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Efimov effect in the four-body case
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Introducing a suitable cutoff' parameter ro for the efFective potential in the three-body subsystem, we show
that the number of four-body bound states is roughly kin[ca(re)], where e is a momentum cutoff and
2/3m & k & 1/3, if the scattering length a(ro) for a two-body bound state and a third particle tends to
infinity. In a numerical calculation we found that the value r0-1.82 fm, which provides a sufficiently
resonant eff'ective interaction in the three-body subsystem, is independent of the applied two-body potentials
within the numerical accuracy.

NUCLEAR REACTIONS Efirnov effect.

I. INTRODUCTION

Some time ago, Efimov' ' discovered that if
three nonrelativistic identical bosons interact via
short-range two-body potentials gv(s'), then as
the couplirig constant g increases to that value g„
which can support a single two-body bound state
at zero energy, the number of bound states of the
three-particle system increases without limit.
All the levels are of the o' kind. In other words,
the pair interaction is required to become suffi-
ciently resonant to produce a 'bound state near the
energy & = O. Subsequently this remarkable and
unexpected property of three-body systems was
proved in a rigorous way by Amado and Noble, "'
who studied the eigenvalue spectrum of the Fad-
deev kernel in a particular singular limit. These
results have also been confirmed by numerical
calculations. "More recently, some attention has
been dedicated to Efimov's effect in the special
limiting case with two heavy and one light parti-
cle,"~ which had already been predicted in Ref. 5.

All these considerations had been restricted to
three-body systems with interactions leading to a
zero-energy two-body bound state. Because of
the long-range character of the effective interac-
tion in a three-body subsystem, "'"it seems im-
possible to observe a similar effect in the four
particle case. In this paper however, we show
that by introducing a suitable position space
cutoff parameter r„which enables us to vary the
range of the effective potential in the three-parti-
cle subsystem, "a denumerable set of 0' four-
body bound levels appears, when r, decreases to
a particular value r~ for which the scattering
length of the two-body system and a third particle
tends to infinity. The cutoff parameter proce-

dure allows us to simulate the repulsion in an
appropriate subsystem of the four particles. Et

turned out to be a helpful tool in studying the
Tjon line" as well as cross sections and phase
shifts of four interacting nucleons. '4 Further-
more, we discuss the relevant differences be-
tween our n-body equations and those studied by
Amado and Greenwood. " In addition we sketch
the proof that the necessary conditions for the
Efimov effect for n ~ 4 is fulfilled in our approach.

III. ALT-GRASSBERGER-SANDHAS FORMALISM
{AGS)

Let us briefly recall the general concept of our
approach. Starting from a separable approxima-
tion

of the two-body transition amplitude, the three-
body equations can be reduced to effective two-
body equations of the matrix LS form

T'= V'+ V'G T',
while we end up in the four-body case with the
Faddeev type matrix relations"

Here o, p, r denote the partitions (ijk, l) or
(ij, kl) of the four particles under consideration.
Like the genuine three-body case, it is the essen-
tial aspect of Eri. (3) that its kernel is determined
by the subsystem transition operators T' given
as solutions of Etl. (2). This suggests that we can
also approximate them by separable expressions
of the form (l),

(4)
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Then, after partial wave decomposition, we end up with one-dimensional integral equations for
four identical bosons with mass ~:

T ...(q', q;z)=V ...(q', q;z)+Q f V ...(q', q";z)t, (z —z'q" )T '. .(.q", q;z)q"*dq".
t

The index L denotes the relative partial wave of the clusters, a is a kinematical factor, while s, x, t,
collectively denote the fragmentations (3+1) or (2+2) and the further quantum numbers of the clusters.
The effective potentials in the LS type -equation (5) are

+1

V, ., „(q', q; z) = dxI, (x)F, (q, )f z — — l&„(q,)
-1

with

in the (3+1)-(3+1) channel. For (2+2)- (3+1) we have

and for (3+ 1)- (2 + 2)

(V) qqf =(q, q', z„,)t (z„„—t)')V,.(q')q"dq',
0

with

'3
. l4-l

q" for (3+1)

ll

—q" for (2+2).

