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We present a dynamical theory of low energy P-wave m.N interaction. The theory is an extension of the Chew-Low
theory, with three additional features, namely, (1) inclusion of the full nucleon recoil efFect, (2) inclusion of the Z
graphs, and (3) inclusion of P11 channel inelasticity. The second feature is new in a P-wave theory based on the
Low expansion. We are able to fit the P33 and the P11 phase shifts in the energy region 0& T &250 MeV quite
well. In particular, we show that it is possible to explain the change of sign of the P11 phase shift, T -150 MeV, in
terms of the strong inelasticity present in the channel. For the P13 and P31-channels, where the phase shifts are the
smallest, we do reasonably well at threshold, but not so well as the energy increases. We have also examined the
structure of the off-mass-shell amplitudes in the P11 and P33 channels. Only the P33 channel amplitude is found to
be factorable. A major result of our work is that the P33 form factor is very hard. If one used a monopole form, the
form factor mass should be 10 m or larger.

NUCLEAR REACTIONS Pion-nucleon interaction, Z-graph term, sigma ex-
change term, P33 resonance, form factor of P33 amplitude, P11 inelasticity,

nonstatic kinematics.

I. INTRODUCTION

In the preceding paper, we have discussed the
results of using nonstatic nucleon kinematics in
treating the pion-nucleon interaction. The main
result of that paper is that in the nonstatic theory
the P33 reson'ance cannot be produced with the nu-
cleon pole terms only. Other mechanisms must
be included.

In this paper we present an extension of the
Chew-Low theory' using nonstatic nucleon kine-
matics and two additional terms of the Low expan-
sion over and above the usual ones. The latter
are the nucleon poles and the elastic and some-
times inelastic rescattering terms. The new
terms which we include are the so-called Z graphs
and a scalar-isoscalar seagull term. The Z
graphs describe the virtual process of a pion con-
verting into a nucleon-antinucleon pair and then
the antinucleon annihilating the initial nucleon to
produce the final pion. In the Low expansion these
graphs appear as the disconnected parts of the
term involving two-nucleon-one-antinucleon inter-
mediate states. In an earlier work on the pion
nucleon S-wave interaction' ' one of us (M. K.B.)

and Cammarata were able to explain satisfactorily
the isovector part of the interaction as coming al-
most entirely from the Z graphs. In the course of
that work it was found that g, (4M') -=g, = 11.7.
Of course, it is mell known that the Z graph con-
tributes -(g, '/4') to the isoscalar scattering
length, M being the nucleon mass. This is about
two orders of magnitude larger than the experi-
mental value. So, this enormous repulsion must

be very nearly canceled out by introducing the ex-
change of a scalar-isoscalar boson field between
the pion and the nucleon. This is called pais
suppression. We will follow the popular practice
of calling the field the 0 field. In the present the-
ory, it is not necessary that it be an independent
field. The 0 field may be a local function of the
pion fields. ' In the work of Ref. 2, explicit refer-
ences to the isoscalar part of the Z graph and its
near cancellation by the 0 exchange were avoided
by eliminating the combination with a soft pion
limit. ' Because of their roles in the S wave, we
continue to carry both mechanisms in the P wave.
As we shall see later, both mechanisms provide
attraction in the P wave, but the v exchange is less
important than the Z graph.

As soon as the Z graphs are included, the P33
resonance is easily generated. This is shown in
Fig. 1. The nonstatic kinematics produce two im-
portant features in the equation for the P33 ampli-
tude. First, the crossed contributions from the
other three P-wave channels are vastly reduced.
Second, the rescattering contribution integrals,
both the right-hand and left-hand side, converge
rapidly. We thus have great confidence in our
low energy P33 amplitude. Besides, we obtain a
very accurate solution of our nonlinear equation,
which enables us to determine the P33 off-shell
amplitude form factor. We find that the mass
parameter of a monopole form factor is at least
larger than 10 m, .

The P13 and P31 amplitudes are very small at
low energy. We fit both quite well near threshold
(Fig. l), and then our theoretical values differ
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FIG. 1. Comparison of theoretical and experimental
phase shifts. The solid lines are results. The crosses
are values from Ref. 6.

from the experimental values' as energy in-
creases. Since these are small in the region we
are studying, minor errors in the high energy con-
tributions to the rescattering integrals can have
big influence on the solutions. This type of effect
is the least at the threshold where we do have good
fits. Thus, we consider our P13 and P31 solutions
to be satisfactory in the present context.

The P11 phase shifts are known to be difficultl
to explain. Without the inelastic contributions one
cannot reproduce the experimentally observed
change of sign of the phase shift. Also, the P11
scattering volume is predicted to be much too
negative in comparison with the experimental
value, while for all other P waves we have good
scattering volume fits. These values are listed
in Table I. Thus, the elastic theory cannot de-
scribe the P11 amplitude correctly. This special
situation for the P11 channel is not surprising,
since it is known experimentally that inelasticity
is more importarit in the P11 channel than in the
other. Therefore, we include the P11 inelastic
channel contribution to the rescattering terms in
our theory as an additional dynamical input. We
do this by an ansatz which permits us to use the
values of the P11 channel inelastic cross section
obtained from the phase shift analysis. With this

inelastic contribution, we are able to get a very
good fit for the P11 phase shifts.

