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Comparison between NN, potential derived from dispersion relations and a model field theory
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We compare the solution of a model field theory which relates off-shell amplitudes for elastic NN and mN
scattering to a similar relation between on-shell amplitudes derived, from a dispersive approach. The first is a
dynamical realization of s-channel unitarity, whereas the second starts with and exploits t(u) channel unitarity.
Provided that T~„satisfies a Mandelstam representation, equivalent approximations ought to produce equivalent
results and we perform the comparison for the actually calculated T» and the subsequently extracted potentials
V». Interpreting V» we caution against the simultaneous retention of contributions with pions (crossed and
uncrossed) linking intermediate nucleons as well as nucleons and physical isobars. /

NUCLEAR REACTIONS NN scattering, comparison between elastic amplitude
and potential derived from model field theory and dispersive approach.

INTRODUCTION

In a study of the NNw system which is based on a
model field theory, we recently derived integral
equations for amplitudes coupling the md, NN, and
N4 (generally N[vN]) channels. '2 Eliminating, for
instance, all but the elastic NN amplitude T„„,
there emerges a generally nonlocal, energy-de-
pendent NN potential V„„with contributions added
to the one-boson exchange (OBE) potentials. Com-
parisons have been made in Ref. 1 (henceforth cited
as O with related coupled-channel models for
V„„.3 In the present note we extend the compari-
son to dispersion theoretical calculations, which
do not have such an apparent relation.

In the dispersive approach to the elastic NN amp-
litude T» one starts from a Mandelstam represen-
tation for T„„and implements fundamental prin-
ciples like unitarity, crossing, and analyticity. 6 8

For that reason it is also generally believed that
the potential V„„("the Paris potential" ), parts of
which are extracted from the thus ealeulated T»,
is the most reliable NN potential available today.

Also the model field theory discussed in I is
from the outset inferior to the above mentioned dis-
persion approach, because the spelled-out basic
requirements are at most in part fulfilled in the
derivation of T„~. Yet we shall reach the unex-
pected conclusion that not T», but corresponding
parts of the extracted NN potentials V» are es-
sentially the same. Our demonstration will rest
on the fact that the solutions of the model field
theory appear to satisfy s-channel unitarity,
whereas in the dispersion approach one has chosen
to exploit the equivalent t(u)-channel unitarity. We
then argue that, contrary to the construction of the
on-shell amplitude T», one loses some aspects of
a fully relativistic theory in any practical extrac-

tion of V». . Also, though not, the case for T», the
construction of V» requires some dynamical in-
formation. These observations appear to be vital
points of contact between the two approaches and
help to explain the similarity between parts of the
ex trac ted V».

The comparison of T„„and the extracted poten-
tials V» will be our main concern. However, in
its course we shall meet different notions of iso-
bars and in particular an isobar appearing together
with a nucleon in intermediate states. We shall
show that some double counting may occur when
one retains in V» uncrossed and crossed pion con-
tributions, which connect two nucleon as well as
nucleon-isobar pairs.

I. THE DISPERSIVE APPROACH

With the sole aim of juxtaposing the dispersive
and the field theoretical approaches, we briefly
outline the former. No essential feature of our
reasoning depends on spin and isospin; these will
be disregarded for simplicity.

In order to, for instance, emphasize different
and decreasing ranges contributing to the ampli-
tude T„s (stu), one starts with a dispersion rela-
tion in the squared momentum transfer t. Thus
(t', M, . .. are masses of v, N, . . . )

ss(stu) =—
I dt

1 " T, (s, t')
7F 4g 2

+ (u-channel contributions).

Next one evaluates the spectral function T~, Eq.
(1.1), in the "n, & 2" approximation, defined to
comprise single m, 2m, and the ~ part of 3n ex-
changes. Denoting masses and coupling strengths
by p, &, g&, t-channel unitarity in that approxima-
tion implies
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T,(st)= Im—T(s&t+ie) =(2i) [T(s, t+ic) —T(s&t —ie)]

gg —pz +6m- p& +Tt gt
4-re td

T2'=2 &»IT'12' ~&&2v, ~ IT I»&

where e is any 2m state conserving four-momenta,
having the same quantum numbers as the NN sys-
tem. One then concentrates on the NN-mw anni-
hilation amplitude. The latter is directly related
to elastic em, and by crossing to elastic mN scat-
tering. The continuation to the physical region is
then provided by a fixed-t dispersion relation:

