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The average nucleon-nucleus potential at low and medium energy is investigated in the framework of a relativistic
quantum field model. Using the same input parameters as Brockmann in his recent study of nuclear ground states,
we calculate the self-consistent relativistic Hartree potential at positive energy in the case of infinite nuclear matter
and of '°O and “’Ca. This potential is the sum of a scalar operator and of the fourth component of a vector operator.
We construct its Schridinger-equivalent potential by eliminating the small component of the Dirac spinor. The
central part of this Schrodinger-equivalent potential is in fair agreement with empirical values at low and
intermediate energy. Particular attention is paid to the intermediate energy domain, in which the calculated
potential is repulsive in the nuclear interior and attractive at the nuclear surface. This is in keeping with some
empirical evidence and is similar to results found in the framework of the nonrelativistic Brueckner-Hartree-Fock
approximation. The spin-orbit potential of the relativistic Hartree model is also in good agreement with empirical

values.

UCLEAR REACTIONS Calculated average nuclear field of nuclear matter, 169
and *’Ca at positive energy from relativistic Hartree approximation.

I. INTRODUCTION

The optical-model potential plays a central role
in most analyses of nuclear reaction data. Itis
thus of great formal and practical interest to in-
vestigate to what extent its empirical characteris-
tics can be accounted for by a theory based on the
elementary nucleon-nucleon interaction. Most of
the available theoretical approaches® start from
a nonrelativistic nucleon-nucleon interaction
which has no connection with the field theory of
nuclear forces. Here, we follow another route
to the calculation of the optical-model potential.
As summarized by Green,? it consists in viewing
the incoming nucleon as interacting with the me-
son fields set up by the target nucleons. This ap-
proach to the optical potential had been initiated
many years ago,”” but recently received renewed
interest®'? stirred by successes of a relativistic
quantum field model of nuclear matter'**® and of
finite nuclei’®?® on the one hand, and by the fact
that good fits to angular distribution data and to
polarization data have been obtained from a phe-
nomenological relativistic optical model®-% on the
other hand. The present paper is devoted to the
study of the real part of the average nucleon-nu-
cleus interaction at positive energy in the frame-
work of the self-consistent relativistic Hartree
approximation. Until now, the latter had only
been applied to nuclear ground states.'®* Fol-
lowing these authors of previous works, we in-
clude only three meson fields, which correspond
to two massive vector mesons (w and ¢) and to
one massive scalar meson (o), respectively.

In Sec. T A, we briefly recall the four-compo-
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nent Hartree equation. Then we reduce it to a
nonrelativistic Schréddinger form in two different
ways: namely, by eliminating the small compo-
nents (Sec. IIB) and by performing a Foldy-
Wouthuysen transformation (Sec. IID). SectionIIC
contains a critical discussion of the so-called
relativistic correction which is often introduced
in empirical analyses of experimental data.3*-3¢
Section I is devoted to infinite nuclear matter.
We first show (Sec. IIIA) that in this case many
of the relations derived in Sec. II take a physically
transparent form. In Sec. IIIB, we make contact
with Walecka’s'® relativistic Hartree model for
the binding energy of nuclear matter. Sections
IIIC and IIID contain some numerical results
based on the meson parameters of the one-boson
exchange potential of Erkelenz, Holinde, and
Machleidt.®” These meson parameters had pre-
viously been used by Brockmann® in his study of
the ground states of '°0 and *°Ca. The central and
spin-orbit components of the average nucleon-nu-
cleus potential for these two nuclei are studied in
Sec. IVE. The comparison with empirical values
is satisfactory. It turns out that at intermediate
energy the calculated central potential presents a
pocket at the nuclear surface.!* This “wine-
bottle bottom” shape is analyzed in Sec. IVD.
Section V contains a brief conclusion.

II. HARTREE APPROXIMATION IN DIRAC
AND SCHRODINGER FORMS

A. The model

As much as possible, we use the same notation
as Brockmann?? and assume that the nucleons only
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exchange a massive scalar (¢) meson and two mas-
sive vector (w, ¢) mesons. When treating the
meson field operators as classical fields,*** one
obtains the following expression for the nuclear
Hamiltonian:

A=Y [ 7L Riy"7 T+ my, (R L0,
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Here, [f,(%)] is a complete set of Dirac spinors
and b, (b!) is an annihilation (creation) operator
for nucleons in state «, and
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where A, is a cutoff momentum for the meson-
nucleon form factor and m, is the mass of meson
i. We have omitted retardation effects since they
disappear in the Hartree approximation.?*

We now restrict the discussion to doubly closed -
shell nuclei. If one only retains terms which are
linear in the coupling constants g,?, and if one
omits the Fock terms which arise from antisym-
metrization, the self-energy is given by the rela-
tivistic Hartree approximation. Then, the wave
function ¥ of a single-particle scattering state
with total energy

E=¢+m (2 . 4)
satisfies the following Dirac equation:
[P+ Bm + BU,(v) + Uy (»)|¥° = E¥P . (2.5)

Here, the average nucleon-nucleus potential U,
+ U, is the sum of a scalar

8U, =8 [ o0 (E-F)a%,  (2.6)

and of the fourth component of a vector

vn= 5 [ ol F-FDa%, @)

i=w,o
J
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where k,=F(j+3) forj=1=3.

where p(7) denotes the self-consistent baryon den-
sity

A
p(r) =2 ¥RHRIW(R), (2.8)

axl

and p,(7) is the self-consistent scalar density

A
p (1) =2, TR (X2 (X). (2.9)
a=1l
In Egs. (2.8) and (2.9) the sum runs over the A
lowest bound state solutions of Eq. (2.5). We
note that in the Hartree approximation the average
potential is real, local, and independent of energy.