II. DEVELOPMENT OF THE ELASTIC EQUATION

We start the derivation with the Low expansion'
of the half-off-mass-shell amplitude

I', (p(,p~, k)-=.„,(m, (k), &(p~) j (0) N(p()) .
k' (k) is the initial (final) pion momentum with
isospin p (e) =1,2, 3. p, (pz) is the initial (final)
nucleon momentum. k, p&, and p& all satisfy
their own mass shell constraint. The missing
initial pion momentum k'=p&+ k -p, does not
necessarily satisfy the relation k,'= (m, '+ k~™)''.
Explicitly, the expansion is

E, (p„p~, k)

=F, (k) =&p~s~ [a,(k),j (0)] p, s, )

p &posy l jq(k) ln), „„„,&n Ij (0) Ip, s, )
no -p« -ko —ig

&Pyspl j (0) ln), „„„,&nlj8(k) lp)s, )
no -p]o+ ko

Using the definition of the annihilation operator in
terms of the field and its derivative,

F„(kli= ip~sI i f 1'xe"'*&(x,)

x [j,(x) —ik,y, (x), j (0)] p,s, )

&Pfsyl jg(k) ln). „~.„~&nlj (0) lp)sg)
no —P~o —ko -ig

&pf s&lj (0) In) „t „&&nlj&(k) Ip&s&)
no -P~o+ ko

where j~(k) = J d'ze'"' j~(0, 'P) and j~(x) is the pion
source current ( + m, ')&f&8(x) =jz(x).

The equal time commutator in Eq. (2) is called
the seagull term. This term is nonvanishing only
if the source current j8(x) contains at least one
power of the pion field, which, in turn, requires
that the interaction Lagrangian must be at least

TABLE I. Scattering volume (m, ). A comparison of theoretical and experimental scat-
tering volumes in four p ch~»els. The experimental values are from Ref. 7.

Experimental
P11 P31 P13 P33

-0.082 + 0.002 -0.044 + 0.001 -0.032 + 0.001 0.215 + 0.003

Theoretical
without inelasticity
with inelasticity

-0.131
-0.074

-0.034
-0.033

-0.031
-0.034

0.201
0.207
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bilinear in pion fields or its derivatives. Thus,
the value of the seagull term depends on the spe-
cific choice of the Lagrangian. From microcau-
sality, Lorentz covariance, and crossing sym-
metry, it follows that the seagull term is of the
general form

&pqsq Z(0)5~, +is~ „k F,(0) p, s, ),
where Z(0) is a scalar-isoscalar operator, F„(0)
is a vector-isovector operator, and e~ „ is the
Levi-Civita symbol. These terms will arise if
the interaction Lagrangian has the structure

g„,(x}= g, o(x)Q P„'(x)

ig„g By„(x) „( )
2 Hn}t

X,g, 8 x

where e(x) is a scalar-isoscalar field operator
and $„"(x) is a vector-isovector field operator.
Specifically, if o(x) and $„"(x)are independent
fields, one has

make the assumption that Z(x) is necessarily an
independent field. It can be a function of the pion
field.

Following the spirit of the Gell-Mann-Levy sig-
ma model' and that of the previous work on S
wave, we assume that the interaction Lagrangian
does not contain the vector-iqovector term. In
other words, g„"(x)= 0.

We need to refer to a Lagrangian for the seagull
term only. The structure of the remaining two
terms of Eq. (2) does not depend on the specifics
of a Lagrangian. These two terms have a summa-
tion over all admissible outgoing states, n), „,.
For the rest of this paper, we drop the subscript.
The matrix element (p j~(0} n& can have a dis-
connected part if the state n'& which results from
the removal of a nucleon N from the state n& can
be produced from the vacuum by the pion source
current. Thus,

(p j,(0) n&=&p N)&O j,(O) ~g

+(p jq(0) n', N&, .
The first term is the disconnected part, where a
nucleon propagates freely. The second term, with
subscript c, is called the connected part. The
Low expansion can be written in terms of its con-
nected parts. Thus, the second term of Eq. (2)
becomes

Z(x) =g,c(x),

y,"(x)=g„~,"(x) .
Otherwise, the relationship is slightly more com-
plicated. We stress that here we do not need or

I

g &p&s& j~(k} n&(n j (0) p, s, )
nQ —

p~Q
—kQ -ig

&pIs& jz(0) n)„&n j (0) p&s&&= (2w)' 5(p&+ k —n)
n~ -pyQ —k0 —ig

(0 j~(0) n),(n, p&sf j (0) p, s&& (p&s&lj8(0)ln, p, s, ),&n j (0) 0)
n —k —ig +0 kQ if

-(2v}3
(0 jz(0} n, p&s&&&n, p&s& j (0) 0)