1 I'e,„(s't)
S -S

g + g. +1 QrN ~
s —M Q —M w (~+~ j2 8 —s

Here

0'(st) =cr(st) —1rg [6(s —M ) + 5(M —M )]
is the absorptive part of t,„from which the direct
and crossed N-poles contributions have been sub-
tracted. Substituting (1.3) back into (1.2) one ob-
tains for T,', the two-pion part of the spectral
function T,(st),

1 ds
Tg (st) =-

& dsgds2K(s(s2&s t}s(s)t)o(sgt)
W 4~2 S —S

+r (st}, (1.5}

with E some kinematical factor." The second
term in (1.5) is due to vv scattering. Substituting
into (1.1) the n, ~ 2 approximation (1.2) for the

spectral function T„one finds by means of Eqs.
(1.2)-(1.5) a relation between, on the one hand

T„„, and on the other hand elastic vN(vv} ampli-
tudes supplemented by one-boson exchange (OBE)
parameters. It is expected to hold for peripheral,
on-shell NN partial wave amplitudes. In order to
establish similar relations for low partial wave NN

phases, higher mass exchanges beyond correlated,
single-range (&u) contributions are needed, but their
construction is extremely complicated (see Ref. 9).
One further observes that no explicit dynamics is
required to establish the relation just discussed.

Before starting the discussion on an NN poten-
tial, it is worthwhile to recall that the effective
interaction in nuclei (and nuclear matter} is often

&i&p, IT»(s)lpp2&with some of the particles off
their mass, or at least off their energy shell [respec-
tively, E- 0 (p~+M ) ~2, (E +E }'Isa (E ~ +E&) ].

Dispersion or 8-matrix approaches deal only with
on-shell amplitudes and a determination of off-
shell. extensions necessarily requires external in-

formation, usually of a dynamical nature. Two

problems arise when one follows the standard pro-
cedure and introduces an effective NN interaction
to drive an equation for NN scattering. First, one

has, in principle, to tackle a fully relativistic for-
mulation, i.e., a Bethe-Salpeter equation, but its
complications render practical only three-dimen-
sional reductions of the Blankenbecler-Sugar-Lo-
gunov- Tavkhelidze (BSLT)'0 type. In these some
aspects of relativity got lost. Moverover, a solu-
tion of such an equation

&p'IT (s) lp&=&p'Iv„„(s) lp&

+ ) 6„3E &p IVAN(s) Ip &G(s, p )
pst

x&p IT„(s)lqp (1.6)

[s'~2 the total energy and p' =(p'- p2)/24 p =(P&
—p )/2 initial and final relative momenta] is only

possible if T» is given off shell. These are just
the amplitudes which necessitate the introduction
of V». To break a vicious circle one relates in

the developments of Refs. 6-8 portions of T and V

havinginverse ranges p, ~, p.„' and (2p. } ', (3p, ) '. .. ,
which are, respectively, pole positions and branch
points of T„„(t), Eq. (1.1}. One thus writes

T —Tr+T~+T2r +Ter+
(1.7a)

V=T, +T„+V2,+V3, + ~ ~ ~

and deter~ines the components of V by substitution
in (1.6). Grouping terms with the same inverse
range one finds (p,„-5.6 p)

2r TrGTr ~

(1 7b)
V3r ——Tsr — 2rGT» —Tr GV2r —Tr GTrGTr ~

T» on shell determines single-mass exchange
parts T„T, Fq. (1.2), but a calculation of the
off-shell elements of T„V2,... in (1.7b) requires
additional input. At this point one involves dynam-
ical information as well as parametrizations (for
shorter range parts) ~ These are then tested
against on-shell NNdata and imply, of course, off-
shell behavior for TN„.

We return to T;2, Eq. (1.5) and to its dependence
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on wN amplitudes. In actual calculations these
have been taken from measured mÃ phases. How-

ever, in attempts to illustrate the derived V2„one
sometimes emphasizes selected singular compon-
ents like the N poles in (1.3) and further the cross-
ing-symmetric 5 approximation (1.4) for o' (Ref.
11):
o'(st) -o,'/„/, (s, u) =g~, 2[6(s —mI, ,2) + 5(u —m/„')],

Vd3SP
NO

jll~-+ (

+d
+;c/ + ~

b, d hd
IE /

I ~ + g( +,I

FIG. 1. Representation of p'&& resulting from disper-
sion approach in g& & 2 approximation (but including ~
exchange). "b,o" stands for a bare 33 resonance. The
open circle denotes the full t„.