B. Schrédinger form

It is possible to solve directly the Dirac equa-
tion (2.5) and to adjust the average potentials
U,(¥) and Uy() to fit the experimental data.?
However, most analyses of the data are carried
out in a nonrelativistic framework. For the pur-
pose of comparing the present relativistic poten-
tial with empirical ones, it is thus useful to write
the wave equation (2.5) in a Schrédinger -type
form. One way of achieving this consists in
eliminating the small components \Iff of ¥? from
Eq. (2.5). The resulting equation for the large
components ¥2 reads

PE s '.6')Dkw2D
(2—— +T,(r;€) + U,y (r3) yL wP=3= v,
(2.10)

where %, denotes the relativistic asymptotic mo-
mentum

B r=2me+é?, (2.11)
while
U r;0)=Ufr; &) —iU, (r;0F B, 2.12)

Uy(7; €)= U,(v) + Uy(¥)

+@m) (U0 - U2+ U,

(2.13)
Uuo(r3€) = ~l2mD ()] -L [D), (2.14)
Dr)=E+m+U,(v) = Uyr). (2.15)

If G,(7;€) denotes the radial component of \I/f, the
function

&.(r;)=[D()] /%G, (r;€) (2.16)

satisfies the Schrédinger-type equation??

(2.17)
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Unless otherwise specified, we neglect, henceforth, the very small difference between ﬁe('r; €) and
U,(r;€). We shall accordingly call U(r;e€) the Schrddinger -equivalent potential. Our definition agrees
with Noble’s.® It differs from Brockmann’s®? by the quantity €/2m, and is more physical since here
U,(r;€)— 0 for »— », unlike Brockmann’s definition. We return to this point in Sec. IIA.

C. Comparison with empirical procedure

Let us first show that Eq. (2.17), with the expression (2.11) for k2%, is formally identical to the
Schrddinger equation used in phenomenological analyses of elastic scattering data with relativistic kine-

matics.

Following Goldberger and Watson,*® many phenomenologists, see; e.g., Refs. 34-36, assume that the
optical-model potential is the fourth component of a Lorentz vector. The corresponding Dirac equation

reads

(@P+Pm+UPW=EV,

(2.18)

where the upper index ph refers to “phenomenological.” A partial wave expansion then leads to the radial

wave equation [see Eq. (2.17)]

————~—-—~d2g3;(:; 9, {sz —l—(l;l) 2m [U"‘(v, € -= U"“(r e)ky + 1]}g’“('r,

where, omitting for simplicity derivative terms,

URR=UN) -5 (VPP +UBA S,

UR(N=-{2m[E+m — U""('r')]}-1 d [E +m -U(7)].

(2.19)

(2.20a)

(2.20b)

In most empirical analyses, the quadratic term U,*(#) is omitted, and one writes Eq. (2.19) in the

34-36

ph(,r. E)

form

dealrio) +{k.2—’————(’;”-2 [ - vz, +1>]}g:h<r;e>=o,

where y=E/m is the “Lorentz factor.” Hence,
the phenomenological “relativistic” description
consists in using Eq. (2.21), where U(y) and
U (») are taken as independent empirical poten-
tials adjusted in such a way as to fit the experi-
mental data.

By comparing this procedure with our discus-
sion in Sec. IIB, we see that this phenomenologi -
cal prescription does not rest on safe grounds.
Indeed, the basic assumption that the original
optical-model potential is the fourth component of
a vector field is arbitrary. Moreover, the neglect
of the quadratic term leaves out interesting fea-
tures which will be analyzed in Sec. IVD. It
would be much better to use the original Dirac
equation (2.5) as done by Arnold, Clark, and
Mercer.* This criticism bears on the interpreta-
tion of Eq. (2.21) as a sound relativistic extension
of the Schrddinger equation. It does not hinder us
from exploiting the formal similarity between Eqs.
(2.17) and (2.21), in order to identify the quantity
U,(7;€) with the empirical potential yU%(r), and
the quantity U, (7;€) with the empirical potential
yUP(), and the quantity U,,(»;€) with the empiri-
cal spin-orbit potential U (»). We note, however,

(2.21)

f

that this identification is legitimate only if the
elastic scattering and polarization cross sections
can be obtained in the same way from Eq. (2.17)

as from the phenomenological equation (2.21).

It can be checked that this is indeed the case on the
basis of the equations contained in Refs. 40-42.

D. Foldy-Wouthuysen transformation

Equation (2.13) shows that the Schrodinger -
equivalent potential depends linearly on ¢, with a
slope given by U,(#)/m. From general field-theo-
retical arguments, one knows that U,(») is repul-
sive while U,(7) is attractive. Hence, the depth
of the Schrddinger -equivalent potential U,(7) de-
creases with increasing €; this is in keeping with
empirical evidence. According to the present
model, this energy-dependence reflects the grow-
ing importance of the repulsive vector potential
U,(7). At first sight, this interpretation appears
to be at variance with the works of Duerr* and of
Humphreys.® Indeed, these authors ascribed the
decrease of U,(7) to the decreasing importance of
the attractive field U,(») rather than to the in-
creasing importance of the repulsive field Uy(#).
In the present section, we show that one can re-"
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cover Duerr’s and Humphreys’ interpretation pro-
vided that the following inequalities hold:

k~Uy/m~U,/m~@/cl«1. (2.22)

43,44

The procedure of Foldy and Wouthuysen®
ables one to approximate the Dirac equation by
two two-component equations, in the limit (2.22).
By performing two successive unitary transfor-
mations, one can obtain a Hamiltonian whose odd
part is of the order «°, Its even part reads

HFW:B( 2_§___

en-

)+,8U +U,
8m®

1 ., - -
- P%U, + BU,) +2B(U,+ BU,) *D
8m

-2a-pU,) ap
+2pa -p(U,)a D +4BUD’], (2.23)

where we dropped terms of order higher than «*.
This Hamiltonian yields the following wave equa-
tion for the large components of the corresponding
wave function:

D G, 0+ L U ()3 TfeY e g
2m ] 'r,p,e v 80 Yo > _zm >
(2.24)
where
T 3,0 =U™0r$,6) + Up(r; D), (2.25)
© with
- 1.
U (35,0 =U,(») + Uy(») - 5z Ud”
m
'8%3'*“2—7;;, (2.26)
Up(r;D) =3 2[VZ(U +U,) +2iV(U, + U,) *B)
-Luveep, (2.27)
while
s ()= 4m d,,[U ) = U] (2.28)