5 k-p)—
no+ p), —ko —zq

(6}
Similarly, the last term of Eq. (2) becomes

+ (p&s& j (0) n&&n j~(k) p, s, )
n -p,. +k

&pqsqlj (0) n&„&n j~(0) p, s, )
nQ -p)0+ kQ Il

n +k'0 0

&pzszl j (o) I'n ,p, s, &,&nljs(0}
I

0& - -, & 0ljn(0) ln p& s, )&n,pzsz lja(0& lo&+(2v)' ~ ~ ' 5(k+n) —(2v)' 5(n+k+p&).
nQ+ kQ +0 Pf0 0

In this paper, we retain only a few of the terms
of the expansions (6) and (7). The terms in (7)
are the crossed terms (k —-k', n —P) of (6). So,
we will discuss only the latter and all remarks
valid for (6) will apply to (7) also. The first

I

group is retained completely, at least, in princi-
pj.e. It has the following parts:

(i) one nucleon states (nucleon pole),
(ii) one nucleon-one pion states (elastic rescat-
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&P's i (o) Ps&=ig. [(O'-P)']u(p')x, u(p)~

Thus, the nucleon pole terms are

(8)

tering, and
(iii) the rest (inelastic rescattering).

The second and the third group are dropped.
These involve intermediate states with the quan-
tum numbers of a pion. No such resonance is
known. It is likely that the first important candi-
date for the intermediate state is a 3m state clus-
tered as a p and a m. Thus, typical values of n,
are no& 1 GeV. The other matrix element in the
numerator corresponds to the process N+ n —N
+ 3w. There is no special reason for this ampli-
tude to be large. Finding no compelling reason
to the contrary, we drop these two groups. From
the fourth group we retain the NN intermediate
states by using for N an antinucleon of momentum
k -y, . This is the term that we call the Z graph.
Here the energy denominator is -2M but the nu-
merator is compensatingly huge, viz. , -g, '. 97e
have not retained any other piece of this group.
(For P-wave interaction, the next candidate is N*
with J~ = —,".)

Excepting the elastic rescattering term, all the
states mentioned above plus the seagull term form
the driving term of the equation for E~ (k). We
define the phrase "elastic" driving teem as the one
including everything except the inelastic rescatter-
ing terms. The phrase "inelastic" driving term
applies when the latter are included. The inelas-
tic driving terms (one nucleon multipion states)
are of very little consequence to the P13, P31,
and P33 channels. The elastic driving terms work
quite well in reproducing the low energy phase
shifts in these channels. As we will see later,
for the P11 channel we must use the inelastic
driving term.

We now begin the discussion of individual elastic
driving terms. First, we discuss the nucleon
terms. The Lorentz covariance implies that

for t &0, where p,„is the form factor mass.
Lorentz covariance also tells us that

&o i.(0) A'(P ),&9)&=ig,[(p +P)'lv(P)~.r.u(p ).
(ii)

Thus the Z-graph contribution is
u(p )'(P+Py)v r,u(p, )

(g.*[(p +P)']g.[(p +P)']]
( )

u(p, (I +P'))& 7,u(p, )
-Rdg.*[(P,+ I )']g, [(p, + I )']]

2l 0(p)O+ l 0
—ko)

where

I=0M'+(p~+p&)']'", -p& -p,].
In the Z graph, we encounter g, (t) with f ) 4M'.
The vertex functions in this region are usually un-
known. It is a complex number. The expression
Re (g,*g,] means that only the real part of the
product of these two g, (t) 4M') can contribute.
This reQects the fact that the imaginary part of
the amplitude E~ (k) of Eq. (2) can come only from
the right-hand cut. Furthermore, for the conven-
ience of calculation, we make an ad hoc simplifica-
tion of replacing the real part of the product of
two complex functions by a product of two real
functions, called g, (t):

t~ 4M'i+ (f -4M')/4

where g, —= g, (4M') and p, is the form factor
mass. Our knowledge of g, (t) 4M') is so limited
that a more sophisticated parametrization is
meaningless.

Finally, we discuss the seagull term. It has
been replaced by the sigma exchange term, i.e.,
g, g,»/(m, '+g). As usual, we demand a pair
suppression between the sigma exchange and the
Z-graph terms at threshold (k=p, =p& —0). The
isoscalar part of the Z graph is -g, '/(2M+ m, )
-g, '/(2M —m, ) =-g, '/M. This very large ampli-
tude is nearly canceled out by the scalar-isoscalar
boson exchange. Accordingly, we set

a[(p~ P']g. [(p» -P ']-„-(p )(i ) „( )
g.„(o)g.„„(0)

~
g.' . (i4)

~g [(P~ -~)']g.[(P4 —I)']
2l, (ko+ lo -p)0)

The parameter g must be very close to one. Fi-
nally, the isoscalar Seagull term is written with a
form factor in the following manner:

xu( ~)P[(l, - „P- q,P)y, + ]Mr r~u(P, ), (9)

where the four vectors, p -=(M, O) and I =-QM'+ (p,
+p&)']' ', p, +p&]. We follow Ref. 2 and use

g.(o)
I+t(t —4M')/4M'p, '

M (i+i/2q. )' '

In the P-wave calculation, the sigma exchange
term contribution is not very important. The val-
ue of g can be chosen to be one. In this yayer, we
have set f = 0.S5, a value obtained by analysis of
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the low energy S-wave scattering amplitude. This
will be described later.