1 1 l
2 1 1

(1.8)

That assumption implies s- and I-channel zero-
width resonances ("&3")as part of t,„. Neither
pl'Qp the mas s of the bare &p, nor its s trength gp p

in (1.8} relate directly to the observed $$ phase
shift 5I, (s) to which the separated u-channel N-pole
in Eqs. (1.3}and (1.8} contributes significantly.
Once made, the approximation (1.8) leads to a V»
with the following components (Fig. 1} (see also
Ref. 12}:

(a) OBE (v, &o} exchange parts;
(b) uncrossed 22/ contribution properly corrected

for V,' ', the second order contribution due to VopE,.
(c) the crossed 2v contribution;
(d) the analog of (b) with a N/3& intermediate

state; and,

(e) the same with &0.,
(f) the pion crossed analogs of (d) and (e); and

(g) vv scattering contributions to (c), (d), (e),
and (f}.

Approximate calculations of T3, are discussed in
Ref. 9.

II. A FIELD THEORETICAL MODEL

We briefly recall the essentials of a model field.
theory used for a description of the NNm system. '2
The starting point is a Hamiltonian'

—Hp+vN++Kr g + Np'r +HcT ~ (2.1)

where Hp describes free pions and nucleons, the
latter with their observed mass M. The NNm ver-
tex U is of the standard ys type, but for the dis-
cussion it suffices to write in terms of nucleon and
pion creation (annihilation} operators

U„„,=g g(k', kq)a-, a-b-+H. c. (2.2)

One further finds in (2.1) v„'~, 3v,'„, which are parts
of the full NN and mN interaction not generated by
U», (heavy-boson exchange potentials, etc.). The
same holds for the screened NNv vertex in (2.2).
Finally, HcT in (2.1) is a counterterm.

Consider first the scattering of a w from an iso-

+ .... .... +f], +

I
I

/
/

+ .......... +t,+ --.

(2.3)
with t&, t& components due to the background in-
terac tion se,'„.

The 2'2 projection of the graphs in the second
line above, including the crossed N pole, describe
in the relevant energy region the 4. A satisfac-
tory, though not crossing-invariant representation
of the off-shell t matrix there is

(trN)3/2s 3/2

G, (s) = ~t:,(s)~e"~"',
(2.4)

where the 4 propagator G~(s) carries the observed
phase.

From the discussion above it is evident that the
diagrams in the first line of (2.3} contain the
crossed 4 and that its description requires inclu-
sion of the direct N pole. We shall later return to
these observations.

Consider now NN scattering. We neglect for a
moment the md channel and suggest as an approxi-
mation v, 1, i.e., no more than a single pion is,
permitted in a given intermediate state, but their
total number remains unrestricted. Notice that
such an intermediate state might contain an N and

lated N in an approximation which does not restrict
the total number of pions in the s channel. Using
reduction techniques and assuming v, ~ 1, with v,
the number of pions in' any given intermediate (s-
channel) state, we showed. [I (3.9); see also Ref.
13] that an effective vN interaction can be con-
structed which drives the two-body BSLT equa-
tion. ' That v,'„"is, apart from a background con-
tribution ~,'„, just the direct and crossed N pole
(Chew-Low terms for finite M).

Since the number v, is not a crossing-invariant
concept, it is desirable to lift the restriction on it
and to define v,'~ as the sum of all mN irreducible
diagrams which can be constructed by means of
(2.1). Terms for the corresponding t,„are
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a 4. Any number of intermediate pions may be
present in the representation (2.3) for the &.

For the imaginary parts of amplitudes with TN
c 700 MeV, v, & 1 suffices (negligible 2w produe
tion) but we have no argument other than simplicity

— to offer for the assumption in general.
We proceed as in I and Ref. 14, and without proof

we state the following result (see Ref. 2 for an al-
ternative derivation)

OBE
~N)& v (1 + &G&&N NJV) +gN GptrNGpU&rN)¹N)& i

(2.5}
l

U&qi&))&, )&J& gal (—1 + &G))&)& )&)&) + t~uGpU&, z)n
I

The superscript "as" indicates antisymmetrization
of expression involving two nucleons in the same
state. " TNN and t,N above are now the amplitudes
for generally off-energy shell, elastic NN, and mN

scattering, and G» is the NN propagator withself-
energy insertions, in line with the approximation

As shown by Avishai and Mizutani, GNN

satisfies an integral equation, schematically writ-
ten as

equation still defines a generally nonlocal, energy
dependent VNN without any further assumption. In
order to perform the comparison with the disper-
sion method, we discuss some of the lowest order
terms of V» which result from TNN.