The otentials v have the formsp

8 (q q q q
8 T („)= dx

g[(4q'+q" + qq'x)'~'] g[(&q"+q'+qq'x)'~']

z„„——(q'+q" + qq'x)

The three-body unitary pole approximation (UPA) form factors" are defined as

(12)

( . )
8'qgq() (')

(13)

in the (3+1) and (2+2) cases, respectively. The meaning of z~,„ is explained elsewhere. ""Now, after
having developed the formalism we are able to investigate the appearance of Efimov's effect in the four-
particle problem.

III. CUTOFF PARAMETER CONCEPT

Before we start our investigation in the four-
body case we recall the reasons for the Efimov
phenomenon in the simple case of the three spin-
less particles. . If the pair forces are sufficiently
resonant, then. a whole family of bound states must
appear for the three particles. That means that
for a particular interaction, the radius of the
forces is much smaller than the scattering length.
In other words, the binding energy of two parti-

I

cles approaches its breakup threshold. .In the
three-body case the critical energy is E=O, while
in the four-body problem this effect should occur
at the deuteron binding energy E„ if we restrict.
our investigation to the (3+1) channel. That
means, if it is possible to shift the three-parti-
cle ground state energy E, to E„by variation of
the two-body potentials coupling constant, then
the number of four-body bound levels should be-
come larger and reach infinity. On the other
hand, it is known that the long-range nature of the
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T, (q; z„.„)=&I,.' v(q, q', z„„)t(z„„—Q')

&& T, (q', z„„)q "dq'; (16)

setting q, '=1 and z„.„=E„obviously the triton
binding energy is a function of the cutoff parame-
ter r0. Moreover, we assume that it is possible
to find an ~E for which

lim E,(r0) =E~,
fp~tE

and consequently the scattering length

a(r, ) = lim (2v&n/3)T(k, r0; E~) (18)

gets larger and larger, if x0 reaches xE. %e
have verified this assumption by a numerical cal-
culation using Yamaguchi and Gaussian form fac-
tors as two-body input. As an interesting result
of our calculation, shown in Fig. 1, it appears
that the value xE =1.82 fm, for which the scatter-
ing length a(rz) tends to infinity, is independent of
the chosen two-body interaction within the num-
erical accuracy. The solution of Eq. (16) was
accomplished by means of the Pade method. Al-
ready the [5, 5] approximant ensures sufficient
accuracy in almost all cases (i.e. , for different

effective interaction between the two-body sub-
system and the third particle (known as triangle
effect) is nearly independent of the underlying
two-body interaction. So it seems impossible to
induce the Efimov effect in the four-body case
with the help of the mentioned manipulations. To
escape these difficulties we introduced a cutoff
parameter x0, which allows us to simulate the
repulsions in the three-body system by changing
the range of the effective potentials. For that we
replace in Eq. (10) v by v which reads (for more
details see Refs. 12, 13)

v (qq'; z „„), fq, (q—-, q ', r, )v (q ",q ', z„)qq.„
0

(14)

with

fl

f,(q, q ; r, ) = ' 1j,[(q —q")r,] p', [(q +q-")r,]"t,

(»)
where j,(kr, ) is the spherical Bessel function.
Identifying F, (q) with the half on shell three-body
T amplitude
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FIG. 1. Scattering length a (xp) of a two-body bound
state and a third particle in dependence of the cutoff
parameter rp a (rE) = ~. ( Yamaguchi, —~ —~ —~-
Gaussian two-body input. )

values of r, ). Numerical integration has been
performed with an integration technique espe-
cially developed for that type of oscillating ker-
nel (see Ref. 16). Now let us return to the problem
of investigating Efimov's effect in the four-body
case. Qualitatively we have demonstrated that in
the three-body subsystem the effective interac-
tions become sufficiently resonant (a»r0) for the
existence of a very large number of bound state
levels in the four-body case. To prove this, we
still have to calculate the number of four-body
states when x0 is larger than, but close to, xE.

