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We obtain closed form asymptotic approximations to the eikonal form for inelastic hadron-nucleus scattering to
strongly excited nuclear states. These forms exploit the dominance of the nuclear geometry recently used by us to
obtain the elastic scattering amplitudes. Our forms agree well with the data. We find that the inelastic scattering can
be written in terms of the elastic scattering cross section. These data-to-data forms agree remarkably well with
experiment and serve to emphasize the geometric unity of the reactions. The simplicity of these expressions and
relations should make them useful in medium energy phenomenology.

NUCLEAR REACTIONS Closed form eikonal amplitude for hadron-nucleus in-
elastic scattering. Data-to-data form relating inelastic and elastic scattering.

I. INTRODUCTION

Hadron-nucleus scattering at intermediate en-
ergies has been extensively studied experimentally
and well fitted theoretically by numerical calcula-
tions. For elastic scattering treated in the eiko-
nalapproximation, we have recently shown® that
these fits can be understood analytically by ex-
ploiting the dominance of nuclear geometry in the
scattering mechanism. In this paper we extend
these analytic methods to the inelastic scattering
of hadronic probes to strongly excited nuclear
states.  We again find simple analytic results by
exploiting the .geometry of the nucleus as mani-
fested in the eikonal approximation. As an added
bonus we find that the cross section for inelastic
scattering can be expressed directly in terms of
the cross section for elastic scattering. These
data-to-data formulas work remarkably well when
applied to experiment. All these results serve to
emphasize the basic geometric nature of these
reactions and, correspondingly, the relative in-
sensitivity to dynamics for strong inelastic scat-
tering. The data-to-data formulas provide a re-
markably simple phenomenological tool for re-
lating elastic and inelastic scattering, and under-
line the unity of these processes by organizing
them into a single comprehensive picture. The
data-to-data formulas are-in some sense better
than the derivation used to obtain them since they
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automatically correct for parts neglected in the
derivation (e.g., Coulomb interaction). Further-
more, they ensure that the sensitive details of
reaction dynamics, such as minimum filling, are
correctly accounted for in comparing elastic and
inelastic processes without requiring a micro-
scopic theory of them. The remaining dependence
on nuclear shape parameters needed to make the
data-to-data comparisons is mild.

For inelastic scattering, the major assumption
of our work is a local, surface peaked transition
density. We embed this in a distorted wave im-
pulse approximation with eikonal treatment of the
distortion and use the stationary phase methods
we developed for elastic scattering to evaluate the
integral. The surface peaked transition density
(Tassie’ model) is a good approximation for col-
lective states, which are also the states that are
strongly excited. For inealstic proton scattering
at medium energy, strong refraction at the sur-
face and strong absorption tend to favor surface
excitation even if the transition density does not.
That is one of the reasons for the empirical suc-
cess of the Tassie form for (p, p’) reactions. To

- test truly the excitation mechanism one should

study a less strongly absorbed or refracted probe.
For processes involving two-step excitation, for
example intermediate resonance formation, our
locality assumption presumably fails. Such pro-
cesses therefore give hope of shedding some light
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on the details of the dynamics, in spite of the
fact that they often correspond to relatively weak
cross sections.

In Sec. II we obtain the formulas for inelastic
scattering. We do this by beginning with the exci-
tation of low spin collective states, which is some-
what simpler, and then proceed to the general
case. The reader interested only in the answer
should skip to Eq. (2.51) for the data-to-data for-
mula. Section III contains comparison with re-
sults primarily for (p,p’) reactions. Agreement
is excellent. Section IV concludes with some gen-
eral discussion and points for further study. Two
technical points are dealt with in the Appendices.

II. THEORY OF INELASTIC SCATTERING

Consider the inelastic scattering at inter-
mediate energy of a hadron (e.g., proton, but
we neglect spin) from a nuclear target to a
particular target state. We take the target ground
state to have spin zero and the excited state to be
an L~ state. It is well known that excitations of
discrete states are well understood in terms of the
distorted wave impulse approximation. The dis-
torted waves may be generated using either the
Schrodinger equation or an eikonal formalism.
Neglecting any difference in distortion between the
ground and excited states, the scattering ampli-
tude for the process can be written

@rmlalson =2 [ w@GLM|v, 7o)

x P;(r)d3r . (2.1)

We have called the incident and final center of
mass momenta of the projectile E and f)’ respec-
tively, and have assumed that the transition den-
sity V, is local. M is the projection of the final
state target angular momentum. We use eikonal
wave functions for the distorted waves ), obtaining

Frmlalpoy=2 [datr,eiie®

X(TL'™M|V,[r0%  (2.2)
where i:ﬁ - p’ is the momentum transfer. At
intermediate energies we can use the first order

local density form for the eikonal profile function
x(v):

x(b) =v£(b), (2.32)
£(0) = f ) pl (2% + %)% dz (2.3p)

where p is the nuclear density normalized to

f p('r)d 37=A, and z is the incident direction so
that b is a two-vector in the impact parameter
plane. 7 is defined by

Y=3oy(1-7), (2.4)

where o, is the total cross section and # is the
ratio of real to imaginary part of the forward
amplitude for prOJectlle nucleon scattering., At
small angles, q has a sxgmﬁcant component only
in the b plane so we can write q ‘T =q ‘b= gbcoso.
On general invariance grounds we may write for
the transition density

(FL™M |V, |70 =f, (1 Yy, (6, $)
‘ =f (’V)PL .M(G)emo ) (2-5)

where in the last step we have written the spheri-
cal harmonic in terms of the associate Legendre
polynomial P, ,. The amplitudes corresponding to
+M can differ by at most a phase, so to calculate
cross sections we need only consider M= 0. In-
serting (2.5) in (2.2) and using the integral rep-
resentation of the Bessel function, we can evaluate
the ¢ integral to obtain

(p'L'M|A|p0% =ip f Jy(gb)b db *®
0

Xj.w dz f;, (M) Py, ,(0) Xi™,
) (2.6)

where in the last integral we must recall that »2
=b%+ 2% and that P,y is a homogeneous polynomial
n b* "z"»E, The powers n are odd if L + M is

odd and even if L +M is even. Therefore the z
integral in (2.6) will vanish unless L +M is even.
Apart from the standard assumptions of the dis-
torted wave eikonal approximation, and the as-
sumption that the transition density is local, Eq.
(2.6) is completely general.