7.5

III. METHOD OF SOLUTION

The half-off-mass-shell amplitude E, (k) may
be expanded in partial waves,

5.0

2,5

xP, (pysq, p, s,), (16)

where l and J stand for orbital and total angular
momenta and I for isospin. II ~(p, a) is the isospin
projection operator and P, the spin-angular mo-
mentum projection operator. The space momenta
and spin components refer to the c.m. frame. It
should be remembered that each factor in Eq. (16)
is a Lorentz scalar. In this paper, we deal ex-
clusively with the P-wave amplitudes, so we drop
the superscript on f,z, ,~. The details of partial
wave expansion of the Low equation are given in
Ref. 2. Schematically, the Low equation [Eq. (2)]
for a partial wave can be written as

-2.5—

-5.0
0 0.5

I

I.O

I

l.5
I

2.0 2.5

is used as a measure of the accuracy of the solu-
tion

MOMENTUM (m„c)

&heck of the fl, 1l Pade solution for the ~33
channel. The solid line is the right-hand side of Eq. {17).
The dashed line is the left-hand side of Eq. {17). The
curves are drawn by joining the values at successive
meshprints with straight lines.

(17)

where V is the driving term, and v and p are the
various spin-isospin channel indices.

Since me are trying to develop a low energy the-
ory, our first task will be to try to get a good sol-
ution of Eq. (17) in the low energy region. After
some trials and errors, we find that a good solu-
tion can be achieved in the low energy region
0 & T, &400 MeV by the method of the Pade ap-
proximant. ' We attach an order parameter ~ on
V and generate iteratively a power series in ~.
The method of the Pade approximant consists of
matching the first ++M terms of the series with
a rational function where the numerator polynomial .

is of the order N and the denominator polynomial
is of the order M. This is denoted as the [N, M]
Pade approximant.

We find that the [1,1] Pads approximant gives
very good solutions for P11, P31, and P13 chan-
nels. For the P33 channel the solution is not
quite as good.

To check how good the solutions are, we sub-
stitute the solutions into the right-hand sides of
Eq. (17) and compare the output with the left-hand
side of Eq. (17), the input amplitude. The im-
aginary parts are reproduced as an identity. This
is because the unitary conditions are explicitly
maintained by Eqs. (2). So, the comparison deals
with the real parts only. The following quantity 6

(18)

The value 4 is calculated at various on- and off-
shell momenta up to 2. 5 m, c. It covers a pion
lab kinetic energy region 0 &T, &400 MeV. For
P11, P31, and P13 channels, the 6 values are
less than 1% at every momentum mesh point used
in the numerical work. For the P33 channel, the

[1,1] Pad& solution has 6 of about 10% at most
mesh points. In Fig. 2 we plot the [1,1] Padh P33
amplitudes and the results of using these ampli-
tudes in the right-hand side of Eq. (17). Thus,
the two curves represent the two terms in the
numerator of Eq. (18). For the three other chan-
nels, the two numerator terms are almost identi-
cal and we have omitted their plots.

At the P33 resonance the real part of the ampli-
tude vanishes. Thus, in the neighborhood of the
resonance the measure b is bound to be large. In
the subsequent discussion, values of 4 will refer
to regions excluding the neighborhood of reso-
nance.

We have found that we can generate a much bet-
ter solution for the P33 amplitude by the folloming
method. From Fig. 1, where we plotted the ex-
perimental P33 phase shifts and the results from
[1,1] Pads calculation, we can see that the on-
shell amplitudes are reproduced quite well. So
we retain these. We replace the half-off-shell
amplitudes generated by the Pads method with the
following factorable form:
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Ip I @(p')
~3&( ~ J P )

1/1 ( 2)f33( ql

with

( ~2 -1
4(p') =

I
1 + (20)

unacceptable is justified. Discovery of the very
hard P33 form factor is a major result of our in-
vestigations.

IV. DETERMINATION OF VARIOUS PARAMETERS

where Q is the on-shell momentum and p is the
off -shell momentum.

Upon choosing a particular value for p33 we sub-
stitute the resulting half-off-she11 amplitudes in
the right-hand side of Eq. (17) and compare the
result with the input amplitudes. In Fig. 3 we

plot the input and output amplitudes for p33 ——

20 m„10m„and 7 m, . We find the unexpected
result that the best solution is obtained for p,33

For this case the average 6 is -5%. For
f33 20 m„10 m„and 7 m„ the average 5,'s are
6%, 12%, and 28%, respectively. We are forced
to conclude that the form factor mass smaller than
10 m, is unacceptable. The conclusion does depend
on the reliability of our driving terms. In princi-
ple, we have to allow for some degree of uncer-
tainty in the Z-graph contributions. The real part
of the on-shell amplitude has the maximum value
of about 6 m, ' around q-1. 3 m, ', as one can see
from Fig. 2 or Fig. 3. At this point the contribu-
tion of the Z graph to the on-shell amplitude is
-0.3 m, ' (see Fig. 7), which is -5'%%uo of the total.
In this momentum region the quantity 6 has val-
ues 0.5%, 6%, and 19'%%uo for IJ=20 m„10 m„
and 7 m„respectively. If we regard the entire
Z graph contribution as a measure of the theoreti-
cal uncertainty the conclusion that p, &10 m, is

