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We investigate the possibility of producing hypernuclei with energetic pion beams via the (m +, K+) reaction. Due
to the high momentum transfer involved (q -300 MeV/c), even in the forward direction, the {m+,K+) reaction
preferentially populates high spin natural parity configurations obtained. by coupling a A particle to a neutron
hole. We present differential cross section calculations utilizing the plane wave approximation {PWA), the distorted
wave impulse approximation (DWIA} using fully distorted waves, an'd the eikonal approximation (EIK} to
approximate distortion effects. The DWIA and EIK results are in agreement, and lead to cross sections typically a
factor of 5 —10 lower than the PWA results, due to absorptive effects. Cross sections of 5-20 pb/sr at 0' are
obtained in the DWIA for high spin natural parity "stretched configurations, "for example {~d 3/25/2 (3 f7/2 )' or(J'„„„e„f7„') + in „"Ca, for pion lab momentum p in the range 1.02—1.1 GeV/e, where the elementary cross
section for K+n~+A has its peak values. The cross sections for the population of the natural parity ground-state
levels {„SI/,e „l,+„, ')~, with closed shell targets remain above 2 pb/sr at 0' for systems lighter than A =50.
The cross sections drop rapidly below p =1.02 GeV/c, due to threshold effects. Results are presented for the
calculated quasielastic (quasifree) continuum background for the (m. +, K+) reaction as a function of 8„,and
hypernuclear excitation energy. Because of the higher momentum transfer the quasielastic background is
broader and significantly less in magnitude than that obtained in the (K,m ) reaction at O'. Thus it should be
possible to measure cross sections of a few p, b/sr associated with particle-hole states using existing pion beams in the
1-1.5 GeV/c momentum range, for instance at the Brookhaven AGS. The class of hypernuclear states populated at
0 in a {m.+, K+) reaction is complementary to those seen in the "crossed" (K,m ) reaction @t 0', the latter being
sensitive only to low spin states. Thus the {m+,K+) reaction offers unique possibilities for extending our
knowledge of hypernuclear structure.

NUCLEAR STRUCTURE Excitation of high spin states in (&, X) reaction.
DULIA and PWA estimates of cross sections.

I. INTRODUCTION

The earliest studies of hypernuclear structure
involved emulsion techniques. ' This method, with
minor exceptions, is restricted to the ground states
of light hypernuclei (A (16), since one must see
the decay A- pn' into charged products, and this
mode is greatly inhibited in heavy systems due to
the effects of the Pauli principle on the recoiling
proton. ' More recently, ' pioneering experiments
were done at CERN using the (K, tr ) and (K, s')
reactions to form various excited A and Z hyper-
nuclear states. The elementary K n- g A, m Z',
and K p- 7t'Z processes are exothermic, and
there exists a "magic momentum" for which the
momentum transfer at e„b=0 is zero. ' The re-
sulting slow A or Z has a sizable probability for
sticking in the nucleus, in particular to form re-
coilless substitutional 0' states' where the hyperon
replaces a neutron in the same shell model orbital.
Cross sections of a few tenths of a millibarn (as

large as 1 mb/sr) are typical for the excitation of
0' states via the (K, tr ) reaction in light hypernu-
clei. For J'e0 states, the (K, tr ) cross sections
peak at finite angle, with peak cross sections con-
siderably reduced relative to those for 0' states.
For instance, measurements of (K, tr ) angular
distributions at Brookhaven' have yielded evidence
for the excitation of 2' states in '~C at a peak level
of 0.1 mb/sr. It is clear that the (K, tr ) reaction
at fortoard angles emphasizes the spectroscopy
of loco spin hypernuclear states, at least for spin
zero targets.

Existing kaon beams' have an intensity of a few
times 10' kaons/burst. This low intensity means
that only coarse energy resolution (/ATE =2 —6 MeV)
experiments are feasible at present. Due to the
much higher beam intensities available with other
projectiles such as pions, protons, and heavy ions,
alternative methods of producing hypernuclei have
been suggested. These include
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(a) (N, Z)+p —«(N —1,Z)+n+K',
(b) p + (N, Z) —„(N,Z —1) +p'+ K',
(c) p + (N, Z) -«(N, Z) +K',
(d) g'+ (N, Z) „(N —1,Z) + K,',
(e) y+ (N, Z) „(N,Z —1) +K',
(f) e + (N, Z) —„(N,Z —1)+ e'+ K'.

T, =530 MeV for (v', K'),

T =670 MeV for (P, K'),

E„=670MeV for (y, K'),

(1..2)

neglecting binding energy corrections. These
thresholds are effectively reduced" somewhat if
one considers Fermi motion in the nucleus ("sub-
threshold production"). The (v', K') reaction is
near the upper end of the range of energy of the
pion factories at LAMPF, SIN, and TRIUMF, al-
though such experiments would be feasible using
the separated beams available at a higher energy
accelerator, for instance the Brookhaven AGS.
The production of hypernuclei via the (y, K') reac-
tion is similar kinematically to the (m', K ) reac-
tion, although the spin of the photon enables one to
excite unnatural as well as natural parity states. "
The (e, e'K') process corresponds to (y, K') with
a virtual photon and may be considered with the

Reaction (a) has been studied by bombarding a hy-
drogen target w ith high energy heavy ions. ' The
ground state lifetime of '„'0 was measured in this
way, but this type of experiment is not appropriate
to a detailed study of hypernuclear spectroscopy.
Reactions (b) and (c) are similar, except that the
presence of the continuum proton in (b) reduces
the momentum transfer somewhat, and hence the
A may more readily "stick' to the nucleus than in
reaction (c). Theoretical estimates' exist, but
preliminary experimental results from Saturne'
have not indicated any measurable cross section
for the formation of discrete hypernuclear states
in (b).

All of the reactions listed in Eq. (1.1) are endo-
ergic, unlike the (K, n ) process, and there is no
magic momentum of the projectile at which the A

is produced with zero momentum in the nucleus,
at least for the two-body processes (c), (d), and

(e). Therefore, even at forward angles, one
would not expect to populate lose spin hypernuclear
states in these reactions. The lab kinetic energies
corresponding to the thresholds for inducing these
reactions on a very heavy target at rest are given
by

advent of higher energy electron accelerators. "
In the present article, we focus on the possibility

of studying hypernuclear physics with pion beams,
via the (v', K') reaction. Since the momentum
transfer q remains larger than the Fermi momen-
tum E~ in the entire momentum region where the
two body process m'n-K'A is large, the cross
sections for forming the low spin states seen in

(K, v ) will be very small. However, we demon-
strate that the highest spin states formed by cou-
pling a A and a neutron hole in a "stretched" con-
figuration are excited with measurable cross sec-
tions at 0 of at least 10 pb/sr. The states seen
in the (71', K') reaction are complementary to the
"recoilles" 0' peaks [e.g. (+»„p, ~ '),. in «C]
which are strongly picked out by the (K, v ) reac-
tion. Thus a new domain of hypernuclear physics
can be studied via this process.

The paper is organized as follows: In Sec. II,
we review the properties of the elementary zN
—KA amplitude. We focus on the properties of
interest for hypernuclear physics; that is, the
dependence of the 0 differential cross section
and momentum transfer q on the incident pion mo-
mentum. In Sec. III, we discuss our calculational
procedures and the DWIA, the basic formalism for
discussing the (v, K) process. The application of
the full DWIA formalism is briefly summarized,
along with the choice of optical potentials for the
m' and E' channels. Also included is a discussion
of the nuclear quasielastic response. The results
of calculations of the (v', K') cross sections in the
plane wave impulse approximation (PWA) are pre-
sented in Sec. IV with emphasis on the strongly
excited high spin states. The PWA calculations
produce the correct angular shapes, and enable
us to understand the full DWIA results in a simpler
way. In Sec. V, we display the systematics of the
(n, K') cross sections as a function of pion mo-
mentum, target mass, and spin of the residual
hypernucleus, using the eikonal approximation for
the distorted waves. The sensitivity of the results
to the choice of potential (oscillator or Woods-
Saxon) for the n and A bound states is discussed.
For some particular cases, we show that the
eikonal results agree well with the full DWIA
calculations. Also in Sec. V, the quasielastic
(QE) contribution to the (v', K') cross section is
examined. Because of the large value of q, the
QE spectrum is very flat in energy, unlike the
situation for the low q (K, w') reaction. We show

that narrow peaks due to the excitation of particu-
lar high spin A particle-n hole states should be
readily resolvable from the QE background. Fi-
nally, we explore the general outlook for investi-
gations of hypernuclear structure via the (n', K')
reaction.
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II. KINEMATICAL CONSIDERATIONS
APD THE ELEMENTARY (m+, EC") AMPLITUDES

The associated production reaction mN- AK has
been extensively studied experimentally. The
most recent papers, which contain references to
earlier work, are those of the Rutherford
group. In Refs. 12-14, the data on the process
v p- KOA from threshold to 2375 MeV/c are sub-
jected to a partial wave analysis. Data on the
m P -K'Z' reaction are also available. "