We now specialize to the case of excitation of
collective transitions. It is well known that for
such cases the transition density is strongly peaked
at the nuclear surface. Of course, even if it
were not, the absorption and refraction due to x(b)
would force most of the transition strength to act
at the surface. We will return to this point. For
collective transitions, it is convenient to param-
etrize f; in the form (Tassie?)

fo@) =1+ %%p(r), 2.7)

where A, is a parameter describing the excitation
strength and p is the same nuclear density as in
(2.3). Using (2.7) in (2.8) gives an excellent ac-
count of the data for the inelastic excitation of
collective states of medium and large nuclei at
intermediate energies. Normally this agreement
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is obtained via numerical evaluation of (2.6) with
(2.7) after careful numerical adjustment of the
eikonal parameters to fit the elastic scattering,
also calculated numerically. We will now show
that this agreement is no surprise since the in-
elastic cross section obtained from (2.6) and (2.7)
can be expressed directly in terms of the elastic
cross section.

Let us begin with the case of a 1™ state since it
is a particularly simple example, even though it
seems to be of little empirical interest. Because
of the rule that L + M must be even, we need only
study L=1, M=1, and have Py, =—(3/87)'%b/7.
Calling the amplitude A;,;, we have

172
A1 1—-—1)7\1( ) f bdb Jy(gb)e™*?

x f :dz%-g;p(r). 2.8)

Using (1/7)(d/dv)p =(1/2)(d/dz)p from 7% =b% + 2
and (2.3), this becomes

172
A“_-pxl< ) f bde1(qb)e"‘°’) x(b)
(2.9)
which can be written
A 172
Apa=p 1( ) f Db Jy(qh) (1 &%)

(2.10)

If we integrate by parts, note that the boundary
terms are zero [X(©)=0], and use the Bessel func-
tion identity

d
75 2/1(qd) =qbdy(gb) , (2.11)
we obtain
7\1 1/2 oX®
A =P \gr bdeo(qb)(l )
by 3 1/2
=i 4(&) g4, (2.12)

where A, is the hadron-nucleus elastic scattering
amplitude in the eikonal approximation. For the
inelastic cross section we have

" 3

Opat-= A1 [P+ [Ag,4 |2 = | " ‘4-.”112091 .

(2.13)

By making the additional assumptions that the
inelastic transition is driven by the same part of
the hadron-nucleon force as the elastic scattering,
and further that the excitation is of 7=0 charac-
ter, A may be written in terms of ¥ and the re-

duced electromagnetic rate (see Appendix B),

172 4T
=y[3B(E1)*] 37

(2.14)
In Eq. (2.14) Z is the nuclear charge. Finally,
the cross section for the inelastic excitation of a
17 collective state is given by

@) =g ZE (Yo (). (2.15)

Equation (2.13) is the archetype of relations we
will obtain for other values of L. It expresses
Oya,r directly in terms of 0,; and A,. We will find
the factor of q2 for all transitions, but for higher
L we will find a shift in the ¢ at which o,,,; and
0,1 are to be compared. We will also find that the
result cannot be obtained without making more
detailed assumptions about the elastic eikonal
amplitude. Fortunately we have recently obtained
considerable insight into the form of that ampli-
tude that will enable us to do just that.!

Let us turn to the case of L =2. There are two
M values that satisfy M +L even, M=2 or 0.
Since P, 5 =(15/327)*20%/7?, we have for the amp-
litude Az .2

1/2
Az,z__sz2< ) f b3db J,(gb)e*®

1d
X ——
f.ﬂ, dz 'rd'rp(r)'

(2.16)

Following the procedure we used to go from Eq.
(2.8) to (2.10) and integrating by parts we obtain

1/2
Az, 2= =ip _<32ﬂ> f db bZJZ (qb)]
X(1=-e™*®), (2.17)

Now using the Bessel function identities

F R =a ) =g F00a),  @.18)

we obtain

_ Az_(_lz)‘“ d
AZ,? - v 327 q quoo (2.19)

For the case of M =0 we use P,,o=(5/16m) '/?(22*
-b%)/7r%. 1In (2.6) we must study

f dz(22° —bz)———p(r) (2.20)

-0

Using (1/7)(d/dv)p = (1/2)(d/dz)p in the z* term
and integrating by parts, we find for (2.20)

d
-b El;t(b) - 2t() . (2.21)

The inelastic amplitude is therefore
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. . 5 172 % .
Az'oz-zp(l—s_”) N j; b db Jo(gb)e™*®

x(b f,,— + 2) td). (2.22)

Using ¢(b) = =(d/dy)e™® and integrating by parts
for the b derivative, we obtain

5 1/2 7\2 d d)
Az.o=(16ﬂ> y<q a +2-2y 7 4,. (2.23)

In order to make further progress in using (2.19)
or (2.23) we need to have an explicit formula for
A, that we can differentiate with respect to ¢ and
Y. For that we turn to our recent work on an
explicit formula for hadron-nucleus elastic scat-
tering in the eikonal approximation.! We have
shown that the integral for Ay can be evaluated to
a very good approximation using the asymptotic
form of the Bessel function and the method of sta-
tionary phase. Our approximate form for A yields
a cross section that agrees essentially perfectly
with exact numerical evaluation except at the
smallest values of g. We now turn to the form.
We write following Ref. 1, hereafter referred to
as ADL,

Aqlg, p) ==ip[Glg, v) +G*(q, ¥)]. (2.24)

The leading asymptotic approximation to G, G, is
given by [ADL Eq. (40)]

al/sb 2/3 _-4/3

Gdg, ") = —“\7?-‘1— exp(3mi - vE(by) +igb,

» + %(aquo)llseirle] ,
(2.25)

where by =c +imB8 with ¢ the nuclear radius and B
the skin thickness parameter appropriate to a
Fermi distribution

p(r) =p, [1 + exp(-tg—c)] B (2.26)

and a=2mYBp, is a dimensionless “strength”
parameter. 7 is the nonsingular part of the pro-
file function defined as in (2.3b) but using p where

pn) =p(») + 2b03p0/(1’2 - boz) . (2.27)