=20m

A. Parameter of the nucleon pole terms

Since we use a partially conserved axial-vector
current (PCAC), the Goldberger-Treiman' rela-
tion fixes the value of g, (0) from the measured val-
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The most important feature of low energy pion-
nucleon scattering is the dominance of the P33
channel because of the resonance. Through
crossing it plays an important role in determining
the amplitudes in the other channels. Converse-
ly, other channels have very little influence on the
P33 channels. In Figs. 4(a)-4(d) we show the
relative contributions of the crossed and the direct
rescattering integrals to the on-shell amplitudes
as a function of momentum. An inspection of
these figures bears out the validity of the foregoing
remarks about the roles of the P33 amplitude.
These results follow primarily from our use of
nonstatic kinematics. Some of these features are
present in a static calculation, but in a much weak-
er fashion. We now discuss the evaluation of var-
ious parameters.
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FIG. 3. Check of the P33 amplitude constructed by
Eqs. (19) and (20) with various values of the form factor
mass @33. The solid line is the right-hand side of Eq.
(17). The dashed line is the left-hand side of Eq. (17).
The curves are drawn by joining the values at successive
meshprints with straight lines.

PIG. 4. Decomposition of the rescattering contribu-
tion in each channel. Parts (a)-(d) are for the four
channels as marked. The curves are labeled (1)-(4).
These are contributions of P11, P31, P13, and P33
channels, respectively, to a particular channel in ques-
tion. The contributions. are shown as percentages of the
total rescattering part of the amplitude, i.e. , not in-
cluding the driving terms. The contribution of any chan-
nel to itself is shown by the sum of the right- and the
left-hand cuts. The P31 channels produce insignificant
left-hand cut contributions and the corresponding curves
are not included.
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ue of g„(0)= 1.25 and f, = 0.939 m P,

g, (0)= ' g„(0)=12.7.~iM m, ' (21)

TABLK II. Decomposition of the real part of P31 and
P13 amplitudes at pion lab energy T,= 110 MeV.

In a static theory the nucleon pole terms constitute
the full driving term, and therefore the position
and width of the P33 resonance depend on the
choice g, (0) and the form factor. In the preced-
ing paper, we demonstrated that in a nonstatic
theory the nucleon pole terms cannot generate the
resonance. In fact we will see later than the gen-
eral features of the resonance are not critically
dependent on the nucleon pole terms. Because of
this we simply adopt the form factor used in Ref.
2, pN = 8.6 m„and make no effort to explore it
further.

B. Parameters of the Z graphs and the sigma exchange
terms

For .clarity of discussion, the procedure of
searching these parameters is presented in the
following three steps.

Step (a). As the first trial, we choose to have
a total cancellation at threshold between the iso-
scalar part of the Z graph and the sigma exchange
term, i.e., /=1. Also, we arbitrarily set the
form factor masses of these two terms equal:

We find, by fitting the P33 phase shifts,
that the value of g, can be as low as 9.78 if p,, and

p,, are set to be 14 m„or it can be as high as
10.52 if one sets p,, and p,, to be 8.6 m, .

Step (h). One knows from the exyerimental data
that both P13 and P31 have negative phase shifts
and the magnitude of the P31 phase shift is about
twice as large as that of the P13 phase shift in
the most part of the energy region we are studying.
Our next task is to choose the form factor masses
p,,= p., to reproduce these qualitative features.
No attempt is made to fit the phase shifts exactly.

To appreciate the roles of the various terms of
the P31 and P13 amplitudes we decompose these
at a particular energy, T, =110 MeV. The de-
composition is presented in Table II. We observe
several points. First, the most important con-
tribution to P13 and P31 comes from the nucleon
pole terms, which have negative contributions to
both channels, but the magnitudes are about the
same. The next important contribution comes
from the rescattering integrals. These are domi-
nated by the crossed contribution of the P33 reso-
nance. This may be seen from Fig. 4 also. Since
we do get a very good fit of the P33 phase shifts,
our evaluation of the rescattering contribution
should be reliable. Adding nucleon poles and re-
scattering contributions, the total. magnitude of
P31 is about 1.4 times larger than the magnitude

Nucleon pole
Sigma exchange (p,= 14 m, )
Z graph (p,,=14 m, )
Inelastic contribution
Rescattering integrals

-0.479
-0.042
-0.008

0.007
0.157

-0.469
0.069

-0.127
-0.041
0.237
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FIG. 5. The sigma exchange and Z-graph contribu-
tions to the P13 and P31 driving terms as functions of
the common form factor mass p, = p,.
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of P13. The observed ratio is -2.
Next we explore whether this ratio can be in-

creased with a suitable choice of p, = p, . In Fig.
5 we present the sum of the contribution of the
sigma exchange and the Z graphs to the driving
terms of the two channels as functions of the com-
mon form factor mass. It is clear that in order
to increase the ratio of P31 and P13 amplitudes
one must select the region p,,= p,, &15 nz, . How-
ever, .our analysis of the P33 phase shifts had
established that we cannot increase p, = p, beyond
14 m, . So, we simply choose this largest possible
value for the form factor masses. With this goes
the value g, =9.78. No attempt is made to vary
p,, and p,, separately. Doing this may help im-
prove the fits for the P13 and P31 amplitudes.
However, being small these amplitudes are par-
ticularly sensitive to any other mechanism which
we have not included. So, we do not feel that forc-
ing better fits to P13 and P31 amplitudes is useful.