For a hypernuclear physics experiment, using
a charged particle magnetic spectrometer to de-
tect the final state kaon, the relevant process is
n'n- K'A or K'Z'. Charge independence gives
the following relation between the amplitudes f:

fe', - r'~ = f. p--r'~ -~
(2.1)

fw+g E+co fir p E L'0 t

so the (m', K') cross sections needed are identical
to the measured (n, K') values. In. the two body

systems, the lab threshold momenta p~ are the

following:

and
C

(P P.-)'-. ml„')"'
m„'-m, '+ 2P,

p~ —-6 (6 +e~)q

p4 -=~ (m, '+ mr'+ m„' —m„'),

(2.8)

(g~ if + g»g+4. ~g4(J+) do t &»IC A

g 0 dn L oo

where e, =(m, '+k, ')' ' and e„=(m„'+0,')' '.
In relating the two-body cross section (do/

dQ)z ",' " to the e~= 0' formation cross section
on a nuclear target, it is necessary to include a
further kinematical factor 0. arising from the
transformation from the two body to many body
lab systems (i.e., the recoiling A has a different
momentum in the two eases). This point is dis-
cussed in detail in Goldberger and Watson. " As
we show in Sec. III, the factor 0. enters as fol-
lows:

0.89 GeV/c for n'n-K'A,
p,'=

1.02 GeV/c for n'n-K'Z',
(2.2)

where N, &z is the effective number of neutrons for
a transition to a final state J', and & is given by

corresponding to pion lab kinetic energies of T,
= 760 and 890 MeV for K'A and K'Z', re'spective-
ly. On a heavy nuclear target, the thresholds for
associated production are lower: we find T, = 530
and 607 MeV for A or Z' production.

The tabulated results of Refs. 12-14 refer to
differential cross sections (do/dQ), in the two-

body center of mass system. For our later cal-
culations of hypernucleus production, we find it
more convenient to work in the many-body lab
system. We first transform the 8= 0' cross sec-
tion for m'n K'A from the two body c.m. to the
two body lab frame via the relation

(do/dQ),',". ' u&; '
(do/dQ), "",. ~r'

(2.3)

~;= [p,(e„+m„)+a„(p,' —m, 'p, )'~']/p„

P,)-=m„e,~ + (m„'+ mr'+ m, ' m„')/2, —

p, =- m, '+ m„' + 2e,~m„

(2. 5)

where k~~ and k~ are the lab and c.m. momenta
of the K', respectively. To compute the ratio in

Eq. (2. 3), we start with the pion lab momentum

k,~ and obtain the pion c.m. momentum k, from

k, = k,~ (1 + m, '/m~'+ 2e,~/m„) '~ ', (2.4)

where e,~ = (m, '+ k,~')'~'. In terms of k„we now

obtain k~ ~ at 8= 0' and k~ from the relations

&xi = «r'i'- mr' )"'

=1 -q/v (2.8)

In Eq. (2.8), q.= k,~ —kr, is the 0' two-body mo-
mentum transfer in the lab, vr+~ = kz+~/er ~, and

e~~ = (m~'+q')' '. Note that for the (K, v ) re
action, where q is small, we have @=1and hence

Eq. (2. 7) reduces to a well-known result. ~' For
the m'n- K'A reaction, on the other hand, q is of
the order of 275-325 MeV/c and n differs appre-
ciably from unity, always tending to reduce the
nuclear cross section.

In Fig. 1, we display the dependence of e and

the cross section ratio (do/dQ)~, /(do/dQ), on

the incident pion momentum. The product
o.'(do/dQ)~ 0."r ~ which enters in Eq. (2.7) is
shown in Fig. 2. Note that this product displays
a rather sharp peak near p,~ =1.04 GeV/c, al-
though Fermi averaging would smooth this out

somewhat. It is typical of particular two body

processes that the peak cross section is achieved
not far above threshold (here 0.89 GeV/c). At

higher momenta, many other channels open up
(n'n-K'W, K*A, etc.) and the importance of

the channel of interest diminishes. Hence, apriori,
one might guess that an optimum momentum for
(v', K') production of A hypernuclei would be
around p,~ =1.04 GeV/c. However, one must also
consider the dependence of N~f f on q. In Fig. 3,
we show how q(0') depends on p,~ for the processes
m'n- K'A, K'Z . We also show the more familiar
cases K n m A, m Z' for comparison. This figure
displays the striking difference between the exoer-
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FIG. 1. Kinematical factors which enter the computa-
tion of the (7(', K') cross section on a nuclear target.
We show the quantity 0.'of Eq. (2.8) in the top part of the
figure as a function of the lab pion momentum p, . In the
lower half, we display the ratio of 8= 0 differential
cross sections in the two body lab and c.m. systems for
the z'g K'A process, as per Eq. (2.3).

I.5

gic (J7, n} and the endoergic (m, K) reaction. For
the latter case, the momentum transfer q remains
larger than the Fermi momentum K~ in the entire
region of interest of p, . Thus it is clear that the
low spin states picked out by the (K, m) process
at 0' are very poorly matched in the (v, K) reac-
tions, which emphasizes high spin states. The
information obtained at forward angles on hyper-
nuclear structure is quite complementary for the
two processes. We explore this complementarity
in more detail in the next section. Of course at
angles of =20' in the (K, m) reaction one may ex-
cite states of spin large enough to be seen also in
the (m, K) reaction. The idea of using two different
processes to study the same hypermuclear s-tete,
for a few cases, is attractive because it may al-
low one to determine unsuspected reaction mecha-
nism complications.

III. THEORETICAL PROCEDURES AND RELEVANT
FORMULAS

A. General formalism for fully distorted waves

The basic formalism we adopt for studying the
(m', K') reaction is the distorted wave impulse ap-

I.O
I

I.2
I

I.3
p~ (GeV/c)

I

l.4
I

l.5 l.6

FIG. 2. Momentum dependence of the free space lab
differential cross section at 0' for the ~+pi K+A reac-
tion. We include the kinematical factor 0'. of Eqs. (2.7)
and {2.8).

proximation. The procedure adopted follows
closely that already applied to pion and kaon in-
elastic scattering if fully distorted waves are
adopted. "'" In the case of eikonal approximations
for the distorted waves the procedure is similar
to that adopted in Ref. 17 for the (K, w ) reaction.

The basic input required for the DWIA calcula-
tions include: (a) distorted waves y"' for the en-
trance. (n') and exit (K') channels, (b) a two body
transition amplitude f~(k, k'} for the elementary
m'n- K'A process appropriate for introducing into
the many-'baryon system, and (c) initial nuclear
target and final hypernuclear many-particle wave
functions.

First we consider the general formalism where
one uses distorted waves generated from an opti-
cal potential. "'" We have made a partial wave
decomposition of the momentum space distorted
waves. After a Fourier transform, we then ex-
pand the configuration space partial waves
y~(p„r~) in terms of Bessel functions j,(k„r~)
with weights a„,(P&), where the momenta /k' have
been chosen so that j,(k„r~) vanishes at r~= 12 fm.
In momentum space, we then obtain

X,'(p„k) = ——, pa„,(P,.)~(k„-k) .
n

In Refs. 18 and 19, a separable form for the ele-
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used an effective s-wave parametrization for this
amplitude:

I 50
(3.2)
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FIG. 3. The lab momentum transfer q at 8&=0 as a
function of incident lab momentum for the processes
X +g g+A, 7t + go and ~++g —K++A, K++ Zoon a
heavy target nucleus. Many body kinematics is used to
calculate q, neglecting binding energy changes and as-
suming the target to be at rest in the lab.

We assume Ref= 0 and include the kinematical
factor a of Eq. (2.8) in the definition of Imf.
The laboratory cross section (do/dQ)z, is ob-
tained via Eq. (2.3}from the tabulated c.m.
cross sections. , The assumption (3.2) is equiva-
lent to using a zero range approximation to f in
coordinate space, since then we get only an s-
wave amplitude, i.e., we neglect the angular (mo-
mentum transfer) dependence of the elementary
process. This approximation has also been made
in all calculations of the (K, g ) reaction to
date, "s" except for that of Ref. 20, which uses
the full partial amplitudes for K n- m A. Note
that as an approximation to the two-body ampli--
tude, an s-wave assumption is very poor, since
many N* resonances are present for m'n K'A
or W resonances for K n m A, even close to
threshold. Higher partial waves are an essential
part of the two body problem. However, the angu-
lar shape of the (v', K') or (K, m ) cross sections
on a nuclear target is primarily determined by the
size of the nucleus and the question of how the
total two body cross section is distributed among
the various partial waves is less important. In
Ref. 20, calculations employing quite different
partial wave decompositions (but the same value
of (do/dQ), "" ' ~) gave very similar cross sec-
tions for "C(K,v )'„'C*. The validity of the ap-

proximation (3.2) deserves further study, how-
ever.