The G, of (2.25) contains only the leading asymp-
totic contributions and does not include the effect
of the Coulomb interaction. In fact, ADL also
gives a closed form expression for G with first
order nonasymptotic correction and the Coulomb
interaction included [ADL (57)], but we will use
the algebraically simpler form (2.25) for our
discussion. Given (2.24) and (2.25) it is
straightforward to calculate 4, , and A, ,. The
general form of A4, , is rather complicated

and we can take advantage of the structure of
G, to greatly simplify it. Most of the g de-
pendence of (2.25) comes from the term exp(Ggb,).
In fact, as pointed out in ADL, for reasonable
choices of parameters in proton nucleus scatter-
ing the remaining ¢ dependence largely cancels
between the ¢™*’® term and the ¢*’® term in the ex-
ponent. Therefore ¢q(d/dg)G,=1iqb,G; is a very
good approximation. In most of the scattering re-
gion |qh,| > 1, since the ¥ derivative in A, brings
down a factor of order (gby)'/® and the other factor
is 2, the g derivative term dominates. Therefore
A, o becomes proportional to Ay,; for Iqbol =qcC

> 1. We have for A;,,

A’Z 15 172

Ay 3 ==ip 7(3'51;) qlibyG (g, ¥) - ib§G%(g, v*)]
(2.28)

and for A,
Ago=(H"4,,. (2.29)

If we write
by=Bye'®, (2.30)

0

where B, is the magnitude of by, then

/15 \12 o
Ay, =—1ip ';,2('5‘2—7;) gBy[e*®*"'YG (g, )

+ e e DG (g, %),
(2.31)

Thus ¢ + 7/2 is just a phase shift in the oscillations
of G. Those oscillations are controlled by the
imaginary part of the igb, factor, which is igc.
The real part of this factor contributes an expo-
nential decrease of the amplitude of e™™. As
stressed above, these are the most significant
contributions to the ¢ dependence. Thus we can
express Ay, at ¢ in terms of 4, at g+ (¢ + 7/2)c,
however we must remove the scale shift due to
the exponential factor. We find

Azp == %(%)1/2430‘40[(1 + (¢ + %)/ <, P]

Xexp[nﬁ(:[) + %)/c] . (2.32)

Using (2.29) between A, ; and A,,, we can write
for the cross section

e B om0+
X-oel[q + <¢ + g)/c] .

Y
For small scattering angle 6 and high energy we

(2.33)
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can neglect the excitation energy contribution to
the momentum transfer and have

q=po, (2.34)

so that (2.33) relates o,,, at 0 to o, at 0+ (¢ + 7/
2)/pc. We shall see in Sec. IV that this data-to-
data comparison is remarkably accurate.

For L =37, we must consider M =1 and 3. We
write the inelastic version of (2.24)

Az, u=1p[Gs,3ulq, V) + G¥5, (g, ™].

Using explicit forms for P;,5 and P3,;, and the by
now familiar tricks of integration by parts and
Bessel function identities, we find that G, 3y can
be expressed in terms of the elastic G and its
derivatives, except that we find more powers of

b inthe integrand. In ADL we emphasized that in
evaluating the b integral the complex singularity
of x(b) at =5y dominates, so that we can evaluate
all polynomials in b at b=0,. Doing this we find

/2
;ﬁ(?l)l ( 2_24d 47_d_i)
Gs.s1(¢1, Y)—Z 4\an q bO - q d. + d

(2.35)

q " q dvdg
XGylg,7) (2.36)
and
. Ag(35\!7 2 d
Gs;33(q, Y) ==1 Z)%(E) Q(boz + ; -d—q>Gs(q, Y) .
(2.37)

Again, for large gc the first term in the brackets
in (2.36) and (2.37) dominates and we have G,
~G,,33. Using (2.30) this gives for (2.35)

172
. n
As,p=ip %,‘(ﬁ) qBoz[Gs(q, y)etie
+Gx(q, v)e e xi™,
(2.38)

where 7n; =21 and n3 =35. We obtain for the inelas-
tic cross section

2
\% %T-Boz(qBo)ze“B‘/cUe,(q+2¢/C),
(2.39)

Oin,3 (q) =

or using (2.34) to simplify the expression in terms
of 6,

2
Uln.a(e) = |%‘ "'Z',‘T'Boz(qBo)z
(2.40)

xe413¢/c0,e1(9 +2¢/p0) ,

which is a data-to-data formula for the 3" excita-
tion and, as we shall see in Sec. IV, works re-

markably well.
For general L and L +M even, P, canbe writ-
ten
Py y=r" Z anb” gt (2.41)
with upper limit L/2 or (L - 1)/2 depending on
whether L is even or odd. Substituting in (2.6)
with (2.7), we have

Apu=ipr, ), J; b o* Py (gb)e*®
n

° 1d .
X 2n — — X4 m
]:w 2°"dz ydrp('r) im.,

(2.42)

/

The factor e™*® by penetrability and refraction will
tend to favor large values of b which, because of
the localized density, implies small z. The
leading contribution to (2.42), therefore, comes
from n=0. We show in Appendix A that the n# 0
terms are down by (gby)2’® and powers of it. This
neglect of terms in z is precisely the argument we
used to get to Eq. (2.29) or from (2.36) and (2.37)
to (2.38). Keeping only the » =0 term, we have

4

i e .
Ay n=ipN aq J; db b= ,(gb)e ’“”)z 7

X f o(r)dz «i™™

=—ipy aq f db 5—b[bLJM(qb)]
0

x (1= gt®).jm, (2.43)

where in the last step we have done the usual
steps including integration by parts. We now
separate (2.43) as in (2.35) using J,(x) = 1[HP(x)
+H%(x)] and H (x) = H%(x)*, giving

Ap u=1p[Gy ,ulq, V) +G¥,ulg, )], (2.44)
where
by . d
Grula, V) == 3k fo db == [b"H(qb)]
x(1-e™®), (2.45)

For large gb we can use the asymptotic expansion

of HY, HY)(x) ~(2/mx)'" expi(x — 1M /2 - 7/4), and
obtain
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: A -
Gy, ulg, V) == ﬁaoe 1Lr/DM 1 /4)

X fo " %[b‘(%)uze“”]
X (1=e*®), (2.46)

Again for large g the derivative of the exponential
factor dominates and the integral for G,, becomes
just the same as the integral for the elastic G ex-
cept for the factor of b" 1 (one power of b com-
bines with db in the integration measure). Evalu-
ating the integral as in ADL by deforming the con-
tour and exploiting the singularity of x(b) at =5,
so that all polynomial factors and other slowly
varying factors can be evaluated at b =b,, we

can express G, asymptotically (G, ) in terms
of G, of (2.25).