Equation (2. 26) establishes our earlier claim
that in the limit (2.22) the decrease of the Schrb-
dinger-equivalent potential with increasing energy
can be interpreted as a decreasing contribution of
U, with increasing local momentum. The three
first terms on the right-hand side of Eq. (2.26)
essentially correspond to the nucleon-nucleus
potential considered by Humphreys® on the basis
of arguments based on the Lorentz contraction of
the source of scalar mesons. Although intuitively
attractive, Humphreys’ reasoning should be con-

sidered as phenomenological. Indeed, this author
does not specify in which wave equation his nucle-
on-nucleus potential should be used. Up to order
k?, the potential (2.26) had previously been con-
sidered by Duerr and by Friar.* The difference
between U;* (;5,¢€) [Eq. (2.26)] and U,(r;¢ ) [Eq.
(2.13)] is at first sight somewhat puzzling. In-
deed, the former does not contain a term propor-

* tional to U2 — U whose importance will appear in

Sec. IVD. Furthermore, its momentum depen-
dence is proportional to the scalar field U(»),
while the energy dependence of U,(7;€) is due to ’
the vector field U,(#). The origin of these formal
differences will be exhibited in the next section,
in the case of infinite nuclear matter.

III. INFINITE NUCLEAR MATTER

A. The single-particle potential

Since the potential felt by a nucleon is a com-
bination of a scalar field (8U,) and of the fourth
component (U,) of a vector field, the relativistic
energy-momentum relation reads

(e+m -Uy)’=p*+(m+U>. (3.1)
This yields ’

e _p? ~1(yr 2 2
€+2—n7:ﬁ+U’+ U,+@m)* (U2 -Uy?)

+(m) Uge. (3.2)

Equations (2.11) and (2.13) show that this relation
is identical to the Schrddinger-type equation
(2.10). It can indeed be written in the form

1, 0"

ka =g +U,(e), (3.3)
with

U e)=U,+ U, + Q2m) (U2 -U2) + (m)™Uge.

(3.4)

Instead of expressing the effective potential U,
as a function of the energy ¢, let us write it as a
function of p. From Eq. (3.2) one gets the dis-
persion relation

€= -m+U,+[p*+ (m*)?]*/2, (3.5)
where the “effective mass” m* is defined by* 3
m*¥*=m+U,. (3.6)

By inserting expression (3.5) for € into Eq. (3.4),
one finds

U,(p)=U, +o— (U +U2)+ 2[p%+ (m*)2]H2,

3.7
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In order to obtain a low-energy approximation,
let us expand the right-hand side of Eq. (3.5). In
the limit (2.22), and keeping terms up to order
(v/c)*, one obtains

i+e=£2—+UFw(p'e) (3.8)
2m 2 (] ) b .
where
1 4 €
U:W(P;G)=U3+UO-WU,PZ—§€-;L§+'2; .

(3.9)

We recognize in this expression the Foldy-Wouth-
uysen approximation (2.26) in the case of an in-
finite medium. One can obtain a better low-energy
approximation by expanding the right-hand side of
Eq. (8.5) in powers of (p/m*). This yields

2 4

A b |
=¥ tUo* Uy~ gy (3.10z)
which gives
£ el Lpin(pg (3.10p)
2m 2m ¢ P :
where the quantity ULE(p;e) is given by
1
LE(}.c)— _ 2
U (030 = Uy + Uy = g °U
1 4 €
“8m 0P Tom (8.11)
One can write Eq. (3.8) in the form
pZ
€+m:ﬂ+Ua(E)+m, (3.12) |
where
Ug(e)=U,(e) —o— (3.13)

is the quantity introduced by Brockmann.? This
quantity approaches (—«) as €— +« and should
therefore not be identified with the optical-model
potential. We pointed out at the end of Sec. IIB
that in a finite nucleus Uy(7;€), moreover, does
not tend towards zero as » —.

B. The binding energy

If ¥, denotes the normalized plane wave solution
of Eq. (2.5) with momentum p, the potential ener-
gy of a nucleon with momentum p is equal to

w(p)=(¥;| U, + BU,| ¥7)
=U,+ U, m*(p? +m*?)"2/2 (3.14)

where the effective mass m* is defined by Eq.
(3.6). The kinetic plus rest mass energy reads

IN A RELATIVISTIC QUANTUM... 2031

x(p)=( ¥y @ p+pm|¥7)
= (mm* +p2)(p% + m*2)2/2 (3.15)

The average total energy per nucleon of the nu-
clear matter ground state is given by

h \
m+B/A=3k," [ T [X(p) +3u(p)lp?dp  (3.16a)
0
Sm*
=3U,-3U, 1:23
T ——
(P +rm*nsz P
"f PP Hm*EN%ap . (3.16b)
o \
From Egs. (2.3) and (2.6)-(2.9), we find
2
p= 31r2k (3.17a)
m*
P=Gar J, [P+ 2> (3.170)
Uozp(ng/muz+go2/m°2), (3_18)
Us==pes’/ms" (3.19)

We note that in the present case of infinite nuclear
matter the quantities U, and U, are independent of
the cutoff energies A;. By substituting the expres-
sions (3.18) and (3.19) in Eq. (3.16b), it can be
checked that one recovers Eq. (3.45) of Ref. 13.
The relationship between the present notation and
that of Ref. 13 is given by

Cv2=m2(gw2/mw2 +g°2/m02)
(3.20)

2_ 2.2/ 2
¢ =m’g,’/my*,

C. Input

Unless otherwise specified, our input is identical
to that used by Brockmann? in his description of
nuclear ground states. The meson parameters
are the same as in the one-boson exchange poten-
tial of Erkelenz, Holinde, andMachleidt,3” ¢ namely

m,=550 MeV, g2?/4r=6.57, A,=1530 MeV,

(3.21a)
m,="182.8 MeV, g,%/47=9.25, A,=1530 MeV,
(3.21b)
my=1020 MeV, g,2/4r=0.86, A,=1530 MeV.
(3.21¢)
The corresponding constants (3.20) are
c,2=240.1, ¢?=176.1. (3.22)