With the simpliftcations of Eqs. (3.1}and (3.2),
the differential cross section in the laboratory
system for the formation of a A particle, neutron.

hole state of the residual hypernucleus in the re-
action "Z(m', K')~Z*(J') is given by

'

mentary transition operator fs(k, k') was assumed,
and the full partial wave expansion was used. Qff-
shell form factors and spin flip amplitudes were
also included. For kaon inelastic scattering, '
it was found that off-shell effects had very little
influence on cross sections, particularly for
higher kaon momenta (800 MeV/c or so). An ap-
plication of the same formalism to (K, n ) reac-
tions" revealed that the spin-flip cross sections
to unnatural parity hypernuclear states were very
small. We expect a similar situation to prevail
for the (v', K') reaction, so for these first calcu-
lations we have neglected off-shell effects and
spin-flip contributions to the m'n- K'A amplitudes.
Instead of the full partial wave series, we have

(3.3)

In Eq. (3.3), we have assumed a 0' closed shell
target, and labeled the shell model state of the A

by (I„,j„}and that of the neutron hole by (I„,jj.
If configuration mixing of different particle-hole
states of the same total, angu. lar momentum J' and

parity n is included, we replace M by Q, ~ & &a» ~ & M» & &
in Eq, (3.3), where the weights

0. , » &
are determined by diagonalization of the

hhtl
Hamiltonian, including the residual A-nucleon in-
teraction. In the case of primary interest here,
namely the stretch states of maximum spin, there
is only one An ' configuration available, so the
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states are "pure. ". Note that even a pure (An ')~
state can mix with a variety of two particle-two
hole states (An, n, 'n, ')z, giving rise to a "spread-
ing width" &~ and a distribution of the strength of

the An ' state over the more complicated excita-
tions of the system.

The amplitude M in Eq. (3.3) can be cast in the
form

M, ', , j = 2, (—1) ' R'n-'/'[(2J'+1)(2 jr+1)(2j +1)j'/
1 J (

ARn n 27f (2 -2 0

g ' "(2l.+1)(2l, +1) " Y, (n)00 0 -J, O

f r'drn,
g (1)R&,(re& (d„,r)jj (k r), (3.4)

r 'dr R'(r) = 1 .
0

(3.8)

Comparing Eq. (3.3) to (2. 7), we see that the ef-
fective neutron number N J« is given by

(3.7)
Jz

Note that the angular dependence of N~« is carried
by the factors Y, ~ (0&) in Eq. (3.4). For 8~=0',
Eqs. (3.3), (3.4), and (3.7) reduce to the expres-
sions given in Ref. 17, if we in addition set a = 1,
which is valid for (K, 7/ ) reactions with q =0. As
a further check on Eq. (3. 7), one may neglect
distortion effects, i.e., a„, =6», a„nf 0 AL]= 5», , and use the identity (Rere for 8~ = 0 ):n'

where l~ + l„+J' must be even (natural parity only).
Here we have picked the Z axis along the initial
beam direction and 0& is the solid angle of the
outgoing kaon. The sums over l, and l~ represent
the partial wave expansions for the initial pion
and final kaon, respectively. The sums over n
and n' correspond to the expansion of distorted
partial waves in a plane wave basis. For {k„t., we
choose 11 momenta centered around the incident
k,~, with intervals of 50 MeV/c. For {k+j, the
central momentum is A~ ~. The function Y is
defined by

Y, (0/) = Y, (Q&)(4)T/21 + 1)'/', (3.5)

while the radial wave functions R(r) are nor-
malized according to

2

F(q) = r'dr R„(r)R„(r)j~(qr)
0

(3. 10)

The pion and kaon distorted waves were gen-
erated by using a standard optical potential V(r)
of the form

2EV(r)=k-, 'b, p{r) -b, V p(r)V, (3.11)

where p(r) is normalized to the total number of
nucleons A, E = (p'+ k~')'/' is the total laboratory
energy, and the complex constants b, (in fm') are
obtained from spin-isospin averaged s and p -wave
elementary amplitudes.

The DULIA calculations reported in Sec. V were
done for two typical incident momenta p,~ = 1.04
and 1.515 GeV/c, where the R'n-lf'A cross sec-
tions have been measured. " The target was
taken to be "Ca, represented by a density

p(r) p /(1 ~ c(r R)/())- (3.12)

with R = 3.67 fm and a = 0.6 fm. Using many-
body kinematics to obtain the final momentum p~
and the kinetic energies T,~ and T~~ at 0 we have

p, ~ =1.04 GeV/c, T,~ =910 MeV,

p„~=0.72 GeV/c, T~ =378 MeV
(3.13a)

J 2

X,'„=(2m+1)(2j, +1){2j„+1)~,' ~", F(q),
2 -2

(3.8)
where l„+l„+Jis even, and

i j~(qr) = ~ i j j, (kr'~r)j, (k„~~r)~ '.~i-g . &la

a ' t0 0 0
P,I ——1.52 GeV/c, T,~ = 1382 MeV,

PR~
——1.25 GeV/c, TR~ —851 MeV,

(3.13b)

x (21, +1)(21,+1), (3.8)

where q = k« —k~,~. We then obtain the plane
wave approximation"

corresponding to q=0. 32 and 0.285 GeV/c, re-
spectively. Note that q is the momentum transfer
to the nuclem; a substantially larger value i,s ob-
tained if one uses (inappropriately) two-body kine-
matics.
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o"= «&TDT)Av (cg 1))/~ra (s. is)
where (oToT)Av=-', (cA ~+or „}and (o, ,) =&realm&, .
We still retain the s-wave estimate for He b„
which is small in any case. Using the Martin"
amplitudes, we get

b' = -0.085+0. 173i fm',

b, =0.0013+0.132i fm',
(s. i6}

for kr~ ——1.25 GeV/c.
To construct a rough approximation to the pion

optical potential for momenta &1 GeV/c, where a
number of partial waves contribute, we use exper-
imental information on total mN cross sections"
and the real parts of m'P forward scattering am-
plitudes" rather than partial wave analyses. Thus
we use a local optical potential with b, = 0, and we
obtain b, from

Re b, =- (e„c,,„+a~@„,,),1

(3.17)
Im &0=(cToT)Av/&. I,

where n„~ = Ref,.„~/Im f,,„A.
Near k,~ = l. 04 GeV/c, the real amplitudes o.

are very small and (aToT)Av =40 mb, so we use

b, =0.76i fm'. (s. 18)

In the region of k,~ =1.515 GeV/c, we have' c.„
= -0.15, eA = -0.22, and ( oTo T)„v =38 mb. Using
an average value 0. =-0.18, we obtain

bp= -0.087+ 0.484i fm. (3.19)

In both cases, the real part of b, is not well deter-
mined. However, for the (K, v ) reaction, "it

Consider the kinematics of Eq. (3.13a) first.
Here the final state kaon emerges in a momentum
region where the elementary K N s and p wave
amplitudes dominate. The exotic Zp* resonance
in the I'] /2 I—0 channel is starting to develop
and partial waves with l ~ 2 are negligible. The
Kisslinger form (3.11) is then a reasonable first
guess for the K' optical potential. We use the
K'N amplitudes of Martin" to obtain

i

- b, = -0.326+0.228i fm',
(s. 14)

b, =0.089+0.145i fm,
for kr~ —0.72 GeV/c.

For Eq. (3.13b), the situation is somewhat dif-
ferent. In addition to the presence of a possible
exotic Z,* resonance in the P, /„ I= 1 channel for
K'N, there are also significant contributions from
d and f waves. We still isolate the P-wave part of
V(r) as in Eq. (3.11) but we lump the I & 2 partial
waves together with the l = 0 part to make up an
"effective" value

has been shown that the results are quite insensi-
tive to the choice of Re b, since the absorptive part
of the pion optical potential is strong. Note that in
the presence of resonances in the elementary am-.
plitudes, the first order optical potential (3.11)
is in any event a very crude approximation.

The bound state radial wave functions R(x) of
Eq. (3.4) for the A and neutron hole in 'ACa have
been generated for both harmonic oscillator and
Woods-Saxon potentials. The same oscillator pa-
rameter b = 2. 03 fm was taken for both A and n '
states; the wave functions are given by Eq. (4. 1).
The particular high spin stretch configurations we
consider in '~Ca are the following:

(A Ps/2 ~ds/2 )s- s

(Ad, ), „d,(, )4. ,

(,f„,„d„, '),-.
(3.20)

In the preceding section we outlined the yroce-
dure associated with a partial wave decomposition
of the DWIA. Unfortunately this procedure, for
high momentum processes, tends to become com-
putationally lengthy due to the large number of
partial waves required. Thus there is motivation
to pursue a somewhat simpler procedure; i.e.,
the use of eikonal generated distortions. " The
primary function of the distorted waves is to re-
move flux from the nuclear interior, thus any
reasonable optical potential which has the appro-
priate strength should yield qualitatively accept-

The d», ' neutron hole is taken to have a binding
energy of 15.63 MeV, the separation energy of a
neutron in "Ca. We fit this binding energy with a
central Woods-Saxon potential of form (4.4) with

V, =52.9 MeV, R=4. 24 fm, a=-0. 6 fm, and a
Thomas spin-orbit potential of strength V»
= 6 MeV. For the A, we use the same values of
R and a, but set V~ ~ = 0 and adjust V; to produce
binding energies of 9, 0.5, and 0. 1 MeV for the

A p, &„Ad»„and g», states, respectively. This
requires depths''Vp 24 64 22 63 and 36 94
MeV. The binding energies for the A p, &, and

~d, /2 states are suggested by the CERN data on
"Ca(K, v )'ACa*, reviewed in Ref. (25). The
true Af, &, state lies at about 5 MeV in the con-
tinuum (see Fig. 6 and Ref. 25); for numerical
convenience we have replaced it by a bound state
with essentially zero binding. The use of a proper
continuum wave function for A f7&, would lead to
some further modest decrease of the cross sec-
tion to the (A f7&, 8 „d», '),- state with respect to
the estimate given here. The actual results of the
calculation are presented and discussed in Sec. V.