A - . oz -
Gs,Lu=—‘$aoe 24 g% le(q, 7. (2.47)

Note that (2.36) and (2.37) are special cases of
this formula. Recall that for L odd (even) M is
odd (even) and that only the relative phase of G
and G, matter in constructing a cross section
from (2.44). Using (2.30) we can write (up to an
unobservable overall phase)

A -
AL,M=1:P 7La0qB€ !
x(exp{i[(L - 1)¢ +n]}G (g, 7)

+ éxp{— i[(L - 1)¢ +n]}GXg, ¥*)), (2.48)

where =0 if L is odd and n=7/2 if L is even.
To construct the inelastic cross section for (2.48)
we need the sum 2 |ay|? over the appropriate odd
or even M values. It can be shown from the defi-
nition in (2.41) that

2L +1
2 lal? === (2.49)

Putting it all together we have the generalization
of (2.40)

N |2 2L + y
Oual)= |2 TLB%‘L ?(gBy)*

X exp(2mB®;, /c)oy (g +&./c), (2.50)

where &, =(L'=1)¢ +7 (2.30) and 7=0 for odd L
and 1/2 for even L. Using (2.34) we can write

2
2L +1 o¢ - 2
Y| T By “(gBy)

X exp(ZnBQL/c)oel(e +&,/pc). (2.51)

Y
Oin.L (6)= L

This is our general result. It relates the inelas-
tic cross section for excitation of a collective
state of spin L at angle 6 to the cross section for

elastic scattering at the angle 8 + &, /pc in terms
of purely kinematic factors and the overall
strength of the excitation th |2.

It is customary to relate the magnitudes of in-
elastic hadron cross sections to the appropriate
B(EL)’s whenever possible. We have avoided this
thus far (except for the 17 case) since specifica-
tion of the normalization relative to a B(EL) in
general, requires detailed knowledge of the nu-
clear interior. For a 1™ excitation of a T=0
nature the normalization is absolute with no fur-
ther assumptions about the density, because the
radial integral involved in computing the B(E1) can
be related to the density normalization integral.
For higher L values the normalization of the
B(EL) is not so simply computed and the relation
between the normalization of the inelastic cross
section and the electromagnetic rates will depend
on the details of the functional form of the density
and on the relative contributions of neutrons and
protons to the inelastic process. Rather than be-
come enmeshed in these details, we have general-
ly chosen to normalize our results via the param-
eter ;. However, if we assume that the transi-
tion is driven by the same part of the force that
drives elastic scattering, and that neutrons and
protons contribute equally (AT =0 transition), we

obtain
4ny[B(EL) |1’2
L5 (2.52)

A= 3Z [ dr #*%p(r)
or

2_(2)2 B(EL)
T\3Z) (= arrip(y)

In Egs. (2.52) and (2.53) the density that appears
is the ground state density. Again, it should be
stressed that the uncertainties associated with the
interior affect the B(EL) rather than the hadron
scattering. We may nevertheless use this to.ob-
tain an absolutely normalized expression. This
expression is worked out for a Fermi ground state
distribution in Appendix B. The constant relating
Xz and the B(EL) may depend strongly on the form
of the density. However, Eqs. (2.52) and (2.53)
depend only on the assumption of a Tassie rela-
tionship between the ground state and transition
densities.

Finally we note that our data-to-data form (2.51)
is not only surprisingly simple, but also quite
general. For example, we obtain the Blair® phase
rule in the special case of a sharp edge for the
nucleus.* For electron excitation there is the same
shift between elastic and inelastic scattering as in
(2.51). We plan to return to a complete treat-
ment of the electron problem. As we shall see in
Sec. III, the simple data-to-data result works re-

A
Y

(2.53)
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markably well. In particular, the formula is
better than the steps used to derive it since by
comparing data to data it corrects for slowly
varying mistakes in how (2.25) deals with the elas-
tic scattering, for example, in the assumptions
about nuclear geometry and the neglect of the Cou-
lomb interaction. Of course in the derivation of
(2.51) we used gc large, and therefore it will not
work for forward scattering, where threshold
effects are important.

III. RESULTS AND COMPARISON WITH DATA

In Sec. llwe showed that the expressions for inelas-
tic scattering cross sections of hadrons from nuclei
at medium energy in the eikonal approximation canbe
manipulated into simple analytic formulas by which
these quantities can be related to corresponding
elastic scattering cross sections. In this section
we test these analytic approximate forms against
the full numerical results and test the relationship
between elastic scattering data and inelastic scat-
tering data. It is not our major purpose in these
comparisons to give careful fits to the data by
detailed parameter searches. Rather, we are
attempting to show the general relationship
between elastic and inelastic reactions. The
fastidious may therefore find that some of
our “fits” are not up to the quality one some-
times finds in more detailed empirical work.
Usually those fits require parameter tuning that
is not, in general, illuminating. Our purpose here
is not to “fit” the data in that sense but rather
to try to shed some light on their dynamical con-
tent by relating it to other reaction data.

We have developed two ways of looking at the
inelastic scattering. We have asymptotic (large
gbg) analytic expressions [Eq. (2.40)] based on
ADL and we have the data-to-data formula [Eqgs.
(2.50) and (2.51)]. We have obtained these data-
to-data forms from the analytic expressions, but
since most traces of those expressions have dis-
appeared in the final form, it is plausible that the
data-to-data expressions have more general vali-
'dity than their analytic origins imply. That turns
out to be the case empirically. We therefore have
three questions to investigate: (i) the validity of
the asymptotic expressions as approximations to
the full amplitude, (ii) the comparison of the
approximate expressions with experimental data,
and (iii) the validity of the data-to-data forms for
relating different experimental quantities. With
the single exception of the overall excitation
strength A;, all input parameters are indepen-
dently determined. The nuclear density param-
eters are fixed by electron scattering and the
fundamental amplitudes fixed by nucleon-nucleon

phase shifts, Thus there remain no adjustable
parameters.