In the following, we shall occasionally neglect the
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contribution of the ¢ meson for simplicity. The
corresponding coupling constants are

c?=240.1, ¢?=166.9. (3.23)

In his pioneering paper, Walecka'® chose the val-
ues

¢ =266.9, ¢?=195.7. (3.24)

D. Numerical results

In Fig. 1, we represent the dependence upon the
Fermi momentum % of the average binding energy
per nucleon, as calculated from the Hartree ap-
proximation (3.16b). The full curve corresponds
to the exchange of mesons ¢ and w only; its mini-
mum lies at £{? =1.51 fm™, B/A= -21.6 MeV.
The dashed curve corresponds to the exchange of
0, w, and ¢ mesons; its saturation point lies at
B =1.45 fm™, B/A=-13 MeV. The fact that
the calculated k(" is larger than the empirical
value (£ =1.36 fm™) suggests that in finite nu-
clei the calculated root mean square radius of
the density will be smaller than the experimental
value. This will be confirmed in Sec. IVA.

In Fig. 2, we show the energy dependence of the
Schriddinger-equivalent potential U,, Eq. (3.4),
for k,=1.35 fm™ and k,=1.10 fm™. The poten-
tial U,(e) changes sign at =190 MeV for k,=1.35
fm™, whil€ it becomes repulsive at e=259 MeV
for the Fermi momentum k,=1.10 fm™. We
note that the two curves intersect. This feature

10 7

B/A (MeV)

1 1

1
0.8 1.2 1.6

FIG. 1. Dependence upon the Fermi momentum &g of
the average binding energy per nucleon, as calculated
from the relativistic Hartree approximation (3.16b). The
full curve takes into account the exchange of ¢ and w me-
sons, and the dashed curve the exchange of o, w, and ¢
mesons, with the parameter values (3.22) and (3.23), re-
spectively.

1 T T T
= i
Q
s N
o kp =135 fm™h — N
o) _20_ —
kg =110 fm™ ——- \
0 Y
1 1 | | \
1 5 10 50 100 500
€ (MeV)

FIG. 2. Dependence upon the energy € of the Schro-
dinger-equivalent potential U,, Eq. (3.4), in infinite nu-
clear matter with the Fermi momentum 1.35 fm™! (full
curve) and 1.10 fm™ (dashed curve). The exchange of o,
w, and ¢ mesons is included.

will be discussed in detail in Sec. IVD. It is also
encountered in a Brueckner-Hartree-Fock cal-
culation based on Reid’s hard core nucleon-nucle-
on interaction. *®

The Fermi momentum %, =1.35 fm™ corre-
sponds to the central density of medium-weight
and heavy nuclei. In Fig. 3, we compare empiri-
cal depths of the optical-model potential of *°Ca
with the values of U,(e) for infinite nuclear matter
with 2,=1.35 fm™. The fair agreement indicates
that the present relativistic Hartree model repro-
duces the low-energy behavior of the optical -mod-
el potential. The dependence of U,(€) upon ¢ is
linear. It is customary to characterize this ener-

Ue (Mev,

i 1 1 1

1
20 60 100

1
140 180
€ (MeV)

FIG. 3. The crosses and the dots show empirical po-
tential depths determined from the analysis of proton
scattering by 4%Ca, carried out in Refs. 36 and 47, re-
spectively. The straight lines represent calculated depths
for infinite nuclear matter with k,=1.35 fm=. The dashed
line corresponds to o, w, and ¢ exchange, and the full
line to ¢ and w exchange.
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gy dependence by the following quantity 7, which
is called the “effective mass” in the field of nu-
clear spectroscopy or of nuclear reaction theory:

@:1 _dU,
m de

For kp=1.35 fm™, we find m/m=0.73. This
result is close to the empirical value, which is
0.78 for 0 <e <100 MeV. This good agreement
appears to be slightly at variance with the smaller
value of the effective mass obtained by Duerr* and’
by Walecka.'® However, the effective mass dealt
with by these authors is the quantity defined by
Eq. (3.6). The origin of the expression effective
mass coined for m* in Refs. 4 and 13 is apparent
from Eq. (3.10a). For k,=1.35 fm™, one has
m*/m =0. 65 for the input parameters (3.21a)-
(3.21c¢). In the case of Walecka’s parameters
(3.24), one finds m/m=0.70 and m*/m=0.61.
We note that Arnold and Clark'® recently intro-
duced yet another effective mass, namely the
quantity M* defined by

IK: =1 _—-—.—UO_U’ :m:—————+m*
m 2m 2m .

=1-Uy/m. (3.25)

(3.26)

In the past, some authors*” had worked within
the framework of the Foldy-Wouthuysen approxi-
mation (3.9) or of the low-energy approximation
(3.11). In order to test the accuracy of these
approximations, we compare them with the exact
result in Fig. 4 for %2,=1.35 fm™ and in the case
of the 0, w model. We see that the Foldy-Wouth-
uysen approximation (3.9) is not accurate. This
reflects the fact that the inequalities (2.22) are

Sp— LN LA |
-~

T T vy T T T

0
a1 laanl Lol 1\. s
1 5 10 50 100 500

€ (MeV)

FIG. 4. Comparison between the exact value of U, [Eq.
(3.7)] (full curve), the Foldy-Wouthuysen approximation
Eq. (3.9) (long dashes), and the low-energy approximation
(3.11) (short dashes) in the case of infinite nuclear mat-
ter at kx=1.35 fm", for the o, w model.

not well fulfilled in the present case. This is due

‘to the fact that the ratios U, /m and U,/m are not

small. The low-energy approximation (3.11) is
reasonably accurate only for e smaller than sev-
eral tens MeV.