There is no problem in principle to evaluate
and to interpret for a general t,„, Eq. (2.7}, and
the resulting V». However, as in the previous
section, an interpretation is facilitated if I;,N is
approximated by its dominant parts. For instance,
in the resonance region one certainly ought to re-
tain the —,

"
—,
' partial wave, which is well represent-

ed by (2.4), although that form violates crossing
symmetry. In addition, we also keep out of the
full I;,N the direct N pole. Their sum leads to the
following long and medium range components of
V„„(seeRef. 16 for a relativistic calculation of
some parts of V2, without construction of a closed
system of complex amplitudes):

(a') OBE exchange parts (including p exchange);
(b') the uncrossed n«exchange parts corrected

for iterated lower order parts, e.g. , for n& ——3

GNN GNNp0 GNNp 0 G„)&, (2.6)
—V3r Vr GNN Vr GNNVr

VrGNNV2r V2r GNNVr i (2.8)

T„»=[v +g$ GptarG p(1 t,&Gp) &g„—]
x(1+,G„„T„)&). - (2.7)

Notice first that (2.7) is an equation for a gener-
ally off-shell NN amplitude. When free from in-
termediate NN states the first factor in brackets in
(2.7) would by definition by V„„for the model de-
fined by (2 ~ 1}used in the spelled-out approxima-
tions. However, the direct N pole in P&,&»+,&p[t,„],
Eq. (2.3), introduces into those brackets an NN
reducible part. As a consequence the recognition
of V„„in (2.7) is no longer immediate, but that

where G», 0 is the propagator of two free nucleons.
(G„„-G~„,p was erroneously used in I.) Finally
U&,»„,„„is the transition operator for NN-N(«N),
where the wN pair interacts last. '4'5 When multi-
plying U«„)„,„„with gp, Gp [g~ being the DNA form
factor as in (2.4)] and integrating over the vN rela-
tive momentum, one is led to the standard NN N4
production amplitude. (One thus checks that for a
separable approximation (2.4) for P&~2, &~p[t,„], (P
is a projection operator) one recovers I, Eq. (3.22)
which are equations coupling amplitudes for the
NN, Nt). (and «d) channels. }

We resume a more detailed analysis of (2.5), not
immediately invoking (2.4}, a single, separable
approximation for the dominant 4 component of I,,N.
We first formally eliminate U«)I&)„)&„ in (2.5),
which results in

(e') crossed 2«, 3v. .. contributions from which
the &'—,

' projections have been removed; and
(d') contributions due to single and multiple in-

termediate N~ states where the ~ represents the
Physica/ resonance, properly described by the ob-
served &'—,

' phase shift.

The theory further accommodates contributions
due to intermediate md states which for simplicity
have been disregarded.

Components (c') and (d') require spectial atten-
tion. Since the physical ~ draws on the &'2 pro-
jection of the crossed N pole, the latter ought to be
removed from contributions containing two (gen-
erally )p} crossed pions.

It is further in the nature of the chosen approxi-
mation t,)&=t~~"+t~, Eq. (2.4), that no crossed,
physical 4 occurs. We recall the remark made
after Eq. (2.4) and assert that when wishing to do
so, part of the nondireet N pole will be included in
the crossed ~ and V2' should be correspondingly
corrected.

Finally, as done in (1.8), one may as an alterna-
tive approximation split t,N into a N and zero-width
4p contributions. Instead of contribution (e'} above
one now has (Fig. 3)

(c") 2, 3... crossed v contributions;
(d" ) contributions to crossed and uncrossed 1,

2. .. , N40, and &0&0 intermediate states.

Notice that all contributions are calculated with a
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screened NNv vertex (filled circles) which is not
necessarily a virtue and often a necessity. Apart
from improving convergence it should help in a pa-
rametrization of t,N. We further remark that nu-
cleon lines in NN intermediate states contain 7r in-
sertions permitted by v, & 1. Table I summarizes
our findings.