As we know from the three-body case, the
singularity leading to the infinite nunber of bound
levels comes from the confluence of two different
thresholds. Moreover, this divergence connected
with the Efimov effe"t arises from the small-
momentum behavior of the kernel. ' Therefore
it seems inappropriate to complicate the problem
merely to deal with its irrelevant high-momen-
tum behavior.

Near F. =F~ the UPA three-body subsystem pro-
pagator t in Eq. (5) is approximated by

so the homogeneous form of Eq. (5) reads

q. .., ,. (q) = &,.-'(&, r, ) ~, , („,)(q, q', E)t(„,
&

"(E—a'""q")y . &„,) „,(q')q"dq'.

+ ~L„.a, (a+~) 9'~& 'E ~(a z) + ~ & &L, ;(~+~), , c &
0

(20)
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Because of the formal equivalence (one-variable
equation) of the three- and four-body cases, here
we may apply exactly the same method which
leads. to the well known result in the three-parti-
cle problem.

IV. NUMBER OF FOUR-BODY BOUND LEVELS

In this section we show that the number of
four-body bound states increases like In(& ~a ~)

with increasing three-body scattering length a
in the ease of four identical bosons interacting
via a separable two-body potential. E is a suit-
able chosen momentum cutoff. As described in
Sec. II, one gets a one-dimensional integral
equation by a twofold separable approximation of
the original four-body equation. So we may adapt
the mathematical tools used by Amado and No-
ble ' to prove the existence of Efimov's effect
in a rigorous way. Therefore we restrict our-
selves to a short description of the idea of the
proof but show in more detail the significant dif-
ferences to the three-body case.

In order to study the kernel and the eigenvalues
as a function of the energy and the cutoff para-
meter r„we rewrite the four-body bound state
problem [see Eq. (20)]

K(E& ro)i,. = A, (E, ro)y,

For E &E~ and x, &rs the eigenvalues &,(E,r, ) are

K(E„~ ) =K'(E„~,) +K~(E„~,) . (22)

So E~ is defined after partial wave decomposition
as

real and discretely distributed and we have
&1m X,.(E,r, ) =0. y,. is a solution of the Schrodinger
equation if the corresponding eigenvalue is equal
to one. Thus for fixed r, the number of bound
states is given by the number of eigenvalues
equal to one, if the energy E varies from —~ to
the two-body bound state E~. Since Iimtr[K'(E, r,)]
=0, obviously we have for each cutoff parameter
~, a most tightly bound state E,(rg with -~
&E,(x,) & E, Th.at means all energy eigenvalues
lie in the interval [E,(x,), E~]. These facts are
the starting point of the idea of Amado and Noble
to prove the Efimov effect: Since each eigenvalue
A., (E& x,) is a real and continuous function of E and

r, for E &E„and ro&r~, it must pass through X,.
=1 in order to become larger than unity. If it is
possible to show that an infinite number of eigen-
values ~,. become larger than 1 in the limit E =E„
and ro=r~, we would prove the existence of an
infinite nurse)er of four-body bound states. Our
task therefore is to demonstrate that the sequence
S, =X,. (E~, r~) has a denumerable set of accumula-
tionpointsH~&0, L= 0, 1,2, . .. withe~&1forparti-
cular L.

In the first step we write the kernel of Eq. (21)
as a sum of a singular and a regular part

&,*(&,&')=(-()', &(&-&)&(~-&')e,*, —', l , +(l&" (&—'-&'Id)"-*I
—', (q'+q&2) —2m(E E~) l 1—

(23)

lim S,. = lim S~,
f~oo

(24)

Here we approximate the three-body subsystem
propagator by its effective range formula [see
Eq. (19)]. The three-body scattering length is de-
noted by a and the momentum cutoff &

' has to be
small in correspondence to a in the case E = E~.
Q~(x) is the Legendre function of the second kind.
Recalling that K~ is a compact operator with a
finite trace for E =E~ and r, =r~, a theorem by
Acyl" proves that