IV. FINITE NUCLEI: 160 AND 40Ca
A. Density distribution

The full curves in Figs. 5 and 6 represent the
baryon density of °0O and of “°Ca, as calculated
from the exchange of 0, w, and ¢ mesons.*® The
shape of p(#) in the case of *°0 is typical of a
Hartree approximation. Indeed, it is closely
fitted by the formula

pﬂo(r)=p0(l+2£—:)exp<-2—i) , (4.1)

which is the form derived for the density of *°0

in a nonrelativistic independent particle model
with harmonic oscillator wave functions. The
dashed curve in Fig. 5 represents the function
Pro (#) with the following parameters: p,=0.207
nucleon fm™, a¢=1.55 fm. In the nuclear interior,
the calculated density distribution of “°Ca is flat-
ter than in the case of °0. The dashed curve in
Fig. 6 represents the Fermi distribution

S M— 4
Pr () 1+exp(» =R)/a’ (4.2)
T I i
0.2 ]
P
E i
a
0.1 -
0.0

0 2 4
r (fm)
FIG. 5. The full curve represents the baryon density of
160 as calculated from the relativistic Hartree approxi-

mation (Ref. 48). The dashed curve corresponds to a fit
with expression (4.1),
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0.3 T T T T
—~ 0.2 R
P
E
a
0.1 —
0.0
0 2 4
r (fm)

FIG. 6. The full curve represents the baryon density of
4004 as calculated from the relativistic Hartree approxi-
mation (Ref. 48). The dashed curve corresponds to a fit
with expression (4.2). :

with p,=0.25 nucleon fm™, R=0.92 A'/3, and
a=0.47 fm. For semiquantitative purposes, it

is thus justified to consider !°0 as a typical light
nucleus, and *°Ca as a representative of a medium-
weight of heavy nucleus.

The calculated root mean square radius of *°0
is equal to 2.30 fm and that of “°Ca to 2.97 fm.
These values are rather smaller than the experi-
mental ones, which are equal to 2.45 fm (Ref. 49)
and to 3.48 fm (Ref. 50), respectively. This re-
flects the fact that the calculated saturation densi-
ty of nuclear matter is too large and entails that
the calculated central density is also too large.
This defect of the present model will have to be
taken into account when comparing our results
with empirical values.

B. Static central potentials

For simplicity, it will often be convenient to
drop the contribution of the ¢ meson to the fourth
component Uy() of the vector part of the Hartree-
Dirac field. Accordingly, we write

U(r)=U3(n)+UL(), (4.3)
where [see Eq. (2.7)]

vse)= [ ptryo | -5)a%y. (4.4)
The values of U§(7) and of U,(¥) are shown in
Figs. 7 and 8, in the case of '°0 and of “°Ca, re-
spectively. The scales have been adjusted in such

a way that the ordinate of U #(0) coincides with
that of U,(0). We note that U %(») and U (r) have
approximately the same shape down to  of the

central value. One has

U (r)=-1.3U,(r), »<7,, (4.5)

T T T T T
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z E
ip 4200 =

100
4100
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FIG. 7. Comparison between the shapes of U§(»)
(dashed curve, left-hand scale) and of Ug(#) (full curve,
right-hand scale) in the case of 160,

with #,, ~2 fm in the case of *°0 and 7,, 3 fm in
the case of *Ca. This property will be used in
Sec. IVD. For »>7v,, U,(r) extends beyond
Uy(r). This is mainly due to the fact that the sca-
lar meson is lighter than the vector meson. The
effect of this mass difference is partly compen-
sated by the fact that the range of the scalar den-

T T
1400
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s _ «
] 300
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z
39 1200 2
-1100
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FIG. 8. Comparison between the shapes of U§(r)
(dashed curve, left-hand scale) and of Ug(#) (full curve,
right-hand scale) in the case of ’Ca.
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sity is slightly smaller than that of the baryonic
density.

C. Schridinger-equivalent potential

The central part of the Schréddinger-equivalent
potential is given by Eq. (2.13). Let us for sim-
plicity set g,>=0 and denote UJ*“(r;¢) the corre-
sponding value of U,(r;€). We usually illustrate
the discussion by the case of “Ca. Similar re-
sults hold for **0. The full curve in Fig. 9 repre-
sents the radial dependence of UJ*“(r; 0); the
dashed curve is a Woods-Saxon well with the fol-
lowing parameters (R=7,A/3):

V,=61.8 MeV, 7,=1.09 fm, a=0.54 fm.
(4.6)

The dash-and-dot curve represents the quantity
U ¥(r) + Uy(7); the difference between this curve
and the full curve illustrates the importance of
the quadratic terms on the right-hand side of Eq.
(2.13).
In Fig. 10, we show the value of UJ*“(r;€) at
the energies e=0, 150, 300, and 450 MeV. We
note that U,(7;€) changes sign at a much lower en-
ergy at the nuclear center than at the nuclear sur-
face. This reflects the intersection of the two
curves shown in Fig. 2. As a consequence, the
Schrddinger -equivalent potential acquires an at-
tractive pocket at the nuclear surface in the inter-
mediate energy domain.!* The origin of this wine-
bottle bottom shape will be discussed in Sec. IVD.
We turn to a comparison between the relativistic
Hartree model and the empirical data. Figure 3
already indicated that the agreement is fairly sat-
isfactory. It is known, however, that the depth
of the optical-model potential is not well deter-
mined by the analysis of the data, and that the

0 T T T T T o=
/‘/
L € = 0 MeV e
4 1
_20._ // -
—~ / o€
3 L / 4-50 hd
d "
= /
3 -0 / J z
oo —F— 2
B | / =
Ry
..... L “0cq 4-100
-60F T T
1 1 1 1 1
1 3 S
r (fm)

FIG. 9. The full curve shows the radial dependence of
US*“(r; €) for €=0 MeV, in the case of 40Cca. The long
dashed represent a Woods-Saxon potential, with the pa-
rameters (4.6). The dash-and-dot curve represents the
sum UP(r)+ Usly) (right-hand scale).
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FIG. 10. Schrodinger-equivalent potential UJ*“(y; €) in
the case of 4’Ca, for €=0, 150, 300, and 450 MeV.

differential cross sections are mainly sensitive
to the volume integral per nucleon of the poten-
tial well, namely,

Ty, /A= A" f Uldr. @.7)