Step (c). Up to now, we have assumed a com-
plete pair suppression. However, with g, = 9.78
and p,,= g, = 14 m, one cannot satisfy the S-wave
Low equation even qualitatively. This difficulty
can be avoided by changing f slightly from 1 to
0.95 and g, from 9.78 to 10.12. The change does
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not affect the P-wave fit in any significant way.
At the same time, we Should note that we cannot be
certain that an unsubtracted equation is reliable
for the study of the S-wave problem. We do not
want to attach too great an importance to the par-
ticular value of g. Nevertheless, in this work we
use &=0.95 and g, =10.12 as our final values.

By now, we have fixed all parameters of the
elastic theory. It generates good fits for the P31,
P13, and P33 channels. But the P11 case is un-
satisfactory. The experimental P11 phase shifts,
-as shown in Fig. 1, start out as negative and then
turn over, going through zero at T, -150 Me7. In

marked contrast to this, the elastic theory is well
known to produce phase shifts which remain nega-
tive and increase in magnitude with increasing en--

ergy.
In the last few years, several authors"" "

have included the inelastic contribution in their
theories of pion-nucleon interaction. Mostly the
attention has been on the P33 channel. The P11
case is discussed in Ref. 12 only. These authors
did not succeed in reproducing the turnover of the
phase shift. In the next section we will demon-
strate one possible way to fit the P11 phase shift
by including the inelastic contribution.

V. INELASTIC CONTRIBUTION AND P11 PHASE SHIFT FIT

A study of Sec. II of the preceding paper wil, l show that the contribution of the inelastic channel from
both the right- and the left-hand cuts has the following general structure':

(W'+ L')'/'- e, » „(2v)' P, (2v)'2q„(2n)' 2q»

x(p&st/8, (0) $s, fi,1„.. . , 'fl„l„),„„„,(Ps, tl»„. .. , q„1„&~(0)p, s, )

N

x 6 p, +g q„(W'-+L')'/2 6~p+gg, -L)~.
/el j (22)

The four vector L-[W'+ L'}'/', L] stands for the
total energy and momentum of an intermediate
state. Thus .L = 0 for the right-hand cut and L = p&

+ p& for the left-hand cut, S' is the total energy of
the intermediate state in its rest frame. e=p+
+ k, , for the right-hand cut and ~=p&, —k, for the
left-hand cut. The intermediate state considered
here contains one nucleon (p, s} and ¹ 2 pions.
The point to note is that the quantity in the curly
bracket in Eq. (22) is a Lorentz scalar and it is
related to the total reaction cross section. Indeed,
for forward scattering p&

——p&, if the four-mo-
mentum L, —

p& is a valid four-momentum for a
physical pion the curly bracket equals

W 2

Mq

I

When the condition for the pion being on the
mass shell is not met we need a conjecture to re-
late the curly bracket to the expression (23). The
conjecture is best stated in terms of the variables
of the intermediate rest frame, i.e., the frame
obtained by boosting L down to zero with a boost
velocity of —L/(W'+ L')'/'. The boost produces
the following changes:

I'(p/ 'L)'
p/ p/' ——l(, —M')

(25)
f(p, L, )' l i/2

p) pg =I( W, -M'/I

We make the ansatz that

( j= p' p,' 8(g, p,")8(q',p/') ~, (1 — q, , , '),
T/t/'q

( ~„q)
wM "~' (23) (26)

(M2+ g2)1/2+ (~ 2+~q2)l/2 (24)

It should be noted that q refers to the initial and
final pion-nucleon states and not to any individual
particle in the intermediate state. Of course, it
determines 8', the total c.m. energy of the inter-
mediate state.

where gz, &~ is the modulus S-matrix element for
the given channel. The quantity q is the c.m.
momentum of the pion and the nucleon, i.e., 8(Q', |1')= 1 . (27)

In Fig. 6 .the quantity (W/M Q ')(1 —q», ~ ') is
plotted against the pion lab energy. One can see
that the important inelastic contribution comes
mainly from the P11 channel. Therefore, we in-
clude the inelastic contribution in the P11 channel
only.