III. CORRESPONDENCE AND DIFFERENCES

In actual evaluations of the approaches one in-
troduces approximations. Thus in the dispersion
approach, n& - 2 implies limitation to single and

double pion t-channel exchanges (actually including
&o representing 3v exchange), whereas v, (1 limits
s- channel states to NN, NNw, and N4. In the thus
calculated T» one then recognizes some but not all
intermediate states corresponding to n, =2 exchanges
retained in the dispersion approach. Comparing
these compatible approximations for T~N, one sees
(cf.Figs. 1-3as well as Table I) that similar parts for
VNN result. This is unexpected since the two un-
derlying descriptions seem to have little in com-
mon. The fully relativistic dispersive approach to
T„„exploits t-channel unitarity, starts from T(NN—vv) and ultimately relates to the on-shell ampli-

TABLE I. Comparison of tools for the derivation of VN~ and of results, from dispersive and field theoretic approaches.

1. T001

2. Major
approximation

3. Input

4. Construction
V»

5. Content
VNN

Mandelstam representation,
exploitation of t(N) channel
unitarity leading to
on-shell TN~(st)

n(2, i.e., nO mOre than 7r7r

in s channel

(i) vHBs
(ll) ~are
(ill) tN~

on shell
(iv) t„
Using analyticity arguments

Born terms T+ can be
recognized. V+ requires
dynamical model for half
off shell Vppl

OBE v
OBE

Field theoretical model Hamiltonian H
leading to integral equations for coupled
off-shell amplitudes, satisfying (off-shell)
s-channel unitarity for T~~(s)

v~ 1, any number of 7r in s ch»&el but no
more than a single one in any intermediate
state

off shell (constructed from H)
P

Directly from elimination of all but NN
chapels in, coupled integral equations

(b)
djr

'2m

Cl 1.r

v(2)
7r

~ ~

y i
s s I

I I
i I s
I l i

(Corrections due to
dirV, m(n)
DI7r

cr
(c) V

27r

\I
AI

Ccr
v

27r

E

Pg

(d) VA „=
0

dir b

(e) v
0 0

&o

(1)
AN

bv
AN

I1 ~~a
I g I

I g I
~ L ia»

(g) cr b

0 0

Ao
g') cr b

N

Ad
'Vji

&o
Common contributions featuring the NN~ vertex and NN propagator are calculated with, respectively, undressed

(dispersion) and dressed (field theory) vertices and N lines."AQ contributions include 7r7t rescattering.'
Q~ projects out the & 2 crossed 7r contribution on an N line present in Vzz.
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v„'„"""= j=,i,--. ( i i 0„"} (!i!-v."-v„'"v,„-v,„v„"j+--

bx
I

I I +

+ ~ ~ o ~

+.---

FIG. 2. Representation of pNN resulting from model
field theory in v~ ~1 approximation (but including w ex-
change and unlimited v~ terms for proper description of
t,N). d signifies (off-shell) ~2N amplitude (dominant
part except for direct N pole).

fieldh ~ IV
NN

+~(,

Qi
4

+-"-

FIG. 3. Same as Fig. 2 but with t N approximated by
crossed and uncrossed N and "b,o" (bare isobar) poles,
Eq. (1.8).

tudes for elastic NN and vN (vv) scattering. The
second approach is based on a dynamical model
with definitely poorer requirements (actually with-
out antinucleons vital for the exploitation of t-chan-
nel unitarity} and relates off energy -shell ampli-
tudes for elastic NN and vN scattering [Eq. (2.5)].
Yet the extracted NN potential tt"» is largely the
same.

The link between the two models is readily ex-
posed, once it is recalled that the coupled integral
equations (2.5) [and similar ones embracing vd and
more N(Nv} channels' ] satisfy two- and three-
body s-channel unitarity. This is evident from the
choice, of a complete set of Nw and NNm states
used'4 as well as from the explicit proof given by
Avishai and Mizutani who followed the reasoning
used in Ref. 17.

It is obviously of interest to know whether unit-
arity alone implies the dynamical equations (2.5).
For a strict three-particle (and thus nonrelativis-
tic) theory with separable pair potentials this is in-
deed the case, but there are already numerous am-
biguities if the dynamical equations describing a
relativistic three-body potential model are of the
covariant Blankenbec ler-Sugar- Logunov- Tavhkel-
idze type'~' (see Ref. 18 for a discussion). The
field theoretical model defined by Eq. (2.1) is de-
cidedly more complex and allows also two-particle
states. For that reason one cannot apply the rea-
soning of Ref. 17, where the form of dynamical
equatio'ns is derived from unitarity. It does not

come as a surprise that starting from a dynamical
equation derived in a restricted space, unitarity can
be derived under the same restrictions. However,
implication in the reverse sense has not been proved.