B. Eikonal distortions
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able results. Quantitatively we expect the results
to be of the right magnitude and different final
states to have the correct relative strengths.
Later in this paper we compare the results ob-
tained using fully distorted waves and those ob-
tained using the eikonal approximhtion.

%e first specify the eikonal distorted waves
These are obtained from a complex energy

dependent potential defined by

f(0) = i6k~/4v, (3.22)

where k~ is the meson lab momentum, o= o ~ov(1
—iy), and y=Ref(0)/Imf(0). The eikonal phase
shift functions g'"(r) are generated from the opti-
cal potential by

25"(&)=- v. (b, z')dz'
Sv

(3.23a)

(3.21)

Here f(0) „and f(0)„~ are the lab forward elemen-
tary amplitudes for meson-neutron and meson-
proton scattering respectively; p„and p& are the
neutron and proton densities normalized such that

fp„d'r =N and f p~d'r = Z. E~ is the total meson
lab energy. By use of the optical theorem, the
scattering amplitudes may be related to the
meson-nucleon total cross sections; thus

TABLE I. Pion-nucleon total cross sections.

Projectile Momentum
(6eV/c)

~ToT(~+ p) a

(mb)

TOT(~+ )b

(mb)

1.02
1.04
1.097
1.159
1.225
1.289
1.334
1.895
1.455
1.515
1.575
1.645

0.40
0.51
0.58
0.67
0.75
0.84
0.93

25.2
26.1
23.8
28.0
31.0
35.0
38.1
86.7
41.6
40.1
39.5
39.1

~ TOT(~- p) c

31.9
26.8
28.0
39.9
46.0
37.9
43.0

58.5
55.2
45.7
40.2
36.8
36.1
36.6
85.7
86.3
35.1
85.0
34.1

OTOT(7t- „)a

31.2
23.8
16.1
15.7
16.9
23.0

~Values from Compilation of cross sections I: ~- and

.~' induced reactions, Report No. CERN/HERA 72-1.
"By using charge independence, the values of 0(~'n)

are related to the value of 0.(7r p). These values are ob-
tained from footnote a.

'Values from footnote a.
~By using charge independence, the values of 0.(~,n)

are related to the values of ~(~',p). These values are
obtained from footnote a.

(s. 2sb)

Here the index m denotes the meson and meson-
nucleus optical potential.

The eikonal distorted waves can now be written
as

(3.24a)

(S.24b)

In order to simplify the notation in the following
development we assume that the proton and neu-
tron density distributions are equal and define an
isospin averaged meson-nucleon effective cross
section o as follows:

value of y. We now define

T(b) -=p(r)dz,
~40

such that f T(b) d'b =A, and a nuclear defect
function D(b, Z) by

(3.26)

2 lO

)))b8)-=p(x)dh' , —f p(~)dZ

=2 p b, Z' dZ'.
0

(3.27)

Adapting these definitions we express the product
of the distorted waves as

(X„'@ ('P&('P(X„',I,&=exp~iq 7 ——T(b) ——D(b, Z) ~.

Tables I and II list typical values of pion-nucleon
total cross sections and kaon-nucleon total cross
sections for various momenta. Values of y are
not given as these quantities are not mell deter-
mined. The differential cross section are insen-
sitive (&%) to wide variation (-1 & y a 1) in the

(s. 26)

Here Q =p, -p& is the momentum transfer, o
= (Tr„+o„)/2 is the mean meson-nucleon effec-ftl ~

tive cross section, and ~= (o —o„)/2 is the
cross section defect function. Consider the term
exp[ (6/2)D(b, Z)]; this differs from unity only for
values of b small compared to the nuclear size.
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TABLE II. Kaon-nucleon total cross section.

0.50
0.61
0.71
0.82
0.92
1.02
1.055
1.125
1.207
1.30
1.40
1.55
1.70

1,2.6
12.3
11.1
13.2
14.2
16.1
17.0
1,7.6
19.9
17.9
1.8.0
17.7
17.7

12.5
14.3
16.5
16.4
17.2
18.5
18.9
19.6
20.3
19.4
19.2
18.9
18.8

projectile Momentum 0 (K',p) ' 0 (K', &)"
(GeU/c) (mb) (mb)

Thus its effects are limited to the nuclear interior,
which should be relatively unimportant for forward
angle scattering studies of strongly absorbed par-
ticles. Hence for current purposes we shall re-
place this factor by unity. Therefore we approxi-
mate Eq. (3.28) by

(}f' '~ r)(V ()("')=exp(iq 'r'}E(b), (3.29)

where the distortions of the mesons have been
reduced to a complex form factor E(b)
= exp[ &z1"(b)/2] which simulates the absorptivity
of the nuclear medium.

We may reexpress M [see Eq. (3.4)] in the eiko-
nal approximation as

M~~f
& &

=' Z {spin-angle-coupling]
m~m„

K

0.50
0.60
0.70
0.80
0.90
1.00
1.10

~ TOT (K~ p) Q

43.5
37.5
33.1,

40.2
43.4
49.5
44.0

OTOT(K- ~) d.

20.0
26.2
31;0
30.0
35.0
38.0
36.0

x d'xexpiq rEb C„*T4„'P .
(3.30)

We then write the effective neutron number N ~f f
as

'Values from (i) Compilation of cross sections II: E-
and K' induced reactions; Report No. CERN/HERA
75-1; (ii) A compilation of K N cross sections below 2

GOV/c, Report No. CERN/HERA 75-1.
Values estimated from expression 0 (K'g) = a(E'D)

-e(K'p). Cross sections obtained from footnotes a (i)
and a (ii).

'Values from footnote a (i).
Values estimated from expression 0.(K n) = cr(E. D)

-0(K p) and footnote a (i).

which may be compared with Eq. (3.7). As before
we have assumed a single lambda-particle neutron-
hole configuration coupled to a total angular mo-
mentum (ZZ~). Here the 4"s are configuration
space wave functions of the participating baryons
and the indices A and N denote all necessary re-
maining quantum numbers. The curly bracket
includes all. the spin-angle coupling to JJ~. Ex-
plicitly this is written as

{JJ'~;l«m«j «; l„m„j„}= (-)~"'"'«""«[(2J + 1)(2j„+1)(2j„+1)]'~'

J l„ l„ J
X (3.32)

Following the techniques used by Ludeking [Ref.
27], Eq. (3.31) may be reduced to a completely

analytic form by using harmonic oscillator wave
functions and expressing the distortion factor
E(b) by a sum of Gaussians with complex weights;

. I

simple extension to represent more realistic
single particle wave functions by an expansion in
the harmonic oscillator basis. Results obtained
using the approximations described here for eikon-
al distortions are discussed in Sec. V.

E(b) = 1 + Q c, exp( —c.,b') .
1

(3.33)

It was found that typically s „=6 was adequate to
represent E(b) within a few percent over the range
of b for which E(b) differed significantly from
unity. Parenthetically, we note that the restric-
tion to harmonic oscillator wave functions is not
as severe as might be expected, since it is a

C. The Quasielastic response function

The nuclear response function has a quasifree
contribution as well as a bound state spectrum.
This process corresponds to the production of a
free A and thus threshold for the contribution oc-
curs when B~= 0. If the baryons were independent
and at rest, one would anticipate a peak at an en-
ergy loss given by the free kinematics of
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art„, =q'/2M~ +M„—M„. (3.34) ready described this becomes

Using a simple Fermi-gas model, an individual
nucleon is characterized by a momentum distribu-
tion up to the Fermi-momentum KF, the nucleon
being in an averaged momentum independent single
particle potential U. The physical result in such
a model is that the peak of the response function is
displaced on the energy scale and has a finite
width characterized by q, the momentum transfer.
Using energy conservation the energy loss defined
by —=E -E may also be expressed as

f5, ] f5 y

(@=M„-M„+U„U„-—P„'/2M„

+ (p„+q)'/2M„ (s. s5)

where g=p„- p„. (The indices m, and m& denote

the incident and scattered mesons, respectively. )
Considering the nucleus as a Fermi gas, in

which each nucleon moves freely in the field of a
uniform nuclear potential U, the differential
cross section may be written as

= n, —(clem)R(Q, v) .d g do'

2 2

The response function R(Q, v) is defined by

R(Q, v) = ', . d'P„8(K -P„)
7f F

(s. 38)

x 8(K, '/M „(v+ o.'&-& Q-Q'/2)),

(3.37)

where k=P„/Kv, Q=q/K» &'=(M~ MN)/-2MN~

and
v = [(o —(M~ —M~) —(U„—U/, )]/(Kv'/M„) .