The dots in Figs. 11 and 12 represent empirical
values of Juc/A, obtained from analyses of proton
scattering by '°0 and “°Ca, respectively. The the-
oretical results are represented by the full curve
in the 0, w model [Eq. (3.23)] and by the dashed
curve in the 0, w, ¢ model [Eq. (3.22)]. In the
case of '°0, the volume integral changes sign at
290 MeV in the o, w model and at 238 MeV in the

I LI AR 1 T

- 200 — o, Ww A
ME /
< ——0,w, /
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[
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FIG. 11. Comparison between calculated and empirical
values of the volume integral per nucleon of the optical-
model potential of 160, The squares (Ref. 51), triangles
(Ref. 52), and the full dot (Ref. 53) have been obtained
from analyses of proton scattering. The full line corre-
sponds to o, w exchange and the dashed line to o, w, ¢
exchange.
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FIG. 12. Comparison between calculated and empirical
values of the volume integral per nucleon of the optical-
model potential of 4%Ca. The squares (Ref. 51), triangles
(Ref. 52), crosses (Ref. 36), and dot (Ref. 36) have been
obtained from analyses of proton scattering. The full line
corresponds to o, w exchange and the dashed line to o, w,
¢ exchange.

0, w, ¢ model. In the case of “°Ca, these ener-
gies become 270 and 220 MeV, respectively.
These energies are significantly larger than the
energy at which the central value changes sign.
This is due to the fact that the Schrddinger-equi-
valent potential U,(7;€) has a wine-bottle bottom
shape at intermediate energy.

The mean square radius of the potential well is
defined by

(¥(U,) =[ f U, (r; e)d'r] [ f U, (r; e)dr] " .

4.8)

Since the shape of U,(;€) depends on energy,
(#*(U,)) is an energy-dependent quantity. Further-
more, the calculated value of {#*(U,)) becomes
singular at the energy at which the volume integral
Ju, changes sign. This is illustrated by the full
curve in Fig. 13 in the case of **Ca and of the o,
w, model. At intermediate energy, the calculated
value of the root mean square radius is very sen-
sitive to the location of the singularity. This sug-
gests that we consider the following quantity:

1

(1’2(]U3|))=[[ 'r"'U,(r;e)[dr][frlee(r;eHd'r]. .
(4.9)

It is represented by the long dashes in Fig. 13.
We note that the quantities (4.8) and (4.9) are not
well determined by the empirical analyses if one
restricts the empirical form factor of U,(r;¢) to

20 - T
~ |
\i o,w
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FIG. 13. The full curve represents the mean square ra-
dius (4.8) of the Schrodinger-equivalent potential in the
case of $%Ca and of the 0, w model; it is singular at the
energy, indicated by the dash-and-dot line, where the
volume integral changes sign. The quantity (|U,|) de-
fined by Eq. (4.9) is represented by long dashes. The em-
pirical values are taken from Refs. 51 (squares), 52 (tri-
angle), and 36 (crosses and full dot).

a Woods-Saxon shape. Nevertheless, it appears
that the calculated values are significantly smaller
than the empirical ones. This discrepancy re-
flects the fact that the calculated mean square ra-
dius of the baryonic density is too small.

One might conclude from Figs. 11 and 12 that
the 0, w model is in better agreement with exper-
iment than the o, w, ¢ model. However, this im-
pression would be ill-founded. Indeed, the main
reason why the 0, w, ¢ model yields too small
(in absolute magnitude) values of Ju,/A is that the
calculated root mean square radius of the density
and of the potential is too small. This is ex-
hibited in Fig. 14. There, we compare the em-
pirical values of the volume integral per nucleon
of the optical model of **Pb with theoretical re-
sults obtained from the following local density ap-
proximation. We take the density p(») from ex-
periment, more explicitly from Eq. (2.29) of
Ref. 54. Then, we assume that for each value of
7 the potentials Uy(») and U,(») are given by the
formulas

Uo(r)=p(r)c,?/m*, U r)=—pyr)c?/m?,
(4.10)

where the ratio p(7)/p,(») is taken the same as in
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FIG. 14. Dependence upon energy of the volume inte-
gral per nucleon of the optical-model potential of 208pp,
as calculated from the local density approximation (4.10).
The full line corresponds to the o, w model and the
dashed curve to the exchange of o, w, and ¢ mesons. The
empirical values are taken from Refs. 36 (crosses) and
35 (dot).

nuclear matter at the local density p(»), while the
constants ¢,? and c,” are taken from Egs. (3.22)
and (3.23). Figure 14 shows that the o0, w, ¢
model now yields better agreement with empirical
values below 200 MeV. At higher energies, both
the o, w and the 0, w, ¢ models yield too much
repulsion.

D. Wine-bottle bottom shape

At intermediate energy there exists a nearly
complete cancellation between the attractive and
repulsive components of the optical-model poten-
tial. In the present model, these components are
ascribed to the exchange of scalar and of vector
mesons, respectively. Hence, the delicate ba-
lance between these two contributions can best be
investigated at intermediate energy. One of the
striking features of the results described in the
preceding sections is that at intermediate energy
the calculated Schriédinger -equivalent potential has
an attractive pocket at the nuclear surface. In
the present section we investigate the origin of
this wine -bottle bottom shape and we compare
this result with experimental evidence.

The wine-bottle bottom shape is displayed in
Figs. 15 and 16, at the energies where the Schr6-
dinger-equivalent potential changes sign at the
nuclear center in the o, w and in the o, w, ¢ mod-
els. Except for energy shifts, the phenomenon is
quite similar in both models. Therefore, we only
consider the o, w model in the following discus-
sion, and we drop the upper indices ¢ and w.

2037
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FIG. 15. Schridinger-equivalent potential U,(») for %0
at the energy €((0) at which it vanishes at »=0 fm. The
full curve corresponds to the ¢, w model [€,(0)=170 MeV]
and the long dashed to the exchange of o, w, and ¢ me-
sons [€4(0) =130 MeV].