We begin with a purely theoretical comparison
of the asymptotic approximations and the full amp-
litude first in a typical light nucleus, oxygen, and
then in a heavy nucleus, lead. In Fig. 1 we com-
pare three calculations of the excitation of the
6.13 MeV 3~ state in '°0 by 800 MeV protons. The
calculation labeled full expression in Fig. 1 is a
numerical evaluation based on the full eikonal ex-
pression (2.6) using the Tassie transition density
(2.7). The excitation strength )3 in (2.7) is com-
puted from the measured B(E3),’ 213 fm,® accord-
ing to Appendix B. In this calculation we use a
Fermi density for '°0 with parameters taken from
electron scattering® (c=2.608 fm, 8=0.513 fm).
For the nucleon-nucleon parameter ¥ of (2.4) we
take ¥=2.18 +70.4905 fm® corresponding to a total
cross section of o =43.6 mb and ratio of real to
imaginary part »=-0.225." The curve labeled
Egs. (2.36) and (2.37) in Fig. 1 is based on the
asymptotic amplitudes (2.36) and (2.37) used in
(2:35) with G; of ADL as given in (2.25). All the
parameters are as in the full calculation. Final-
ly the curve labeled ASYM is based on the com-
pletely asymptotic expression (2.48). We see
that away from the forward direction, all three
curves have the same shape over six decades.
The two asymptotic forms grow together with in-
creasing angle or momentum transfer as we ex-
pect since they differ by terms of order (gb,) /3.
There is a difference in absolute value of at most
about 25% between the full and approximate forms,
which also decreases with increasing angle. The

=~ 0 3 ExciTaTION

—— EQN (2.36,7)
——— ASYM.

FULL
GLAUBER

0.01

L 1 1 P\ I 1 I
12 17 22 27 32 37 42 47 52

8, (deg)

0.001

FIG. 1. Comparison of full Glauber (...) [Eq. (2.6)],
with the intermediate (—) [Eqs. (2.36) and (2.37)] and
asymptotic (---) [Eq. (2.48)] cross section for the exci-
tation of the 6.13 MeV 3" state in %0 by 800 MeV protons
as a function of center of mass angle. The density and
interaction parameters are discussed in the text.
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difference arises primarily from taking only the
leading (gby)™ dependence of the ¢7*®? term.® As
shown in ADL, taking the next term [ADL, Eq.
(57)] removes the bulk of the discrepancy. How-
ever, since we are ultimately aiming at data-to-
data relationships which automatically correct
for this, we have not included these higher order
corrections. The major moral of Fig. 1 there-
fore is that the asymptotic form converges very
rapidly to the Eqgs. (2.36) amd (2.37) form and that
except at forward angles, and except for a slight
difference in scale that is also present for elastic
scattering, both forms agree well with the full
calculation. The forward angles do not work be-~
cause our basic approximation at every step has
been based on gb, large.

In Fig. 2 we show a similar calculation for ex-
citation of the 2.6 MeV 3~ state in Pb by 800 MeV
protons. The three curves have the same mean-
ing as in Fig. 1. The excitation strength is again
computed from the B(E3),° 71400 fm.® The param-
eter is the same as for '°0 and the density param-
eters are fixed by electron scattering10 ¢ =6.6037
fm, 3=0.6271 fm. We see again that the asymp-
totic and Egs. (2.36) and (2.37) forms do not coin-
cide at small angles but do grow together rapidly
with increasing angle. The full expression is
again the same in shape but slightly off in absolute
scale. That discrepancy also decreases with in-
creasing angle. The variation among the three
curves is smaller than for °0 since the radius of
208py, is larger than that of '°0 and gb, is the ex-

100
208ph 3~ EXCITATION
— EQN (2.36,7)
——— ASYM.
--------- FULL GLAUBER
10

02

001
7 10 15 20 25

6, m(deq)

FIG. 2. Same as Fig. 1 but for the 2.6 MeV 3~ state in
208},

pansion parameter. Once again the moral is that
all three forms have generally the same shape,
and the asymptotic form converges rapidly to the
full amplitude (because of the large radius of Pb).
The small scale discrepancy carried over from
elastic scattering can be repaired by a more

~ sophisticated treatment of the penetrability factor

as in ADL Eq. (57) or by going directly to the
data-to-data forms.

We now turn to comparison of the asymptotic
forms for the excitation cross section with data.
In Fig. 3 we show the cross section for excitation
of the 2.6 MeV 3™ and 3.2 MeV 5 states in 2®*Pb
by 800 MeV protons as a function of angle. The
data are from Ref. 11; the curves are from the
asymptotic form based on Eq. (2.48). The eikonal
parameters are the same as used in Fig. 2. In
particular the values of the Fermi density param-
eters B and ¢ are derived by fitting the pole posi-
tion in the charge density of 2°®Pb as deduced
from electron scattering by Nagao and Torizuka,.'
We chose to match to the first pole position since
the Fermi distribution has been supplanted in
these recent analyses of electron scattering from
heavy nuclei by a more complicated form, but
the work of ADL demonstrates that the principal
features of the distribution controlling the shape
of the cross section is the pole position. In fixing
the overall scale of the cross section in Fig. 3
we have used the connection between A; and
B(EL) given in Appendix B and we find B(E3),,
=1.6[B(E3)],,, and B(E5),, =3.2B(E5),, based on
the electro-excitation widths reported in Ref. 9.
These fitting factors of 1.6 and 3.2 (uncertain by
the 20-25% normalization problem we discussed
in connection with Fig. 2) represent dynamical
information on the excitation mechanism that we
extract from our fit and reflect the added contri-
bution of the neutrons to the hadronic excitation
of 2®Ph compared with electro-excitation. We
note that the fit in Fig. 3 is quite good both as to
general trend and details of shape. This is no
surprise since we knew that the assumption of
distorted waves and surface peaked transition den-
sity can fit the data in the far more complex opti-
cal model calculations that are traditionally done
and we have shown here that our approximations
lead to a very adequate representation of that
same amplitude.