At this stage we note that our low energy elastic

where 8(g', pf') is a form-factor-like function with
the condition that
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FIG. 6. Plots of expression (23) as a function of pron
lab energy. T ese arTh re pion-nucleon data magnetic tape
produce yd b Karlsruhe and Helsinki collaboration. See
Ref. 7.

theory may not be very good in the energy region
where inelasticity comes into play. We felt that
it is more sensible to adopt a procedure where
we avoid calculating these high energy elastic
amplitudes. This can be done by separating the
energy region into two parts: r,Ii 0& T ~320 MeV,
and (II) T, & 320 MeV. We make the simplifying
(and innocuous) approximation that the inelastic

n I andcross section is exactly zero in region
We thens ar s out t t as a step function in region II.

ion with thelum the elastic rescattering contribution wi
inelastic contribution in region II. Thus,hus the sum
in Eq. ~ inc ui E . (22) eludes N=1 also. Accordingly, q.
(23) changes to

q(Q', p') = exp (31)

2 ~2for our region of interest where &p . The
asymptotic behavior

4(4', p')

is sufficient to keep the left-hand cut integrals
under control. After some search we settle on
the values

(32)g, =4 m, ' and ~2=0. 2 m,

The choice amplifies the contribution of inelas-
ticity from e rth egion where the inelastic cross
section is largest. Without this amplification it

d'ff ult to fit the P11 phase shifts.
In Fig. 7 we have plotted the various pieces of

the on-shell driving terms for the four channels
t'ons of the on-shell momentum. The con-

tributions of inelasticity (only P11 include ) o
P13, P31, and P33 are negligible.

By the procedure described above we are able
to fit the P11 phase shifts satisfactorily without

amplify the contribution of the large q region to
the right- and left-hand cut integrals and tend to
make the integrals very large, if not unbounded.
A lar e left-hand cut integral will mean large
crossed contribution to other channels, w iwhich may
upset the satisfactory state of affairs in t ese
channels. This is easily avoided by choosing a
form where q, p remtI &

') remains bounded as Q' tends
to infinity. e in iW f d t adequate to choose the form

2W
tota1 M Ig I

a I,

{total)+2I 2J'
Mn

(23)

As before, when the pion is not on its mass shell,
we assume that the total curly bracket has the
form

E

4--
P I I

C9z
-2-

K
D

-4
0.0

I I I

05 IO 15
MOMENTUM (mac)

2-
(4)

(3)

(I)

E

V)

K
LJjI-
C3z

o
I

2.0

l.5-
I.O—

0.5-

-1,5
0

PI3

(3)

I 2 3
MOMENTUM (m ~c)

( )tatat —py pt 4(4 ~pg)4(4 pt)

(29)X ~ a (1 —'pa~ ~ cos25a~ a~)
28'

mlql'

where tII(q, p& I xs ananother form-factor -like func-
tion similar to 8(Q', p&'). Accordingly,

0.2-
(4)0.0 ~~——~

~ -02-
(3)K

z -06—

-0.8-
Ct

I ~b~ ~ ~
I 2 3 40

MOMENTUM (m~c )

-~ 2S-
E

to 2.0-

C9z I.O—

g 0.5-
0.0

0

P33

I 2 3
MOMENTUM (m~c)

y(Q', q') = 1. (30)

A certain amount of care is necessary in choosing
f r ."~' ") For example, one must

rable form.avoid the temptation of choosing a factorab e orm.
(iP p') = P(p')/p('P) where p(p') is a suitably
h sen function which continuously decreases.

Since p('ala) appears in the denominator xt w

FIG. 7. Decomposition of the on-shell drxvxng terms
ch channel. The curves are labeled (1)-(4). Thesein eac c nne .

rm the Z-the contributions of the nucleon pole term,are e con x

aph term, the sigma exchange, and the P inP11 inelasti-
t the rticular channel as markedcity, respectively, o e pa

h. The Z graph contributes little to theon each grap . e
are not shown.J'=—' channels; the corresponding curves are no-2
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(,)
k f»(k, k')
k' f„(k,k)

If f» is factorable we will have

, - y(k')
R,(k) —

( ).

(34)

(35)

So, if we plot log R~(k') as a function of the off-
shell momentum k' for various fixed values of the
on-shell momentum k we should have curves which
are parallel to each other. In Fig. 8 we show the
curves lnR~(k') as functions of k' for k= 0.96 m„
1.19 m„and 1.88 m, . We see that there is no
hint of parallelism among the curves. We con-
clude that our half-off-mass-shell P11 amplitudes

IO—

I.88 m~c

IO~ i i i ) I « i i I l i i i I i i i (

0.0 0.5 I.O I.5 2.0
OFF-SHELL MOMENTUM (m~c)

FIG. 8. Plots of the log of expression (34) as a func-
tion of the off-shell momentum. The on-shell momentum
is marked on each curve.

spoiling the fits in the other channels. This may
be seen from Fig. 1.

It should be stressed that the success of our ap-
proach depends critically on the role of nonstatic
kinematics on the spin crossing matrix. The con-
stant crossing matrix elements of the static the-
ory would have produced large and unpleasant
contributions from the left-hand cut.

We should also note that we offer no explanations
why the ansatz Eq. (29) should be valid nor why

the form factor should be as given by Eq. (31).
We are led to these by the simple fact that we can-
not invent any other reasonable model to explain
the curious behavior of the P11 phase shifts.