Let us write Eq. (2.13) in the following form:

Uyr; ) =T, (r; 0)+ = Uy(r) , @.11)
where the energy-independent part is
M*
U,(r;0)=[U,(r) + Uy(r)] —% . (4.12)

Here, M*(r) is the r-dependent average effective
mass defined by Eq. (3.26). In Fig. 17, we com-
pare the shape of U, (»;0) with that of U,(»). We
note in particular that the range of the repulsive
and energy-dependent component (¢/m)U,(7) of
U,(r;¢) is significantly smaller than that of U,(#; 0).
That is why U,(7;€) has an attractive surface pock-
et at the energy €,(0) at which U,[0;¢,(0)]=0.

T T T T T
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% \
z \
©  -10- \ .
> . o.w.0 \\ /]
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\ /) LOC
o,w \\\// a
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- 1 1 1 1 1
20 1 3 5
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FIG. 16. Schrodinger-equivalent potential U,(») for cq
at the energy €,(0) at which it vanishes at »=0 fm. The
full curve corresponds to the o, w model [€4(0)=163
MeV] and the long dashes to the exchange of ¢, w, and ¢
mesons [€y(0)=124 MeV].
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FIG. 17. Radial dependence of the quantity U,(r; 0) (full
curve) and of the coefficient Uy(») of €/m in Eq. (4.11)
(long dashes) in the case of *°Ca and of the o, w model.

We now discuss the origin of the fact that the
range of U,(») is smaller than that of U,(»;0). We
first recall that Figs. 7 and 8 show that U,(#) and
U,(») have very nearly the same shape for » <7,,,
with #,, =2 fm in the case of °0 and 7,, =3 fm in
the case of “°Ca. Since the wine-bottle bottom
shape is already quite pronounced for » smaller
than 7,,, we conclude that its main origin does not
lie in a shape difference between Uy(») and U (7).
Let us therefore assume that the following rela-
tion holds for all 7:

Ur) == 2T . (4.13)

Within this simplified model, Eqs. (4.11) and
(4.12) yield

U (r;€) == 3 Uyr) [M—-;)—q(-’—r—)- -3 i—] , (4.14)
M*('V) 7 Uo('r)

The energy €,(v) at which UJ*“(v;€) vanishes is
then given by
m M*(r)

Eo(’}’)z? o =313

M*®) yrev 4.16)
m

The quantity M*(r)/m as approximated by Eq.
(4.15) is represented in Fig. 18 in the case of
4Ca; it is practically indistinguishable from its
exact value given by Eq. (3.26). The ratio
M*(7)/m varies from 0.56 at the nuclear center
to unity at the nuclear tail. Accordingly, Eq.
(4.16) shows that €,(») varies from approximately
175 MeV at the nuclear center to 313 MeV at the
nuclear tail. This discussion shows that the main
origin of the longer range of U,(»;0) compared to
that of U,(#) lies in the radial dependence of the
average effective mass M*(r), which reflects the
presence of the quadratic terms on the right-
hand side of Eq. (2.13).

Humphreys® had proposed that the origin of the
wine -bottle bottom shape lies in the fact that the
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FIG. 18. Plot of the radial dependence of the average
effective mass M*(r)/m [Eq. (3.26)], as approximated by
Eq. (4.15), in the case of *%Ca and of the o, w model.

root mean square radius of Uy(7) is smaller than
that of U,(r), because the mass of the vector me-
son is larger than that of the scalar meson. Al-
though this mass difference contributes to the ef-
fect under discussion, especially above 313 MeV,
it is not its sole cause. This is exhibited in Fig.
19 which shows that the wine-bottle bottom shape
is already well-pronounced within the approxima-
tion (4.14). The difference in shape between
U,(r) and U,(») somewhat increases the size of the
pocket, especially in the tail region. The mass
difference is also responsible for the fact that the
attractive dip persists at energies higher than
313 MeV, which is the energy at which the poten-
tial would become entirely repulsive if approxi-
mation (4. 13) were correct for all values of 7.

We also note that Humphreys’ model® involved
intuitive arguments based on the Lorentz contrac-
tion of the source of scalar mesons. Humphreys

€ = 163 MeV
~ 0 —
3 o7
= N /
3 N /
0:;1: -10F \\ / .
40¢q N
- 1 | 1
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FIG. 19. Comparison between the exact value of the
Schrodinger-equivalent potential of 40ca at 163 MeV in the
g, w model (full curve) and the approximation defined by
Eqs. (4.14) and (4.15) (dashed curve).
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wrote

Ry’
U,(r)=Uy+ ;ﬂ%—e U, = (1 -%;ﬂ—z->Us(r)

+Uy7). (4.17)

We recognize the nonrelativistic limit of expres-
sion (3.9); this is quite inaccurate as we showed
in Fig. 4.

We now turn to a discussion of whether a wine-
bottle bottom shape for the optical-model potential
may be required in order to fit the experimental
data at intermediate energy. In an early paper,
Elton® analyzed the elastic scattering, polariza-
tion, and reaction cross sections for 180 MeV
protons scattered by *°Fe. He found convincing
empirical evidence that the real part of the opti-
cal-model potential has an attractive surface pock-
et; his analysis did not enable him to find the a
amount by which U,(») is repulsive in the inner re-
gion. In Fig. 20, we compare the phenomenologi-
cal potential obtained by Elton®® with a theoretical
Schrddinger-equivalent potential calculated within
the framework of the local density approximation
(4.10). The semiquantitative agreement between
Elton’s empirical potential and the calculated po-
tential is quite striking. For comparison, we
also show in Fig. 20 the optical-model potential
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FIG. 20. The dashed curve represents the empirical
potential determinéd by Elton (Ref. 55) from the analysis
of proton scattering by 5*Fe at 180 MeV. The full curve
shows the Schrodinger-equivalent potential as calculated
from the local density approximation defined by Eq.
(4.14), in the 0, w, ¢ model. The short dashes repre-
sent the optical-model potential as calculated from the
Brueckner-Hartree-Fock approximation with Reid’s hard
core nucleon-nucleon interaction (Ref. 56). The upper
part of the figure gives the assumed density p(r) (Ref.
54).