Our studies thus far have focused on odd L states,
but since our formalism treats odd and even L
differently, it is interesting to turn to even L. In
Figs. 4 and 5 we show the inelastic cross section
for excitation of the 1.408 MeV and 2.959 MeV 2"
states in *Fe by 800 MeV proton and a function
of angle. The data are from Ref. 12. The calcula-
tion is again based on the asymptotic form Eq.
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FIG. 3. Cross section for the inelastic excitation of
the 3” (2.6 MeV) state and 5° (3.2 MeV) state in 2%Pb by
800 MeV protons as a function of center of mass angle.
The data are from Ref. 11. The calculation is based on
the asymptotic amplitude (2.48). The parameters used
for the nuclear density, interaction strength, and transi-
tion strength are discussed in the text.

(2.48) or for the 2* states Eqgs. (2.29) and (2.31).
For y we take the same values as for Pb,
while the density parameters are taken from elec-
tron scattering' c¢=4.012 fm, $=0.534 fm. The
overall scale in Fig. 4 was fitted to the data.

100 gy e g
Feoee. S4Fe 2*(1.408 MeV) ]
L . —— ASYM. ]
10 \ E
T f E
v r 4
~N - 4
L0 .
E 10k 3 4
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T|oT C 4
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FIG. 4. Cross section for the inelastic excitation of
the first 2* (1.408 MeV) state in %Fe by 800 MeV protons
as a function of center of mass angle. The data are from
Ref. 12, The calculation is based on the asymptotic amp-
litude (2.48) and the parameters used for the nuclear
density, interaction strength, and transition strength
are discussed in the text.

Using the results of Appendix B, we find this nor-
malization corresponds to B(E2),,, =0.8B(E2),, .
Since *Fe is nearly a 7=0 nucleus, this is a rea-
sonable result. For the normalization in Fig. 5
we find the ratio B(E2, 2;—~0;)/B(E2, 21 —0;)
=0.4. Earlier studies™ using electrons or low
energy hadrons obtain ratios between 0.25 and
1.0. This indicates that different probes couple
somewhat differently to the inelastic excitation at
different energy and momentum transfer, and/or
that comparison of excitation strengths is con-
siderably more model dependent that comparisons
of shapes. It is certainly clear that the shape is
again very well given in Figs. 4 and 5.

Finally we turn to our data-to-data formulas.
We examine the same cases as above, 208Dy, and
*Fe. In Fig. 6 we show the same 2*®Pp data as in
Fig. 3 for excitation of the 2.6 MeV 3™ and 3.2
MeV 5 states by 800 MeV protons. The curves
are from the data-to-data formula (2.51) with the
density parameters 8 and ¢ needed to make the
shift the same as used for Fig. 3. The elastic
scattering data are from Ref. 11. The agreement
in Fig. 6 is remarkable, even better than that in
Fig. 3} This underscores the fact that the slight
difficulties in the agreement in Fig. 3 are basic-
ally problems in the elastic scattering, not in the
excitation, so that in the data-to-data formalism
they disappear. The normalization in Fig. 6 ob-
tained by relating ; in (2.51) to B(EL) as in Ap-
pendix B corresponds to B(E3),,, =1.1B(E3),,.
and B(E5),, =2.2B(E5),,, again showing the added
influence of the neutrons in the hadronic excitation.
The discrepancy between the scale factors needed
to normalize Figs. 3 and 6 are largely associated
with the scale problem in G as we discussed, and
therefore the factors for Fig. 6 are more reliable.
However, the difference we discussed among dif-

100

ET T T L L B
F 5%Fe (p,p*) 2*(2.959 MeV)
Fe., —— ASYM. ]
10 %, (B(E2)=04 x BE2)(2%)) 4
= £ \ E
g : \ zx¥
E ok A 4
bl E 3 E
helhel r
L ‘x o
L x
otk \'\. E
0.01 Ll . | ST | P 1 1 L
4 10 20 30
8. m(deg)

FIG. 5. Same as Fig. 4, but now for the 2.959 MeV
2* state in ®Fe.
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FIG. 6. Cross sections for excitation of the 3™ (2.6
MeV) and 5" (3.2 MeV) states in 2®Pb by 800 MeV pro-
tons as a function of center of mass angle. The data are
from Ref. 11. The calculation is based on our data-to-
data formula (2.51) and used the elastic p-2"Pb data of
Ref. 11. The nuclear density parameters used in the
calculation are obtained from electron scattering as dis-
cussed in the text. The vertical normalization is re-
lated in the text to the appropriate B (EL).

ferent reactions in connection with Fig. 5 should
indicate that these normalizations are model de-
pendent and should probably not be taken too
seriously. In any case they come out to be of the
correct order of magnitude, and that plus the
striking agreement in shape of Fig. 6 is certainly
gratifying. )

For 5*Fe we have not been able to find any 800
MeV proton elastic scattering data and hence we
cannot make a data-to-data comparison directly
with (2.51). However in **Fe, the (p, p’) reaction
has been studied with 800 MeV protons for the
1.408 MeV 2%, 4.782 MeV 37, and 2.538 MeV 4°
states.”? We can use the data-to-data formula
(2.51) to compare these with one another. We
need only use one 2" state since it is clear from
Figs. 4 and 5 that both have the same shape. In
Fig. 7 we show the data for (p, p’) reactions in
*Fe to the first 2' state and to the 3" and 4" states
plotted with the angle shift corresponding to for-
mula (2.51). The relative normalization is arbi-
trary, and rather than show the data points direct-
ly we show a smooth curve that runs through the
data. Since the 3" can be shifted by +7/2 with re-
spect to the 2* and 4", we show both the + and -
shifts. The density parameters B and ¢ needed to
calculate the angle shifts are the same as used

100 T — T
N 54pe — o 2t

0.1

1 Il | Il
0'014" 10° 10° 10° 10°
@) (3) @96 ()

FIG. 7. Smooth curves through the data for the excita-
tion of the 2* (1.408 MeV), 3" (4.782 MeV), and 4* (2.538
MeV) states in ¥Fe by 800 MeV protons as a function of
shifted center of mass angle. The data are from Ref.
12, and the vertical normalization is arbitrary. The
angle shifts have been calculated using our data-to-data
formula (2.51) and nuclear density parameters taken
from electron scattering as discussed in the text. The
3" appears shifted both to the left and to the right.

in Figs. 4 and 5. The data-to-data formula (2.51)
requires that when appropriately shifted, the
three inelastic cross sections should coincide, and
so they do. We see from Fig. 7 that they do not
coincide at very small angles, as they should not,
but they heal to agreement rapidly with the highest
J taking longest to heal, all as we expect. The
agreement between the purely empirical curves

in Fig. 7 is further striking evidence for the
validity of the data-to-data formula. In fact, one
could use the inelastic data in Fig. 7 to recon-
struct the elastic data.