X, L, Eg, ro(-I)'E, (E„r,) =
Q (-1)'X,'. (I., E„r,)
E ~', (I., E„~,)S,' (L.).
Q (-1)'~,'. (I., E„r,)
j=l

because of the well known fact that a positive com-
pact operator is equal to the sum of its eigen-
values, and of the monotonicity conditions

(-1) X,. (I,E, r, ) ~ (-1) S,. (L) for E ~ E~, r, &rs.

where S,. = X~(E„,r~) is the eigenvalue spectrum
of the operator K~(E~, r~) Since we. are inter-
ested only in the limit points of the eigenvalues
S,, we are allowed to concentrate our attention
on the sequence S, . According to that we define

(25)

Following the arguments given by Amado and
Noble we emphasize that

(-1)'a', = Iim E,(E, r,)(-1)'
g

"O "E

is a lower bound for

(27)

(28)

and arrive at
(-1)'a, =Itm (-i)'S,'. (f.),

$~ (&O

(29)
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(;-)"'q,(3)3""r(1.~1)
vt (i+',-)

Applying a theorem of Tiktopoloulos" we also
get an upper bound

))Ifs )(
(3L+2 -1(3)1/ 2q (3) [( )/ 1

r (l. +1)

(32)

(33)

for the accumulation points HL. For L =0 we see
that

1.214 &H', &H, & 2.697,

but in the case of L =2 we find H, & 0.3. So we
conclude that for I &0 there is no further ac-
cumulation point H~&1, because the right side of
(33) is a monotonic decreasing function of the
partial wave quantum number L. For odd L H~

obviously is negative. To summarize, we have
shown that in the four-body case an infinite number
of bound states appear in the limits &,-&„and
x, -z~ if L =0. Analogous to the three-body case
we observe only in the 0' state Efimov's effect.
The number of bound states goes with N
=tr[A, (ES,rs)]/ff, That mea. ns in the four-body
case

N = k ln(ea),

with

2/3«(u (';.

V. 6-BODY CASE

Amado and Greenwood" showed that there is no

Efimov effect for four or more particles. In the
light of their work our result seems to be very
strange, but let us analyze what the decisive
differences are between the approaches under
consideration. In their paper a four-body kernel
is investigated which contains the full (not ap-
proximated) subsystem operator. As a conse-
quence their trace for small Z, p, q, is propor-
tional to

p'q dpdq
(E-P'-&f')(&-';e')' ' (3s)

and thus does not become divergent as E-0, be-

and that the excess of (-1)LHL is just a geome-
tric factor. To get this lower bound H~ we have
to calculate the traces tr(KL) and tr((I1L)'):

35
tr[(As)2] ( (3)2L+2 h [gg(2 )1/2] ( )

q 2(3)
+r

(30)

tr(K ) = 3('-)' 21& '(-1)LQ (3) in[1+ ea('-)' '] (31)

where I'(x) is the well known gamma function.
Finally we find that

(3V)

after partial wave decomposition, if E-E„. Ob-
viously this integral is logarithmically divergent
as a(x,) — ~. So here the necessary condition
for the Efimov effect is fulfilled. Moreover, as
shown in the preceding section, this divergence
is sufficient for the existence of the effect in the
four-body case.

We are now ready to extend our arguments to
the n-body case (n &4). Starting from general
n-body operator identities, "an (/& —1)-foM suc-
cessive separable approximation of the subampli-
tudes leads to a system of one-dimensional inte-
gral equations, which variable describes the re-
lative movement of the clusters. By introducing
a position space cutoff parameter x,'" " in the
(n —1) subsystem and adjusting it to a value,
which provides the coincidence of the (n —1) and

(n —2) bound states, we arrive at a similar ex-
pression for the trace of the kernel as in the
four-body case, after splitting up its irrelevant
parts (&»", «" are kinematical factors):

f +(S-'1&(~ @)d&f

[Z(&&S-»)]-1 &/r ~ (3S)