We have also analyzed the P11 amplitudes to
see if these are factorable. If the amplitude

f»(k, k') is factorable, one can write it as

f„(k,k') = 8(k) P(k')kk', (33)

where one expects 8(k) and P(k') to be relatively
slowly varying functions. A test of factorability
is provided from the analysis of the ratio

are not factorable. We have not attempted to fit
the P13 and P31 phase shifts with any degree of
precision. We are not in a position to comment
on the structure of these amplitudes. We may re-
mind the reader that these are small amplitudes.

VI. SUMMARY AND DISCUSSION

We have developed a theory of P-wave pion-
nucleon scattering in the spirit of the Chew-Low
theory with the following three significant dif-
ferences:

(i) inclusion of nonstatic kinematics for the nu-
cleon,

(ii) inclusion of the Z graphs, and

(iii) inclusion of the P11 channel inelastic con-
tribution.

In the preceding paper, we show that with non-
static kinematics the nucleon pole terms fail to
produce a resonance in the P33 channel. Inclusion
of the Z graphs, as was done, immediately pro-
duces a resonance. Getting the position and the
width correctly becomes a matter of detail. As
long as the Z graphs are included the contribution
of a scalar-isoscalar boson exchange is also in-
cluded keeping in mind the pair suppression mech-
anism in the S wave. However, in the P wave
the scalar-isoscalar boson has a relatively small
role.

The Z graphs make important contributions in
the J= —,

' states only. Fig. 7 shows this and the
size of the other driving terms in the various
channels.

To appreciate the role of the Z graphs in produc-
ing the resonance we refer to the form of the full
amplitude as given by [1,1] Pad& approximant.
The form is

( )
V»'(~ e)

V»(q, q) —[second order iterate] '

(36)

where V is the driving term and the second order
iterate comes from the integrations of Eq. (17).
If the second order iterate is small there can be
no resonance. In view of this it is instructive to
examine the contribution of the various pieces of
the driving term to the second order iterate for
0 ~ q ~ 2. 5 m„shown in Fig. 9. The second order
Z-graph contribution is the largest single part
and accounts for about 35%% of the whole. The
second order nucleon pole contribution is less
than 15'%%uo throughout.

A very important result of our studies is the
discovery that the P33 amplitudes are factorable,
but the form factor is very hard. With the choice
of a monopole form the mass parameter p,33 is
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parameters and vice versa. But it must be under-
stood that while the S-wave amplitudes depend
mainly on the size of the Z-graph contribution,
the P-wave amplitudes depend on the rate of var-
iation of Z graphs with momentum transfer. We
picked a monopole form for the t dependence of
g, (f) in the range t ~ 4M'. This is, of course, a
purely arbitrary choice. The simplicity reflects
our ignorance. Thus, the difference between the
S-wave and P-wave parameters may not be as ir-
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FIG. 9. Decomposition of the on-shell second order
iterate of Eq. (17) for the P33 channel. The labels,
Z, N, and o stand for the Z graph, the nucleon pole, and
the o exchange mechanisms. The curve labeled SZ
shows the contribution of the square term from 8 graphs
as percentages of the total. The curve labeled oN shows
the cross product of the o. exchange and the nucleon pole
RIll so on,

bound to be at least as large as 10 m, . The ampli-
tudes in the other channels are not factorable.

The change of sign of the P11 phase shift at T,
-150 MeV is an intriguing feature of the pion-
nucleon scattering problem. Ever since the days
of the Chew-Low theory (1956) it has been known
that the normal driving terms produce phase
shifts which are negative and which increase in
magnitude with increasing energy. So, a new type
of driving term is needed which is important for
the P11 channel only. Inelasticity meets the re-
quirement. However, we do find that the contribu-
tion of inelasticity has to be suitabiy amplified by
an appropriate choice of form factors. Ours is
given by Eqs. (31) and (32). We have made no
effort to try to understand this in terms of a theo-
ry of pion production.

For the Z graphs we find the values g,
g, (4M') = 10.12 and p, = 14 m, . The S-wave

study of Ref. 2 reported g, =11.7 and p,,=8.6

m, . The differences are significant in the sense
that the S-wave work would fail with the P-wave

reconcilable as it may appear at first glance. We
should also stress that among the various driving
terms we have neglected, the one where the anti-
nucleon is replaced with N* by J = —,

"may play
an important role in the P-wave dynamics. At
present our Z graphs and the, inelasticity terms
have to make up for these and other terms not in-
cluded by us.

Also, we feel that a subtraction is not required
for the P-wave calculation. On the other hand, it
is very difficult to use this unsubtracted equation
to calculate S-wave phase shifts. Since the S-
wave amplitudes have cancellation of two terms,
the sigma exchange and Z graph, a cancellation at
threshold as we demanded in our theory is not
enough to guarantee continued cancellation beyond
threshold. A noncanceled Z graph and sigma ex-
change driving terms can build up a huge contribu-
tion to an S-wave amplitude through the rescatter-
ing processes. This contribution depends very
much on what off-shell form factor one wants to
choose. One can get almost any value of the am-
plitude by a clever choice of the form factor.
Thus, an approach to the S-wave problem with an
unabstracted equation is inherently unreliable. The
works of Refs. 2 and 3 used a soft pion limit to
produce once-subtracted equations.
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