We could go on comparing inelastic and elastic
data, B(EL)’s, etc., but as we mentioned above,
that is not our purpose. In fact, for most data
available, detailed calculations have already been
done with considerable success. These many
calculations have been done largely in the context
of the optical model, but we have seen that our
approximate amplitudes given an excellent repre-

sentation of those calculations and there is there-

fore no need to further repeat their agreement.

It is only our purpose here to shed some light on
the dynamical content of these calculations and,

by particularly stressing the data-to-data formula,
on their relationship to elastic scattering—a rela-
tionship that underscores the geometric origins

of the processes. We have seen that our asympto-
tic formulas reproduce the data’s shape and gen-
eral magnitude except in the forward direction
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where our asymptotic approximation is guaranteed
to fail. We do not believe that any essential dy-
namics are hidden in the forward scattering re-
gion beyond the obvious threshold factors. We
have also seen that the data-to-data formulas do
an even better job of fitting the details of the data
and also remove some inadequacies in the simple
asymptotic form. The close connection we find
between electron and hadron excitation strengths
depends on the full density distribution as shown
in Appendix B and therefore the connection be-
tween B(EL),, and B(EL),,. is model dependent
and should be read with restraint.

Finally there is the very interesting question of
corrections to the reaction mechanism or transi-
tion density. Assuming it to be local makes the
formalism questionable for two-step processes
such as pion double charge exchange and perhaps
even pion resonant scattering, although prelimin-
ary indications are that the data-to-data formulas
will work even there. In general it is not clear
how the formalism could be extended to deal with
nonlocality. The surface or Tassie form of Eq.
(2.7) is the other assumption we make. This
seems to be a detailed dynamical assumption, but
in fact, strong absorption and refraction will con-
centrate the excitation mechanism at the surface,
no matter what the detailed form of the transition
density and it is just this surface dominance that
our asymptotic method exploits. Since for (p,p’)
reactions at medium energy the absorption and
refraction are strong, it may be difficult to dis-
tinguish excitation mechanisms in these reactions.
It is the surface nature of the reaction that gives
it such a strong geometric quality and hence re-
lates it so closely to elastic scattering. The geo-
metric enhancement of a Tassie-type transition
density indicates that probing differences between
the Tassie and other microscopic forms may prove
quite difficult with protons. It would be interest-
ing to apply these methods to less strongly inter-
acting probes as a better test of the reaction
mechanism.

It should be noted that the formalism developed
in this paper could easily be extended to reactions
involving targets with spin.

IV. DISCUSSION

We have studied inelastic scattering of hadrons
by nuclei at intermediate energies. The basic in-
put of the theory of these reactions is the distorted
wave impulse approximation and some simple
model of the transition density for the inelastic
scattering. At intermediate energies it is rea-
sonable to treat the distortion in the eikonal ap-

-
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proximation, and our work on these reactions
therefore becomes an extension of our recent work
on elastic hadron-nucleus scattering in the eikonal
approximation (ADL).

Just these theoretical ingredients or, equiva-
lently, the optical model have been used by many
others in detailed calculations applied to the
large body of excellent data. These are normally
complicated numerical calculations that must be
done with considerable care because the large
wave numbers involved lead to rapidly oscillating
functions and much cancellation. The results of
these calculations usually agree quite well with the
data. The data all share oscillations in momen-
tum transfer that is characteristic of diffraction
scattering superimposed on a univeral exponen-
tial falloff. These features suggest a unified geo-
metric origin for all the processes, but that uni-
fied view is difficult to see through complicated
numerical calculations.

In this paper we have attempted to make a direct
analytic evaluation of the relevant reaction ampli-
tudes. With simple models for the transition den-
sity, exploiting refraction and absorption of the
probe and using the asymptotic models of ADL,
we can obtain closed form analytic expressions for
the relevant amplitudes. These work well when
compared with experiment but, better still, they
permit the inelastic cross sections to beexpressed
directly in terms of the elastic cross section,
using no adjustable parameters, apart from an
overall strength. This overall strength can in
part be related to the electromagnetic B(EL). The
data-to-data formula (2.51) works remarkably well
in inter-relating inelastic and elastic cross sec-

- tions as was shown in Sec. III. The major dynam-

ical input in this relation is the local, surface
peaked nature of the transition density. Locality
may limit these results to one-step processes,
perhaps even ruling out application to resonant
pion scattering, but we hope that the dominance
of nuclear geometry and the simplicity of the final
formulas may lead to useful insights even for
pion reactions. The assumption of surface peak-
ing is probably less significant dynamically so long
as we are dealing with strongly interacting and
absorbed probes, since both the strong absorp-
tion and strong refraction forces the inelastic
interaction to occur at the surface whether the
transition density peaks there or not. This fea-
ture will probably permit application to pions. To
study the details of the transition density it would
seem profitable to turn to less strongly interacting
probes such as electrons, K mesons, or the like.
We plan to do just that.

A remarkable feature of the data-to-data for-
mulas is that they bear little trace of the assump-



22 COMPREHENSIVE RELATIONS FOR HADRON-NUCLEUS... 2105

tions used to derive them since they basically sim-
ply relate cross section to cross section. This
makes plausible far wider application of the re-
sult than the original derivation seems to permit.
We have already seen that the data-to-data for-
mulas more correctly include details of the dynam-
ics than their simple asymptotic origins and we
hope to be able to extend that use to other inelastic
reactions involving particle transfer, inclusive
processes, etc.

In summary, nuclear excitation with protons
and other strongly interacting probes seems to
depend primarily on the nuclear geometry. By
using the geometry of the nucleus, and its con-
comitant analytically, we can evaluate the inte-
grals for the amplitudes by asymptotic methods
that exploit the very features of rapid oscillation
that makes direct numerical evaluation sodifficult.
To the extent, then, that our asymptotic expan-
sion is valid, our forms are equivalent to the de-
tailed numerical evaluation.

