follows
that the kernel of (4.1) is free of any A-type singu-
larities. Evidently W"'(y)G, G&

' is also free of

I„ t)(.t) =+A„y(A)
y

I
W)"(b)+W)"'(p)6(pet8) G,

5%

«6(«c«««)f««IG«

+„6, 85( o((E(s) G()' . (B6)
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Many other transformations of I„a(A) are pos-
sible, one of which is (D1) given in Appendix D.

We now demonstrate that (4.6) has a connected
kernel after one iteration. Iterating (4.6) we get

e„8(A)=I„S(A)+Q I, ~(A)Ky, s(A)
yea U(p)6a, b ~ . U(p)-1 (a(P(a), P(b) ~ ~ ~ (c3)

by classes rather than by partitions.
The symmetry group S is realized on the Ã-

particle Hilbert space by the unitary operators
U(P). A partition-labeled operator 6 is called
label transforming if

A:„QK ~A'+), 6A
y, wee

(a6)

Since K„(A)=K„&(A)g&(A) it is sufficient to
show that 6'„(A)K„z(A) is connected. Using (4.2)
we can rewrite (82) as

a„,,(a&=(i„,-E' a 'p)a, z„„,

—g [&"'( o)G, -V," g(A)JA, ,(A)
o, y

X ].+Q g &' (b)G 6„~ (P (A) .
b J

(a7)

Since W" '(b), and V," are constructed from inter-
actions external to partition a, these terms will
become connected upon multiplication by 6'„(A),
while +„(A)5„~6'~(A) is connected since A con-
tains only two-cluster channels. Thus the kernel
of (4.6) is connected after one iteration.

For use in Eqs. (3.3) one requires only the pro-
jected operators+„(A)'u„b(A)NB(A). We see
that (4.6) yields a closed set of coupled integral
equations which by the preceding argument have
connected kernels even before iteration.

Z Il , U(P.-.) 5(P—.—.) =- —Z (il. (a),
a a&a a aEa

a

(c4)

where a is a canonical partition of the class a. In
what follows we suppress the dependence of (R,(a)
upon a.

Let us introduce the antisymmetrized transition
operators

a ~ b asb ~ a abb (C5)
aiba

where N," ", = (Nb" /N;)' ' and b(= b denotes a canon-
ical partition. The matrix element
(pa(ba)ka IT:,b I pb((b)kb) is the physical scattering
amplitude where, e.g. , 6(,

~ Q, (b, )k, ) =
~ p, (b, )k, ).

If the T, b operators satisfy the generic integral
equations

Tab ab g aaTab (c6)

Let W; be the number of physically equivalent par-
titions in the class a and 5(P) be the parity of the
permutation with respect to fermion interchange.
Also, let B, be the antisymmetrizer with respect
to the interchange of the particles within the. clust-
ers of the partition a. (It it obvious that if 8' is
label transforming, [8',&, J= 0.) Then the anti-
symmetrizer with respect to S is given by

P(a) = a' (c1)

is another partition which is physically equivalent
to a. The set of all such permutation-related
partitions defi.nes an equivalence class

d=(P(a)( P(= Sj . (c2)

The transition operators which occur in the scat-
tering theory of identical particles are labeled

APPENDIX C: ANTISYMMETRIZATION

We outline briefly the formalismi6, is requi
to obtain symmetrized scattering equations. For
the sake of simplicity we assume that all particles
are identical fermions. The generalization to
include several species of identical particles is
straightforward and is not considered here. Let
S be the permutation symmetry group and let
P c S represent an interchange of particles. Then,
for any partition a of the Ã-particle system,

where I., b. A„b are label transforming, then it
is shown in Ref. 18 that the T, , are necessarily
label transforming and

T-"=l-"+ K- - T-a, b abb „a,c c&o ~

C

(c7)

APPENDIX D: APPROXIMATE FORMS
OF THE DYNAMICAL EQUATIONS

For the purpose of obtaining Eq. (7.1) we note
that Eq. (4.4) can be rewritten using the identity
(2.19) as

where I;; and K;, s are defined as in (C5). The
sum in (C7) runs over classes rather than parti-
tions and one can show" that (C7) has a connected
kernel provided (C6) is a connected-kernel equa-
tion. The reduction of (C6) to (C7) holds if we re-
place T, , by any other partition-labeled opera-
tors, such as, e.g. , M„q(A)."
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E 8(A) =+A„g(A)
(4.7) becomes

WMg +~y g GB + Vg

—gW"'(y)G, 5~ 8(G(( '+V()
y

It is instructive to start from the alternative form
(4.4) rather than (D1). From (2.18) and (2.19) we
have

The kernel of the integral equation (4,1) for
A„s (A) is two-cluster connected. Thus a low-
connectivity approximation to A„(((A) is 5„((
If we also retain only ', N)- and (N —1)-connected
pieces in the square brackets in (Dl) we find

(D2)

which with (2.18) yields the inhomogeneous term
of (7.1). With similar approximations the kernel

=Q Z„(i (t(~ —t (i G, V;~b, ((;i )

b „,(i f; Z ((;~ +V(( . (D4)
if

Using (D4) in (4.4) we again obtain (D2) if only the
(N)- and (N 1)-co-nnected terms are retained and
both (4.4) and (Dl) yield the same result in this ap-

proximationn.
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