as computed from the Brueckner-Hartree-Fock
approximation based on Reid’s hard core nucleon-
nucleon interaction.®® Finally, we note that a re-
cent analysis®” of differential cross sections of
protons by “°Ca at 181 MeV appears to confirm the
existence of a wine-bottle bottom shape for the
average potential. )

An interesting consequence of the wine-bottle
bottom shape is that there exists an energy do-
main in which the mean square radius of the po-
tential is negative. This occurs because in the
numerator of the defining expression (4. 8) the
surface region is weighed more heavily than in
the denominator. This change of the sign of
<"VZ(U,)> could be detected empirically only if the
possibility that wine-bottle bottom shapes can
occur were included in the phenomenological
analyses. In practice, one chooses a priori
U,(r;€) to be a Woods-Saxon potential, in which
case (#*(U,)) is always positive. However, if the
rendering of the data really requires a wine-
bottle bottom shape for U,(7;e€), the quality of the
standard analyses should become poorer at inter-
mediate energy, or else the energy dependence
of the parameters should show unexpected changes.
Some indications exist that this is happening in-
deed. For instance, in a recent analysis of new
data of proton elastic scattering by Pb, Schwandt
and collatorators®® found that the root mean square
radius of the phenomenological potential drops by
as much as ten per cent between 200 and 400 MeV.

E. Spin-orbit potential

One of the merits of the relativistic Hartree
model is that it automatically yields a strong
spin-orbit potential.®10,16,19,21,26,30,32,59-61 mpig
potential is given by Eq. (2.14), which we write
in the form

Um("'; 6) = —’Usf(o; 6)(mr)-2d'%;[§((€_’3'] ) (4' 18)

with

fr;eo=In{[2m +e+ U (r) -U,(n)]2m + e},
(4.19)

and (m,)?=2 fm®, v,=10.5 MeV.

The quantity f(r;€) does not have the same radial
dependence as U,(r;e). We showed in Sec. IVD
that this is partly due to the presence of the quad-
ratic term (2m)™ [U2(v) - U,2(#)] on the right-
hand side of Eq. (2.13). In other words, the
range of U,(r;€) is significantly larger than that of
f(r;€), even if U,(¥) and U,(») have the same radial
form factor. This geometrical feature appears to
have been overlooked by Arnold and Clark,*® who
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FIG. 21. The full curve represents the spin-orbit po-
tential Ugy(7; €) as calculated from Eq. (2.14) in the 0, ®
model, for 40Ca at €=50 MeV. The long dashes repre-
sent expression (4.18). The short dashes show the aver-
age of the empirical spin-orbit potentials found by van
Oers (Ref. 47).

ascribe the difference
8 =((U,)) —(r*(f)

fully to the mass difference between scalar and
vector mesons. Although this mass difference
contributes to 6%, it does not play a more impor -
tant role than the quadratic term. The latter sig-
nificantly differs from zero because of the dif-
ference between the stvengths g,%>/m,? and g 2/m >
The full curve in Fig. 21 represents the value
of U, (r;€) at e=50 MeV in the case of “°Ca and of
the 0, w model. The dashed curve shows the quan-

tity

(4.20)

) ali88)
T Uso\m,c) dr LU,0)]’
where the strength V  has been chosen in such a
way that the minimum of (4.21) has the same depth
as that of U, (). This yields V,,=5.7 MeV, which
is in good agreement with the spin-orbit strength
V., = 6.2 MeV of the empirical potential of Bec-
chetti and Greenlees.® Fits of the polarization
data for proton scattering have been performed by
van Oers® for “°Ca, at a number of energies.

The short dashes in Fig. 21 represent an average
of these empirical potentials. We note the good
agreement with the calculated value. One can also
compare calculated and empirical values of the
volume integral

(4.21)

Jso/A”a:A‘”“f% U, (r; . (4.22)
This is done in Fig. 22. We note that the empiri-
cal values of Nadasen ef al.*® seem to indicate a

sizable decrease of ]Jsof when ¢ increases. In the
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FIG. 22. Comparison between the volume integral
(4.22) of the spin-orbit potential of 40ca as calculated
from the o, w model (full curve) with the average of the
empirical values determined by van Oers (Ref. 47) (short
dashes). The full dots represent the empirical values of
van Oers. The open dots correspond to the empirical
values of Nadasen et al. (Ref. 36).

relativistic Hartree approximation, the decrease
of lea' with increasing energy is very weak. The
same holds true for the volume integral of the
spin-orbit potentials calculated in the framework
of the Brueckner -Hartree-Fock approximation®
as well as in the framework of the multiple scat-
tering expansion.® Hence, a major problem will
arise if the existence of a significant decrease of
'Jsol with increasing € is confirmed by more de -
tailed analyses of experimental data.

V. SUMMARY

The optical-model potential at positive energy
has been investigated in the framework of the rel-
ativistic Hartree approximation. No parameter
has been adjusted in our calculation. We adopted
the same meson masses and coupling constants
as Brockmann®2 in his recent study of nuclear
ground states. In view of this, the comparison
between the empirical values of the optical-model
potential and the calculated potential is quite sat-
isfactory. In order to perform this comparison,
we constructed the Schriddinger-equivalent poten-
tial of the relativistic Hartree potential. Good
agreement is obtained at low and at intermediate
energy, for both the central and the spin-orbit
components of the optical-model potential. The
relationship between the relativistic Hartree poten-
tial and the Schrédinger-equivalent potential, and
also between the present work and that of previous
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authors,®”7+°:13 has been illustrated in the simple
case of infinite nuclear matter, where many rela-
tions take a transparent form.

One of the interesting features of the calculated
Schrddinger-equivalent potential is that it has an
attractive pocket at the nuclear surface. This
wine -bottle bottom shape in particular is responsi-
ble for the fact that the volume integral of the po-
tential changes sign at an energy which is much
higher than the one at which the potential changes

sign at the nuclear center. Another conséquence
is that the root mean square radius displays a sig-
nificant energy dependence at intermediate energy.
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