What does all this teach us? At medium
energies, elastic and simple inelastic scat-
tering with strongly interacting probes are
dominated by nuclear geometry and the inelastic
coupling strengths. Reaction mechanisms or de-
tails of nuclear structure are therefore difficult
to study in this way. These are more clearly
manifested in more complicated inelastic proces~
ses, e.g., two-step processes, or in the scatter-
ing of less strongly absorbed probes. We plan
to turn our attention to these problems. Mean-
while we can continue to be pleasantly surprised
by the power of the eikonal approximation to de-
scribe and correlate a wide range of nuclear data,
and in particular of the simple form and impres-
sive -success of the data-to-data expressions.
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APPENDIX A

In this appendix we show that the step from Eq.
(2.42) to (2.43) is justified. Consider the integral
in (2.42)

f db b= g (gb)e*®
0

xf dz 22 -g;p[(z2+b2)”2], (A1)

where we have used (1/)(d/dr) =(1/2)(d/dz) to

transform the inner integral. Integrating once by
parts we have

f db b* '2"’1JM(qb)e"“°’(én -1)
0

x f ) dz 2" 2p[ (2% + %)) (A2)

We evaluate the inner integral in the spirit of
ADL, taking only the part singular near b,. The
singular part of the density is

~2b¢Bp "
Pe= TR b (43)

Strictly putting p, in the inner integral of (A2) leads
to an improper integral, but of course the true
density leads to a convergent integral and we are
only concerned with the. contribution to the inte-
gral near the singularity. We can therefore be
cavalier about the evaluation. We write

Lol an-2 19 2n=2
J:w dz z" Ps=—2boﬁpo<'i' 5;)

Xf_w“ri':’zz‘—z (A4)

w© 2 +b—b0,

where we set 7 =9 after evaluating the integral.
(A4) gives

12 5 ayar2
-23p0b0n<?) (R ) Lt (A5)
We substitute this in (A2) and evaluate the integral
as in ADL. There it is shown that the stationary
phase point is b=>5; and all other b dependence
can be evaluated at b,. ADL write

by=by+5, (a6)

and find
2/
5 _laz(_ 1) ?
2\ gb,/ ’
so that
a \2/8
(B = b= (b2 ~b?) =-b02(- 57;5) . (a7

The integral in (A2) becomes

a )2 /30-1-1/3

—2Bp0(— = (2n-1) f bdbd,(gb)e™? .
q9 0

(a8)

The n =0 case is dealt with explicitly in the text.
We see that even n =1 is ~(gb,/a)*’® compared
with (gb,) of the n =0 term, and higher terms are
down by (gb,/a )2/ for each power of n.
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APPENDIX B

In this appendix we derive a relationship between
the electromagnetic B(EL) and the inelastic trans-
ition strength in the Tassie model. We write

fo=2rt = p(r) : (B1)

vdr
We assume that we may factor A; into an overall
strength, related to the hadron-nucleon total cross
section and a nuclear structure strength, C; to be
related to the B(EL)

fo=7Cpv*" %dirp(r) =70:,.(7) . (B2)

This factorization is best if the hadron-nucleon

¢t matrix and the proton-charge form factor are
both slowly varying compared with the nuclear
form factor (alternatively the interaction range is
short compared with the nuclear size). If this is
the case and if we may treat protons and neutrons
as equivalent, the transition densities for hadron
and electromagnetic processes are simply related.
The B(EL) may be expressed in terms of the tran-
sition density as

B(EL) =4n (LI YLII0) |2 [(rEp) |2 (B3)

The factor of 47 appears in (B3) because the initial
state angular function Y= (4m)™/? was incorporated
into f; in Eq. (2.5), but appears explicitly in the
angular matrix element here. Evaluating the angu-
lar matrix element gives

B(EL)t = (2L + 1)2[1“ OT Kr® oy
000
=L +|(rEp|?. (B4)

For the radial integral we have
(r*pey=Cy f 1”‘(71‘ lge)'rzdr
0

»
_ ® arw dp
=Cy fo 4 drd'

=-C,(2L +1) J‘; ) ¥ p(Pdr . (B5)
So our general result is
B(EL)* =(2L+1)3CL2[ j; ) 1’2Lp('r)dr]2, (B6)
where p is normalized to Z for electromagnetic
applications [e.g., (e, e’)] and to A for hadronic

applications [e.g., (p,p’)] in order to have the
same C; in both cases.
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For the special case of a Fermi distribution

p(r) =po{1 +expl(r - c)/BT}*,
z © X -1 (B7)
Po= E( ]; r2dr1 + expl(r - ¢)/B]} ) .
The integrals are all of the form
b= [ drrim{1+ expllr-)/B]?,
0

which may be evaluated analytically to give

2m‘l'1
Tom+ 1[1 +2 i;

+ B (2m)! Z; (- lf*lim , (B8)

(m+1)1(2251
2m - 25 +1)1 (25)! IB“']

where By, are Bernoulli numbers, and € =(m8/c)?.
Using Eq. (B8) in Eq. (B6) we obtain

VA 2 T. 2
B(EL)+=(2L+1)3(CL)Z<—) (—zé) . (B9)
4n) \I,
We see trivially that for L =1 the nuclear struc-
ture integrals divide out. For higher L neglecting
the exponential terms ¢*’? (an excellent approxi-
mation even for p-shell nuclei) enables one to
write

Ly _ 3¢

I, 2L+1 (B10)

P(L)(E)

Py (€) is a (L = 1) order polynomial in € deter-
mined from (B8), and defined such that Pg,(0) =
for all L. (Note that these Py,’s are not the Le-
gendre polynomials.) We then have

B(EL)4 =(2L + 1)(—2%)204“ PCPey(€)F  (B11)

or

<B(EL)+>1’2 4r
32T D

oL +1 Zc [P(L)(é)] (B12)

These are the relations used to normalize the

cross sections. The polynomials Py, for the case

of a Fermi distribution are given in Eq. (B13)
Ppgy= 1 +%‘ €
Pgy=1+6¢+3 &
Puy=1+11¢ +22% 4 313

52 €+ 41062 1 16363 1 20054

(B13)
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