(3.38)

The inclusion of N,« i'n Eq. (3.37) constitutes a
somewhat ad hoc, although plausible, procedure.
Equation (3.37}differs from the usual quasielastic
response function studied in, for example, inelas-
tic electron scattering, because the final free A

does not have to be above the Fermi sea, its mass
differs from that of the neutron, and finally the
average single particle potential it experiences is
considerably weaker than that of the initial neu-
tron. '

The quantity N,«refers to the effective number
of neutrons present in the Fermi gas. Since ab-
sorbtion occurs in both the entrance and exit
channels, the effective number of neutrons is re-
duced and W,«&N. In the framework of the dis-
torted. wave formulation N,«may be approximated
by

28

&„r- d'rp„r X~
' r ' X~" ~ '. (3.39)

Within the context of the eikonal approximation al-

+err = d b T~ b exp -RegT~ b (s. 40)

which in the limit of no absorption (o-0) reduces
to the actual neutron number. [T„(b) and T„(b)
are the neutron and nuclear thickness functions. ]

Evaluating the function R(Q, v) leads to
(1) Q & 2 n', Q'/2 —Q —o.' & v & Q'/2 + Q —n':

(& -4 ~ »Q - IQ' -4»'(» —Q'/&)I'") )
(S.41a)

(2a) 0 &Q &2o.', Q'/2 —Q —a & v & Q /2+ Q —n:

(S.41b)

(2b) 0 & Q & 2 o.', Q'/2 + Q —n & v & Q /2(1+ —,u ):

4 2( Q2/2)]F12/~4 (3 41c)4''
These formulas reduce to those of Dalitz and Gal"
for small Q; these authors first evaluated the qua-
sielastic spectrum for the (K, m ) reaction. In
Fig. 4 the qualitative behavior of R(Q, v) is dis-
played. Note that for small values of Q, the re-
sponse function has a pronounced peak. This be-
havior suggests that for very small momentum
transfer processes it is possible to misidentify a
quasifree peak as a "p-h bound state in the con-
tinuum. For the (K, m ) reaction this is certainly
a consideration, since the initial attractiveness of
that process included the possibility of producing
low spin substitutional states in which the lambda
was created at "rest" in the nucleus (i.e., at for-
ward angles the momentum transfer is quite
small). Alternatively for the (n', K') processes,
this possibility is obviated by the fact that the
threshold beam momentum yields a momentum
transfer q &KF and decreases rather slowly with
increasing beam energy. From Eqs. (3.4la)-
(3.41c}it is apparent that the width of the quasifree
response is proportional to Q and height varies ap-
proximately as 1/Q. Since experiments are ty-
pically carried out at fixed angle 8, we display in
Fig. 5 the type of trajectory the response function
follows in the (Q, v) plane. For physical nuclei,
the continuum threshold point does not occur at
R(Q, v)=0 for the Fermi gas model. Detailed re-
sults including the quasielastic response for
selected nuclei are discussed in Sec. V.
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QUASI FREE RESPONSE

R(Q, ~)

FERhlll - GAS MODEL R(Q, v)

.2

l.5—

.5
2.0—

= I.O

FIG. 5. For the Fermi-gas model of quasifree scatter-
ing, we show the trajectory in the {Q,v) plane that the
quasielastic spectrum would follow for constant scatter-
ing angle 8. Note that the true continuum point will not
coincide with the zero of the Fermi-gas quasifree re-
sponse 'function.

FIG. 4. Schematic description of the quasifree re-
sponse function g{Q, v) in terms of the dimensionless
variables Q and v. Normalization is arbitrary, the rela-
tive height reflects the functional behavior in the Q-v
plane. The variable Q is the momentum transfer in units
of the Fermi momentum K&. The symbol v is a dimen-
sionless energy variable.

IV. EXCITATION OF HIGH SPIN STATES IN THE
(x, E) REACTION

The essential physical features of high momen-
tum transfer processes can be understood in the
plane wave approximation (PWA). The effect of
optical potential distortions of the m' and K' waves
is merely to reduce the cross sections in PWA by
about an order of magnitude, leaving the angular
shape almost unchanged. We include distorting
potentials in the quantitative results presented in
Sec. V. In the present section, we use oscillator
wave functions to describe the A particle and neu-
tron hole states. This enables us to obtain closed
form results which exhibit the physics of the prob-
lem. For more quantitative estimates, particular-
ly for A orbits which are loosely bound or in the
continuum, we use wave functions generated by a
Woods-Saxon potential, which has a more realistic
behavior in the nuclear surface. We compare cal-
culations with Woods-Saxon and oscillator wells in

a later section.
Since q &K+ for the (v', K') reaction, it is clear

that high spin states of the residual hypernucleus
will be preferentially populated. This crucial point
was not emphasized in several preliminary esti-
mates. " To see this explicitly, consider a
natural parity "stretch configuration" of spin
J= l~+ l„obtained by coupling A in shell model
orbit (l„j~) to a neutron hole in orbit (l„j„). The
effective neutron number N~«, related to the 0'
(v, K') cross section via Etl. (2.7), is given by
Eqs. (3.9) and (3.10). Note that F(q) appearing
in (3.9) is the form factor which carries the de-
pendence on momentum transfer. For an oscilla-
tor potential of radius parameter b, we have

fI, (r) = c,(r/b)' e (4. 1)

for nodeless states (n = 1), where c, = [2'"/
b'~v2&+ 1)!!]'t'. For natural parity stretch
states (J'=I~+ l„), we have

(2Z)' 'e [r(Z+ 3y-'2)]'

[(2m+1)!!]' r(t„+3/2)r(t„+ 3/2)'

with Z= (bq)'/2. Note that we consider only na-
tural parity states, since we will be mainly inter-
ested in (v', K') cross sections at 0', the cross
sections to unnatural parity states depend on spin-
flip n n- K'A amplitudes, which vanish identically
at O'. Calculations of the (K, v ) cross sections
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at finite angle to unnatural parity states" indicate
very small peak cross sections relative to those
for natural parity states of the same J. We expect
a similar result for (x', K') reactions.

In Fig. 6, we display the form factor E(q} for a
transition to the („p,&, ,&, S „p,&, ')~ states of
'gC. Note that E(q), which gives the shape of the
angular distribution for the excitation of these
states in PWA, is the same function for (K, m) and

(v, K) reactions. The only difference is that 8~
= 0' corresponds to quite different values of q
for the two cases. This is indicated in Fig. 6.
The (K, m ) reaction displays a sharp peak at
8~ = 15' for the excitation of the 2'. In the (v', K')
reaction, on the other hand, e~ = 0' corresponds to
large q, so we are seeing only the tail region of
E(q). By shifting the (K, n ) angular distribution
to the right, it will overlap exactly with the
(n, K') distribution, i.e., (do/dQ)' »' for 8~
~ 20' corresponds (except for the ratio of the as-
sociated elementary cross sections) to (do/
dQ)'"»' for 8~ ~ 0' in PWA.

For the (K, v ) process, we can always see the
peak of E(q) by looking at an appropriate finite
8~ (which increases with J'). For (m', K'), this is

usually not true, since we are well past the max-
imum of E(q), even for 8~ =O'. In many cases,
particularly for low spin final states, we are far
out in the tail of E(q), so the cross section is very
small. There are cases, however, where e~ =0'
for (m, K) corresponds precisely to the peak of
E(q). This is the optimal matching of q and J.
For stretch configurations, this occurs when

~= (I q)'/2. (4.3}'

The states of optimum J' given by Eq. (4. 3) will
dominate the (m, K) cross section. Assuming the
rough variation b =6,A'~' with 5, =0.6 fm, we note
that J-A' '. The dependence of J on A for various
choices of p, is illustrated in Fig. 7. Observe that
as p, increases, the value of q decreases and
hence the optimum J also decreases. Thus by
changing p„we are sensitive to a range of opti-
mum J s.

The crucial questions are now the following:
What is the maximum Jwe can expect in a real
hypernucleus p Can we achieve the optimum
matching condition of Eq. (4. 3)'P The response
to these questions depends on the spectroscopy of
A single particle states in hypernuclei. We need
to know the maximum orbital angular momentum
l~ of A bound states or low-lying single particle
resonances as a function of A. One could get
some guidance on this point from the results of
Hartree-Fock self-consistent calculations" for
A hypernuclei. We adopt a more phenomenological

U
l.5—

O

l4-

l2-

IO-

8-

(K-,
lab

2
bq,

FIG. 6. The formfactor F(q) of Ep. (3.10)fora transition
from the 0' ground state of a C target to the (~3~2
@„pe&2' ')2+ state of the residual hypernucleus '~C*, ex-
cited by either the (K, z ) or (z', K') reaction. The top
scale shows the value of q, assuming 5=1.64 fm. The
values of q corresponding to 8z = 0' are indicated by
arrows for (K, vl.) and (g, K) reactions, as well as 8~=15
for (K, g), corresponding to the peak cross section. To
make the correspondence'between q and 8z, we have
assumed p~-= 800 MeV/c and p~+ = 1.04 GeV/c.