F&„» is the form factor of the (&2 —1) bound state
obtained as a solution of an eigenvalue equation
analogous to E&l. (10). Thus, in contrast to the
more general case discussed by Amado and

Greenwood, here the necessary condition for the
existence of an infinite number of n-body bound
levels (n&4) is not violated. The problem of a
general proof of the existence of Efimov's effect

cause y =1 or 2 in the four-body case. The di-
vergence of trK however is a necessary condition
for the appearance of the Efimov effect. Hence,
taking into account the full subsystem amplitude,
an (n —1)-body zero-energy bound state will not

produce an infinite number of bound states in the
~-body case for n ~ 4. In contrast to such an at-
tempt our final four-body equation is provided by
a twofold separable approximation of the original
four-body operator identity [E&l. (3)]. This means
that we have already integrated over the internal
momenta, and hence only the relative momentum
between the fragmentations (3+1) and (2+2) res-
pectively, appears explicitly in the resulting one-
dimensional integral equation. The particles,
which build up the clusters, have no longer any
degree of freedom, but they are "frozen" to a
bound state or a "quasiparticle. " Thus the volume
of our phase space is reduced to the three com-

/

ponents of the relative variable q between the
clusters. Therefore the trace of the relevant
part of our kernel is proportional to
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in the (separable approximated) n-particle case is
under investigation.

The essential point in Amado and Greenwood's
paper is the fact that there are (n —2) free mo-
menta and one propagator in the part of the equa-
tion containing the (n —1) connected kernel. The
dimension of the propagator is always the same,
but each additional particle gives three more
powers of momentum in the numerator. Since
the (n —1) amplitudes do not diverge more and
more strongly at an (n —1)-body zero-energy
bound state, the integrals are finite for small
momentum cutoff parameters and small momenta
for n &3. As emphasized above, this situation is
avoided by applying an (n —1)-fold separable ap-
proximation, which does not change the dimen-
sion of the relevant propagators by incorporating
the dominant subsystem structures (bound states,
resonances, etc. ), but reduces the n-body to an
effective two-body phase space.

What does that mean physically? The approxi-
mated n-body amplitudes are not able to des- .

cribe breakup processes of the clusters into
smaller fragments or elementary particles.
This is a shortcoming of the equations in the
scattering region, but does not affect seriously
the bound state problem. In actual calculations
this problem usually is cured by introduction of
breakup amplitudes, which are built up by sub-
system scattering states and transition operators.
Moreover, numerical calculations""'" show
that the four-body bound state is mainly deter-
mined by the position of the subsystem poles
(e.g. triton energy) that means by the dominant
structure of the subsystem amplitudes. So in the
n-body bound state problem it seems physically
justified to reduce the complexity of the full in-
tegral equation system by applying the described
clustering concept.

VI. CONCLUSION

We have investigated the Efimov effect in the
four boson case by varying the range of the effec-
tive potential in the three-particle subsystem via
an appropriate chosen cutoff parameter. Having
taken over a proof of Amado and Noble" applied
in the three boson case, we have shown that a
denumerable set of 0' bound state levels occurs
for four bosons, if a particular scattering length
is forced to tend to infinity by adjusting the cutoff
x, at the value r~ =1.82 fm. There are some
indications for the existence of such a pathology
in the (n &4)-body case, if the complexity of the
n-body equations is reduced by successive se-
parable approximations of the subsystem ampli-
tudes.

The study of Efimov's effect in the three-body
system has not been restricted to the proof of
its existence. Efimov' himself emphasized that,
as an application of the effect, the existence of
the level in "C with excitation energy 7.65 MeV
could be understood at least qualitatively in
terms of a three-n-particle system with resonant
pair interaction of the Q. particles in the s state
(the resonance is the ground state of 'Be). In
recent attempts' the possibility has been investi-
gated to describe the vibration rotation structure
of molecular spectroscopy from the Efimov view-
point. So we are optimistic that also in a four-
body bound state model the cutoff parameter in-
duced appearance of a family of 0" levels will
turn out to be an appropriate tool in the analysis
of empirical data. Investigations are under way.
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