Putting aside the question of uniqueness, our
model furnishes at least one realization of off-shell
s-channel unitarity in the v, & 1 approximation,
i.e., T» satisfies in a schematic notation

Im7 FN, NN(s} PEN t7FN NN(s} I'+ p.d I7 NN d(s) I'

+ p~~~ IT~~.g„,(s) I ~ (3.1)
where p stands for appropriate phase space fac-
tors.

Instead of two completely different approaches
one deals in principle with a different exploitation
of unitarity, crossing, and analyticity of T„„.A

Mandelstam representation for 1"NN then guarantees
the same content whether the emphasis is on the s
or on the t(u) channel. Differences in T„» should
therefore, in principle, only be due to inequivalent
approximations in actual treatments of the s and t
channels. We repeat that these approximations do
not only involve n&, v„but, as is the case with the
solution of (2.1), an approximate treatment of
crossing and r'elativistic effects as well. Roughly
speaking this is reflected in the use of BSLT rather
than Bethe-Salpeter equations. Thus far for T».

After the discussion in Sec. II on the construction
of V» we can be brief as to the correspondence in

Our model uses from the onset coupled on-
mass, off-energy shell equations of the BSLT type,
while in the dispersion approach there is no need to
use an approximation comparable with the BSLT
on-mass, off-energy shell reduction. However,
the explicit introduction of such an equation is un-
avoidable if one desires to extract an effective VNN

from an on-shell T» as provided by the dispersion
approach of Refs. 6-8. It is in that step where to

'. our taste some of the clear initial advantages of
the dispersion approaches appear to escape and
where an extraction of V» is no more immediate.
We recalled above that (except for single mass ex-
change contributions) one needs dynamical informa-
tion in order to calculate the required off-shell
amplitudes. No such information is needed for
~NN.

As opposed to that road stands off-energy shell
(s-channel) unitarity and its realization in equa-
tions coupling all relevant amplitudes. Their off-
shell behavior is determined by the dynamics un-
derlying the chosen model. In particular, Eqs.
(1.7) and (2.7) define V„„without the need of fur-
ther information. The remarks above only relate
to the extraction of V» and do not bear on the
quabty of that potential, which of course also lacks
short-range parts.

We now discuss some differences in V». These
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are inessential indeed and are due to different ap-
proximations. For instance the dispersive ap-
proach in the n& ( 2 approximation allows ww re-
scattering. A corresponding description in the
field theoretical model requires an additional mm

potential in (3.1) so constructed as to reproduce in
the J=I =0 and J=I=1 channels characteristics
of the o and p (these should then be removed from
V"s ). Conversely, that latter model with unlimit-
ed total number of pions but with vs (1, (i.e., no
more than a single v in any intermediate state) ac-
commodates multicrossed-pion contributions and
further parts with any number of crossed and un-
crossed "%&0 states. " These in turn are part of
the n& ) 3 terms in the dispersive development.

From the discussion above it should be clear that
provided the b 0 contribution to t,„is carefully de-
fined, the two models do not diverge in the inter-
pretation of %40 or +0+0 contributions to V». At
this point we wish to caution against too liberal use
of sums of effective Lagrangians

~ —NNr + ~4Nr +NNn + 4NP +eff eff eff

with "' treated with Feynman rules also beyond
the permitted second order term. If, for instance,
the 4 can (in part} be built from Z~„„acalcula-

tion of V„„from &z„,+ &~„', (Refs. 19-21) runs, as
demonstrated the danger of over counting. Even at
this elementary level of discussion one is apparent-
ly confronted with questions of elementarity of a
particle and their role played in unitarity.

In a final remark we wish to focus on some ap-
proximations used. One expects that with the same
content in principle, one ought to be able to work
out the theories to precisely the same approxima-
tions. We already mentioned approximate n& ——3
extensions within the dispersive approach. s We
are further aware of some successful solutions of
a simpler field theory in the v, (2 approximation,
with also the total number of pions (2. We have
till now not succeeded to realize s-channel unitar-
ity in the form of coupled integral equations like
(2.5} which include NNvv. One should look forward
to further progress.
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