I I I

30 60 90
I I I I

l20 l50 l80 2IO

A

FIG. 7. Optimum J of Eq. (3.5) as a function of A for
natural parity stretched configurations (l~l -. &) g ~ +g ~

The three solid curves correspond to three different in-
cident pion momenta as labeled. The dots correspond
to the available high spin states of Eqs. (4.5) and (4.6),
labeled by J'. Note that if one of the labeled J states
lies above a solid line, the cross section to this state
(at the momentum corresponding to the line) peaks at
81&0 rather than 8&=0 .
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FIG. 8. Single particle binding energies Bz for a + in
various shell model orbits in a hypernucleus. We show
only the orbits closest to zero binding energy. B&& 0 re-
fers to A single particle resonances whose width (in
parentheses) is given in MeV. The single particle po-
tential of Eq. (4.4) was used and the spin-orbit term was
neglected.

approach here, which assumes a Woods-Saxon
form for the A single particle potential V„(r}:

V„(~)= V-,/[1 + e'" "'-"], (4 4}

with 8=7;(A —1)'/', r, = 1.1 fm, and a=0. 6 fm.
Here A —1 is the number of nucleons (A=total
baryon number). The depth V, is adjusted to pro-
duce the observed'" s,&, binding energy B~ of

the A in '„'C, which is B„(s,/, ) = -10.7 MeV T. his
gives V, =30.7 MeV. Using this same value for
V„we find that the ~P, &, », orbit is unbound by
about 0. 1 MeV; the experimental value' is B~
= 0.03 + 0.8 MeV. Thus we do not require a spin-
orbit potential for the A, consistent with the con-
clusions of the CERN group, "and also the data of
the BNL group, ' who did not observe any splitting
(~800 keV) of the configurations („p,/, „. p5/, ')~
and (~p5/, g „p», '),, ~ in 'A5C. The geometrical
parameters of our A potential are the same as
those used by Bouyssy, "who adopted a somewhat
smaller depth V, =28 MeV.

Using a fixed value V, = 30.7 MeV for all A, and
ignoring spin-orbit splittings, we have calculated
the energies of A bound states and resonances for
a variety of hypernuclei. Some of these results
for B„are given in Fig. 8. For A states in the
continuum, we have obtained the single particle
resonance energy B„=E„ from the condition
6(E„)= v/2, where 6(E) is the A-nucleus scatter-
ing phase shift due to the potential (4.4). The
elastic width l, is obtained from the conventional
formula F, =2[d5(E)/dE]~'.s„The values of I',
in MeV are included in parentheses in Fig. 8.

The hypernuclei included in Fig. 8 have the

property that the corresponding nuclei (A- n)
have closed shells of neutrons with j„=/„+, (-~
= 14, 28, 50, 82, and 126). These are prime
candidates for the formation of high spin states in
the (v', K') reaction. From Fig. 8, we see that
the A orbit with the same l value as the last bound

shell of neutrons is unbound, typically by 5-6 MeV
in heavier systems. Even though these A levels
are in the continuum, the elastic widths l; remain
fairly modest and thus the corresponding hypernu-
clear levels should still be observable. Note that
the elastic width of these levels decreases rather
sharply as we pass to large A, attaining a value
of only I', =360 keV for the „i»&, level in '~Pb.
The main component of the observed width of hy-
pernuclear configurations such as (/i»/, S„i»/, ')~
may then be the spreading width l", due to the
mixing with 2 particle-2 hole states of the same
J. However, for the An ' states of maximum J
considered here, the density of 2p2h states of spin
J may be quite small and l, will be less than for
low J couplings of the same configuration. An ad-
ditional contribution to the width can come from
interaction of the A with a nucleon resulting in the
ejection of the nucleon into the continuum with an

accompanying transition of the A to a lower energy
orbit (hypernuclear Auger effect).

For the nuclei shown in Fig. 8, we see that the
natural parity states of maximum J which are like-
ly to be observable consist of a A in the lowest-
lying single particle resonance state coupled to a
neutron hole in the same orbit, that is

(4- 5)

where the states with j~ = l + —,
' are approximately

degenerate in energy since the spin-orbit poten-
tial is weak. Configurations involving a A in
the next highest resonant state (1g in '„'Ca, for
example) lead to one extra unit of 7 but are likely
to be very broad (I; & 5 MeV). The states of
maximum J involving a A in a bound orbit are of
the form

(4.6)

The configurations of Eq. (4. 5) and (4.6) are in-
dicated by dots in Fig. 7 for '~Si, Ca, "Rr,
"~Ha, and "~Pb. We note that in some eases the
available high spin states lie very close to the op-
timum matching condition of Eq. (4.8). These
states can be excited at 8~ =0 with the maximum

possible cross section. For example, the 6'
state in '„'Ca, arising from (~f5/5 7/5 f7/'5)5

is optimally matched a p, = l. 04 GeV/c, where

the elmentary cross section also peaks. The 5
state in '~Ca ie well matched at a somewhat higher
momentum of p, =1.28 GeV/c, and so forth. For
heavier targets, good matching occurs at larger
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values of p„ for which the two body cross section-
has dropped well below its peak (see Fig. 2).
Thus the optimum conditions for (v', K') experi-
ments seem to exist for lighter targets (A & 60).

For the maximum J states of Eq. (4. 5), the ef-
fective number of neutrons defined by Eq. (3.9}
becomes

250

200

{~+,K+)

PWA

~J'=2g ZJ' -S
sfkl /2

where P~ =2/9, 12/175, 32/14553, and 4/104247
for J=2, 4, 6, and 8, respectively. The values
of N,«given by Eq. (4. 7) are plotted in Fig. 9.
We observe that N, « is not a strong function of
p„except possibly for 'hC. Note also that +,«
remains small (~0.5}for the (v', K') reaction, in
contrast to the (K, n' } case, where N,« ——2j„+1
in PWA for the excitation of a [(fj„)(lj„) ]~,
state at q = 0. This illustrates the role of large
q in diminishing the peak cross section for (i, K)
processes.

The predicted PWA cross sections to states of
type (4. 5) are shown in Fig. 10. Since the varia-
tion of the elementary cross section (Fig. 2) is
considerably more rapid than that of N,«(Fig. 9),

0.5

I 50

O

~~ IOO—b c'

50—

I.O
I I

I.2 l.3
p~ (Gev/c)

I

1.4
I

I.5 1.6

FIG. 10. Differential cross sections at e&=0' in PWA
for the excitation of high spin states in &C, &Si, &Ca,
and &Zr via the (z', K') process, as a function of p».
The states of the residual hypernucleus are given by Eq.
(4.5). We have summed over j&=lh + z.

0.4

0.3—

0.2—

-I 90
hg7/2, 9/2 g9/P 8+

the peak cross sections are obtained for values of
p, close to or slightly higher. than the maximum of
(do/dA~);P ~~, i.e., P, =1.04 —1.1 GeV/c. We
see that cross sections as large as 200 pb/sr are
expected in PWA for the states of maximum J.
When absorptive effects are included, these values
are decreased by typically an order of magnitude
or less. The peak cross sections drop somewhat
as we try to form heavier hypernuclei, reflecting
the increased degree of mismatch in Fig. 7.

The largest cross sections for (m, K') lead to
the states shown in Fig. 10. However, the states
(4. 6) of one unit less in J' should also be strongly
populated. For these, we also have a PWA result
of the form (l„=l„—1)

O. I— ~J'=2)„1 Z J'e S
e« ~J (4.8)

I.O
I

l.2
I

l. 3
P7f (GeV/c)

I

l.4
I

t.5 l.6

FIG. 9. Effective neutron number N,+ in PWA for the
excitation of the high spin states of Eq. (4.5) via the
(7t', K') reaction, as a function of pion lab momentum

P» I

with y~ =4/3, 6/25, 16/1323, 0.0002878 for 1,
3, 5, 7 states, respectively. The (v', K') cross
sections to those states are shown as boxes in
Fig. 11. The peak cross sections are seen to be
reduced by only a factor of 1.2-1.5 relative to
the maximum J states of Fig. 10, since both are
stretch configurations. The observed peak heights
may in fact be quite comparable, since the excita-
tions (4. 6) are probably somewhat narrower than
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FIG. 11. Lab differential cross sections in PWA at
0&= 0' for the formation of various hypernuclear states
in the (g', K') reaction at p, =1.04 GeV/c. We show the
cross sections to the high spin states of Eq. (4.6), in-
volving a A in the last bound orbit, as well as those to
the ground states of Eq. (4.10).

those of Eq. (4. 5), due to the fact that the A is in
a bound state in the former (I', = 0).

As we go away from the simple stretch states
to lower spins, configuration mixing with other
An ' states becomes more important. Note that
in Eqs. (4. 7) and (4. 8), we summed N,«over the
values jh=lh+ —', . For large lh, the contribution
of the state with j„=l~—2 dominates. For j„=l„
+ —,', l„~ j., we have

&~=8 (i»=4 —1/2)
N =" (j =& +1/2)

(4.9)

= (l„+1/2)(l —1/l„) .

If the A spin-orbit potential is indeed small, the

jh = l~ + —', states lie very close to each other in
energy and are likely to be strongly configuration
mixed. The ratio of N,«values for the diagonal-
ized states may then be very different from Eq. '

(4.9).
We have indicated above that the most strongly

excited states in the (jr', K') reaction will be the
stretch configurations of Eqs. (4. 5) and (4. 6). It
is also of interest to ask whether there mill be a
measurable cross section to configurations in-
volving a A in the sz/2 orbit:

(Asl(2„lg. &„)2 )j f ~ (4. 10)

In Eq. (4. 10), the neutron holes I ' are taken to
be the same orbit considered in Fig. 10, i.e. , p3/2

'
in "C, d,&,

' in "Si, f,&,
' in "Ca, and g,&,

' in
"Zr. For these cases, the states (4. 10) will be
the ground states of the hypernucleus. One finds
in PWA

(2l+ 2)
yf! (21+ 1)t t

(4. 11)

V. RESULTS AND DISCUSSION

Using the formulas, approximations, and pa-
rameters given in Sec. IV, we have studied var-
ious aspects of the (v', K') reaction on light and
medium weight nuclei. In this section we present
and discuss the quantitative results of these stu-
dies. The section is divided into three parts.
The first, A, is a set of comparative studies as-
sociated with the sensitivity of the results to the
distorted waves and single particle orbitals
adopted. The second part, B, presents results
for different nuclear spins and/or incident pion
energies. The discussion in this section concen-
trates on considerations associated with choosing
the optimum energy and angle for studying hyper-
nuclei via the (v, K') reaction. In the final part,
C, we present and combine quasielastic Z and A
production results with the bound and resonance
(v', K') spectrum for "0 and "Ca. The results in
this subsection should be representative of the ex-
perimental spectrum actually observed in the
(v', K') reaction.

A. Results for different distorted waves and single particle
orbitals

It is important to note at the outset that one cur-
rently has tmo options for calculating strangeness
exchange reactions. One involves eikonal dis-
torted waves and harmonic oscillator orbitals
(usually an extremely fast and inexpensive com-
puter code) and another option that uses fully dis-
torted waves and either Saxon-Woods or oscillator

The (n', K') cross sections to the ground states
are plotted in Fig. 11. They are seen to be con-
siderably smaller than the cross sections for the
J = 2/„—1 states of Eq. (4. 8), also displayed in
Fig. 11. Nevertheless, ground states should still
be measurable for A &60 targets. We also show
in Fig. 11 the cross sections to the (~&, y2

g p,», '), and („s»8„i»+ '),+ states in "gBa and
"hPb, respectively, which lie very close to the
corresponding ground states [(~s,&,S„2d,&, '),.and

(~s,&,S„SP,+ '),-]. Even though these states are
of fairly high spins, their cross sections are un-
measurably small, since we are far from the
optimum 4 of 16 or so (in "~Pb) at P, =1.04 GeV/c.

The present section provides a qualitative under-
standing of the physics of the (v', K') reaction, in
particular the crucial role played by high spin
states. In the next section, we see how distortion
effects change the magnitude and angular shape
of the cross sections.
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orbitals (a presumably more accurate but lengthy
and thus expensive code in general). The former
code is appropriate for calculating the complete
momentum transfer, energy loss spectrum for a
given nucleus while the latter code can only be
used for a few isolated detailed comparisons with
experiment. Thus it is important to compare re-
sults obtained using the two different approaches
in order, for example, to determine the relative
reliability of predictions relying on eikonal dis-
torted waves and oscillator orbitals. It will turn
out that such results appear sufficiently accurate
that our more global predictions, presented in
part C, can be made using the 'eikonal-oscillator"
approximations.

The first consideration is thai of the effect of
distortions on the magnitude and shape of differ-
ential cross sections for states of different J.
The main effect of distortions would be expected to
be absorption in the entrance and exit channels.
In Fig. 12 we compare plane wave results (dashed
lines) with fully distorted waves (solid lines} for
a (~,&„d,l, '), state of '~OCa. The angular dis-

10

tributions are shown for two different incident
pion lab momenta. 'The plane wave cross sections
have been scaled down by the constant factors
8. 22 and V. 76 for k,~=1.04 and 1.515 GeV/c,
respectively. It is seen that the main effect of
optical model distortions is to reduce the (v, K')
cross sections by about an order of magnitude.
The angular shape in the region where the cross
sections are measurable (~1 pb/sr) is changed in
a minor way. The curves in Fig. 12 were ob-
tained using harmonic oscillator wave functions
and for the DWIA results, optical model parame-
ters given in Sec. III. In Fig. 13 we compare sev-
eral 0' plane wave cross sections with DULIA re-
sults using eikonal distorted waves (see Sec. IIIB)
and oscillator orbitals. Depending on the state,
the effect of distortions is to reduce the 0 cross
section by factors of from 3 to 10. The energy
dependence seen in both the PWA and DWIA results
is mainly due to the energy dependence of the
basic v'+n —K'+A process (see Fig. 2). As
expected, there is a correlation between the amount
of reduction resulting from absorption and the
radial dependence of the original neutron orbit.
The largest (smallest) reduction between the PWA
and DWIA occurs for the 1s,&, (1f,&2) orbital
which is localized closest (furthest) from the ori-
gin. There is a considerable momentum transfer
to the nucleus even for forward scattering in the
(v, K'} reaction (see Fig. 3); as P,~ increases the
0' momentum transfer gradually decreases. This
effect causes the states that have the largest mis-
match between the q of their cross section peak
and q(0 ) to increase slightly as a function of P,~
relative to higher spin states where the q mis-
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FIG. 12. Differential cross sections for the excitation
of the {~p3/2 S„ds/2-~)3 state in ~ Ca via the (~', E') reac-
tion at k &=1.04 and 1.515 GeV/c. The solid lines are
the exact DWIA results, while the dashed lines corre-
spond to the PWA cross sections, scaled down by con-
stant factors 8.22 and 7.76 for k~&= 1.04 and 1.515 GeV/c,
respectively.
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FIG. 13. Comparison of 0 cross sections for
Ca(x', E') &8Ca(J ) as a function of p& for J'(3,4', 5, 6')

in PWA and eikonal DWIA. We use.oscillator wave func-
tions with b = 2.03 fm. These states correspond to
+sf /2 y +3/2 gd5/2, and gf7 /2 coupled to „ft/2
/
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match is smaller. (Compare the energy depen-
dence of the 3 and 6' states in Fig. 13. The un-

usual 6' state decrease occurs because the zero
degree momentum transfer is belozv the q required
fog the peak cross section for this state. Thus
the q mismatch increases with increasing p, ~ for
this particular state. )

We now consider the effect of using different
orbitals on the cross section predictions. In Fig.
14 we show differential cross section calculations
using harmonic oscillator (dashed lines) or Woods-
Saxon (solid lines) wave functions to evaluate the
radial integrals in Eq. (3.4). For a given nl&,
the orbital parameters have been adjusted to give
the same rms radius. The m' and K' distorted
waves are the same for the two cases. For a
weakly bound A state such as ~d, &„ which is lo-
calized at the nuclear surface, the effect of using
a Woods-Saxon wave function is to diminish the
small angle cross section obtained in oscillator
approximation, in this case by about 25% for the

4' at O'. A similar reduction was observed" in
the reaction "C(K, n )'gC* to the (~P,&»»
8 pe/2 )2 states in '~C ~, there the A has close to
zero binding energy. The reason for the reduction
is clear: the overlap R» (x) R, &

(r) is smaller
if Woods-Saxon wave functions are used, since the
difference in localization radius for a strongly
bound n and a weakly bound A is correctly given,
while the oscillator potential with fixed b cannot
yield this binding energy effect. Note that the sit-
uation is different for the (~p, &, S,d, &, '), con-
figuration in Fig. 14. Here both orbitals are tight-
ly bound, and the use of Woods-Saxon wave func-
tions actually increases the (v, K') cross section.
The conclusion is that the use of oscillator orbi-
tals results in an uncertainty of -25% in the pre-
diction.

The final comparison we make in this subsection
is for eikonal distorted waves versus waves fully
distorted in a Saxon-Woods-potential. Utilizing
the parameters specified in Sec. III arid Tables
I and II and using oscillator orbitals in all cases,
we obtain the results shown in Fig. 15. The re-
sults indicate that typical differences are about
10-20% in overall magnitude with the eikonal re-
sults having a slightly flatter angular distribution
at large angles. We have also compared the ei-
konal predictions for ". C(K, v ) '„'C with those ob-
tained in Ref. 20 using fully distorted waves. The
10-20% difference also persists in that compari-
son. Thus, compared with other uncertainties in
the predictions (such as the validity of the DWIA,
uncertainties in the basic form for the body inter-
action and the appropriate nuclear structure), the
inaccuracies admitted using eikonal distortions
are not severe. For detailed comparison with
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FIG. 14. Differential cross sections for the excitation
of selected high spin&+ ~ states via the Ca(z+, X')&Ca*
reaction at k~&

——1.04 GeV/c. . The solid curves corre-
spond to using a Woods-Saxon potential to generate the
A and g ~ wave functions, while the dashed curves are
obtained using an harmonic oscillator potential. The
binding energies and potential parameters are described
in the text.
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FIG. 15. Comparison of the eikonal-DWIA cross sec-
tion with oscillator wave functions and the full partial
wave expansion of DWIA with both oscillator and Woods-
Saxon wave functions for a 3 state in &Ca. The oscilla-
tor parameter b was taken to be 2.03 fm.
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experimental results one may require the pre-
cision of fully distorted waves; However, for the
global studies presented here the eikonal approxi-
mation is adequate and due to its computational
convenience has been adopted.

B. Dependence of cross section on J . and P &
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FIG. 16. Comparison of the (7I.+,K') differential cross
section for different configurations of &0 at P~l = 1.097
GeV/c. The oscillator parameter 5 = 1.71 fm was used
in generating the eikonal-DWIA predictions. Note that
the momentum transfer q is plotted on the upper-hori-
zontal scale.

As discussed in Sec. IV for plane wave results,
the large forward angle momentum transfer favors
high spin states. Forward angle experiments
guarantee that only normal-parity high spin states
will dominate the nuclear response. In Figs, 16
and 17 we show typical angular distributions for
"O(n:,K')'„'0* and "Ca(v', K')')Ca* using eikonal
distortions and oscillator orbitals. As discussed
earlier, the results are not qualitatively different,
as far as angular distribution shapes are con-
cerned, from plane wave results. . Thus, except
for the 0'(~1P 8„1P ') state in 'gO which reached
a second maximum at -12' laboratory-angle,
most states studied have similar decreasing
angular distributions. [The 0'(1p, 1p ') state
cross sections are not generally expected to be

by I.Q
D D

0.5

0.2—

Q. I

8 I2

al b (deg)

I6 20

observable at the high q associated with the (m',
K') reaction. ] Thus to obtain larger counting
rates, one should concentrate on the region near
O'. In principle, a measurement of the angular
shape can yield spin information when combined
with excitation energy systematics obtained for
lower spin states studied in the (K, v ) reaction.
In (K, m ) reactions with small q, the situation is
much more favorable, since do/dQ peaks at a
finite value of 8~, and states of J differing by one
unit are easily distinguishable. "

In determining the optimum P,~ for carrying out
initial (m, K') studies there are several consider-
ations. Two of the most important are: (a) work-
ing in a region where counting rates are highest
and the cross sections do not fall too rapidly for
finite angles (since often actual measurements
may be made at small but finite angles -10') and
(b) choosing the kinematic region so that one has
the most confidence in the input parameters and
theoretical formalism adopted. In Fig. 18 we
show the different angular distributions as a func-
tion of incident pion laboratory momentum, lead-
ing to the (typical) state '„'Ca*(„p,&,g,&, '), The
0' cross sections for several states. in ~hCa* are
shown in Fig. 13. Compare Figs. 1 and 2 show-
ing the energy dependence plus transformation
factors for the two body cross section. The com-
parison reveals that the dominant effect in deter-

FIG. 17. Cross sections for a selected set oi high spin
states in &Ca, showing the relative size of the differen-
tial cross sections for single particle-hole configurations
in the eikonal-DWIA.
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FIG. 18. Pion laboratory momentum dependence of
the angular distribution for the (7t', X') reaction to the
(gP3]2„d3(2 )3 configuration of & Ca.
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C. Predicted spectrum for &0 and ACa

Using eikonal distortions and harmonic oscilla-
tor orbitals, we have calculated the excitation
spectrum for pure A particle-neutron hole states
reached via the (v', K') reaction. In addition the
quasielastic background, discussed in Sec. III C,
has been calculated using Eels. (3.36)—(3.41).

We consider the '~O case first. The oscillator
parameter used was 5 = 1.81 fm. The parameter
0 for the distorted waves was calculated from Eq.
(3.25) and the values in Tables I and II. The neu-
tron hole was allowed to be in the (1p»,) or
(1p», ) orbitals. The single neutron hole energies
were obtained from the spectrum of "O and are

mining the energy dependence of the forward angle
differential cross section is simply the energy de-
pendence of the two body input. The gradual
change in distortion parameters and the forward
angle momentum transfer are of secondary im-
portance. Of course at higher energies the cross
sections fall off more rapidly as a function of
angle (see Fig. 18). The peak cross sections oc-
cur at approximately 1.05 GeV/c. However, at
this energy the elementary cross section varies
rapidly with energy and Fermi averaging of the
input could significantly decrease the predictions.
One may prefer the momentum region -1.1-1.2
GeV/c where the cross sections are only slightly
reduced but target nucleon motion should intro-
duce less uncertainty into the predictions.

given, for example, in Ref. 28. The A orbital
was allowed to be in the 1s,&„1p, 2s, or 1d
shell. The A single particle energies were ob-
tained from the self-consistent calculations of
Rayet." Based on the experimental data from
"O(K, II' )'~O (and in reasonable agreement with
the self-consistent calculations) the continuum
threshold is begun at E„-E~, = 14 MeV. Since
the pure p-h states have not been mixed via a
residual interaction in these preliminary calcula-
tions the results given are only a rough guide.
The p-h contributors to each major concentration
of strength are shown in Fig. 19. .In each case
the largest normal parity spin state dominates a
given complex. States above the continuum
threshold (and states whose energy is above
threshold for a subsequent A+M- A'+N' interac-
tion with an initially bound nucleon going into the
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continuum and the A cascading down to a lower
orbit) have arbitrarily been given 2 MeV widths.
The value of the Fermi momentum used in the
cluasielastic calculations was 270 MeV/c. The
elementary two body m +n- A+ K' interaction
was taken to be that which is appropriate for P,~
=1.225 GeV/c and is given by do/dQ=338 Iub/sr
(lab). For completeness the "O(v, K')c "0 spec-
trum is also shown in Fig. 19(a) (both p-h and
cluasielastic contributions are presented) beginning
above &=26V MeV. The Z single particle ener-
gies were assumed to be about 3 MeV smaller than
the corresponding A single particle energies. " The
strength of the m'+n —K'+ Z' interaction is taken
from Ref. 34 and is given by de/dQ(0) =261 pb/sr.
The momentum'transfer delivered to the nucleus
in the region of the A particle-neutron hole states
is -294 MeV/c, while for the Z particle-neutron
hole states the momentum transfer is -384 MeV/c.
The results indicate that several A-hypernuclear
p-h state complexes dominated by high spin states
should be observable and easily discernible from
the A quasielastic background. The Z hypernu-
clear states will be difficult to study using this
reaction. For comparative purposes we have cal-
culated the A-hypernuclear and Z-hypernuclear
spectrum resulting from the low momentum trans-
fer (K, n' ) reaction at beam momentum of 720
MeV/c. The results are shown in Fig. 19(b).
The same nuclear structure parameters have been
used as in the previous (v, K') calculations. The
strength of the elementary K +n-v +A (K +n
-' v + Z) interaction is taken from Ref. 35 (Ref.
36) and is given by 3.57 mb/sr (1.92 mb/sr). The
momentum transfer near the A particle-n hole
complexes is q =37 MeV/c, while the Z particle-
n hole complexes have typical momentum trans-
fers of q =116 MeV/c (see Fig. 2). In this case
the low spin states associated with a given com-
plex dominate the spectrum because of the low
momentum transfer. In addition the A-quasielastic
peak is narrow and rapidly varying with energy.
This has the effect, on the one hand, of allowing
a good separation of the A spectrum and the Z
spectrum and on the other hand making it more
difficult to study A-particle neutron-hole com-
plexes in the continuum.

In Fig. 20 we have shown the results of D%IA
calculations for the "Ca(v', K')'„'Ca particle-hole
and cluasielastic spectrum for P, -I.1 GeV/c.
The neutron hole energies are taken from Ref. 37
and the A single-particle energies from Rayet."
Again states degenerate in energy were grouped
into complexes and the combined total for a given
complex is shown as a spike or block.

Due to the high momentum transfer, the high
spin normal parity states associated with a given
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FIG. 20. Predicted excitation spectrum for Ca(7t', X')
at 0, including the quasifree background at P, = 1.097
GeV/c. States in the continuum or those possessing
strong interaction decay channels are given a finite width
of 2 MeV to reflect their finite lifetime.

set of particle-hole orbitals dominate the asso-
ciated complex. States with a path to the contin-
uum are also arbitrarily given a width of 2 MeV.
The results are quite similar to those obtained for
the "O(v', K')'„'c processes. In addition we note
that in these high q processes the quasielastic
background is broad and featureless, varying only
mildly with increasing ar. This should allow one
to study complexes in the continuum with greater
ease and less ambiguity than is possible using
the (K, v ) reaction. The results for the 'z'Ca-
hypernucleus spectrum are not shown, however,
the conclusions are similar to the "0.case, with
the Z results imposing a small perturbation on
the A continuum spectrum.

In conclusion, we have studied the (II, K ) reac-
tion on light nuclei. Differential cross sections
for strong states are on the order of tens of mic-
robarns and thus, for example, experiments using
the existing facility at Brookhaven are feasible.
Because of the large momentum transfer delivered
to the nucleus, high-spin, normal parity states
dominate the spectrum even at very forward
angles. This is in contrast to the (K, w ) process,
where low spin states dominate at forward angles.
Another feature of the (v', K') reaction is the rela-
tive suppression and greater width of the A quasi-
elastic spectrum [compared to the (K, v ) A
quasielastic spectrum]. This has the effect of
making the (II', K') process more attractive than
the (K, v ) reaction for studying p-h complexes
in the continuum. However, the greater width of
the A quasielastic spectrum may preclude the
study of light Z-hypernuclei using the (v', K')
process. Because of the complementarity and
apparent feasibility of (IT', K') experiments on
light nuclei, we recommend that such experi-



22 H YPERNUCI, EAR PHYSICS WITH PIONS 2093

ments be performed in the region I',~ =1.0-1.2
MeV/c region in order to study high spin hypernu-
clear states.

In the future when detailed comparison with ex-
periment is contemplated, more realistic calcula-
tions using configuration mixed Aparticle, neutron
hole nuclear states should be used in the theoreti-
cal calculations. Structure calculations of this
type are under study and may reveal the predicted
degree of collectivity of hypernuclear states. De-
tailed comparison of such calculations and (If', n )

and (n', lf') experiments offer the possibility of
yielding important information regarding the A—
nucleon interaction.
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