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A mean-field theory is obtained for the spontaneous decay of unstable nuclei by applying the stationary-phase

approximation to a functional integral expression for Tr(H —E) . The method is applied first to the lifetime of a

metastable state in one-dimensional quantum mechanics and subsequently generalized to many-fermion

systems. Solutions to the resulting nonlinear self-consistent field equations are presented for a self-bound,

saturating many-body system of fermions in one spatial dimension.

NUCLEAR REACTIONS, FISSION Derivation of dynamical mean-field equa-
tions for spontaneous fission, using imaginary time stationary-phase approxi-
mation to .a functional integral expression for Tr(H —E) . Application to a

many-fermion model in one spatial dimension.

I. INTRODUCTION

The objective of this work is to obtain a micro-
scopic understanding of tunneling and spontaneous
decay in terms of a quantum mean field theory
comparable to that which has been achieved for nu-
clear ground states, collective and single-particle
excited states, and the nuclear response function.
Existing theories of fission, such as the generator
coordinate theory' or the adiabatic time-dependent
Hartree-Foek approximation' have the serious con-
ceptual deficiency of requiring ab initio selection
of speeifie degrees of freedom to be used as col-
lective coordinates. Less microscopic formula-
tions require, in addition, prescriptions for in-
ertial parameters to be associated with the collec-
tive variables. In contrast, mean-field theories
of deformed intrinsic states or nuclear collective
motion allo~ all relevant degrees of freedom to
enter self-consistently into the calculation of quan-
tum observablgs without any artificial imposition
of coQective variables. Thus, we believe it is ex-
tremely desirable to develop a mean-field theory
of tunneling in which the shape degrees of freedom
and dynamics are specified solely in terms of the
nuclear interaction.

The variational derivation of the time-dependent
Hartree-Fock (TDHF) initial-value problem yields
no insight into how the TDHF equations can be used
to describe the spontaneous fission of a nucleus.
Naive TDHF evolution starting from a static HF
wave function is clearly inadequate, since the one-
body density matrix remains time-independent.
Moreover, the static HF solution for a fissile nu-
cleus such as "'U is perfectly stable against small
oscillations, although the state has higher energy
than the energies of the fission fragments. The

situation is typical of the semiclassical approxi-
mation for tunneling decay and the decisive step
in making the description of fission possible is to
allow for the mean-field propagation in imaginary
time, The solutions thus obtained are similar to
instantons in relativistic field theories. ' Using a
functional integral representation for the nuclear
time evolution operator, 4 we are able to extend
these ideas to the description of tunneling in nu-
clear many-fermion problems.

The starting point for our formal development,
as in our previous treatment of large amplitude
collective motion, is a functional integral repre-
sentation for

Tr(E —H+i&) '= -i f dTe'' "' Tre '"".
(~.~)

Using the stationary-phase approximatiop, we in-
vestigate the mean-field theory arising from the
complex stationary points in the time integral ap-
pearing in Etl. (l).

Whereas it is possible to obtain precisely the
same mean-field equations and penetrability
through arguments analogous to Coleman's treat-
ment' of the decay of the false vacuum' by evaluat-
ing the long time behavior of e 0', we believe the
alternative derivation presented here offers spe-
cific advantages. Stationary solutions with com-
plex time arise completely naturally through the
application of the saddle-point method to the inte-
gral in Eq. (l). Furthermore, we avoid certain
technical difficulties associated with evaluation of
the determinant of the second functional derivative
of the action in more than one dimension.

Thus, in Sec. II, we wiQ show how to derive the
decay rate in one-dimensional quantum mechanics
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from summing a sequence of stationary contribu-
tions to Eil. (1) at well-separated points in the
complex T plane. Subsequently, the method will
be generalized to the many-body problem in Sec.
III to determine a decay rate which is the sum
over partial widths for decay into'open breakup
channels. As in the case of the static Hartree
problem, to which the resulting theory has great
structural similarity, little can be proven math-
ematically about the existence and properties of
solutions to the coupled nonlinear integrodifferen-
tial equations derived in Sec. III. Therefore, in
Sec. IV the theory is applied to a nontrivial model
many-body system embodying many of the essen-
tial features of finite nuclei. Fermions with one
spatial degree of freedom interacting through at-
tractive short-range two-body forces are made to
saturate by the introduction of a Skyrme-like re-
pulsive three-body force, and to fission by includ-
ing a long-range repulsive interaction analogous
to the Coulomb interaction in three dimensions.
Two-dimensional numerical tunneling solutions in
time, and one spatial dimension are presented
which explicitly display the structure assumed in
the general treatment of Sec. III.

Finally, our conclusions, remaining open prob-
lems, and the prospects for application to nuclear
fission in three spatial dimensions are discussed
in the last section.

II. TUNNELING IN ONE DEGREE OF FREEDOM

The widths of unstable quantum mechanical
states are conveniently determined by the complex
poles of the energy-dependent propagator (H —E) '.
We start in this section by considering an example
of a problem with one degree of freedom q which
is described by the Hamiltonian

H(p, q) = + V(q) (2.1)

with a potential of the form shown by the solid
line in Fig. 1. This problem obviously has un-
stable states in the region of energies E,- E- E~
and we want to show how the stationary-phase ap-
proximation (SPA) to a functional integral which
describes the motion should be applied in order to
derive the widths of these states. Although the
results of this simple example will not be new and
could be obtained by other methods, the treatment
which we present has the merit of being appropri-
ate for a generalization to the many-nucleon case
discussed in the next section.

For the problem defined by Eil. (2.1}, we con-
sider

v(q)

Eb—

where E has a small positive imaginary part and
Tr exp(-iHT) is calculated in coordinate repre-
sentation. Using Feynman functional integral rep-
resentation for the propagator„' we write

( q
~

H
iHT

~
q)

-I Dq(t)eiSI:a&i }I (2.3)

where S[q(t)] is the classical action calculated
along an arbitrary trajectory q(t) which satisfies
the boundary conditions

q(o) = q(~) = q. (2.4)

The integral in (2.3) is over all such q(f), and

Dq(t) is a properly defined measure for this func-
tional integration. '

The SPA for the integral in (2.3) results in

(q ~H
iHT

~q) i d}i-eScilq (2.5)

where q„(t) is a solution of the classical eiluation

69= 0, (2.8)

subject to the boundary conditions (2.4). The
amplitude A in (2.5) is associated with the small
iluadratic corrections around q„(t}.' We will not
need its explicit expression.

Using Eil. (2.5) in Eq. (2.2), we again evalute the
remaining integrals over q and T by SPA. The
action S[q„(t)] depends on q via the end points of
the classical trajectory q„, Eci. (2.4). Therefore
the SPA condition requires

which together with (2.4) implies that only periodic
classical trajectories satisfying

q (o) = q„(~)

FIG. 1. Schematic diagram of potential having quasi-
stable states. The relative minimum of the potential oc-
curs at energy Eo and coordinate qo, and the intercepts of
an energy E &SO are denoted by qg, q2, and q3.

Tr(H —H} '= -}f dqe' f ( } dq}qq}e,
0

(2.2}

and
(2.8)
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contribute to Tr exp(-iHT) in the SPA limit.
For the integral over T in (2.2), the SPA condi-

tion is

(2.9)

ent. If one assumes, for simplicity, a large nor-
malization box with infinite repulsive potential at
q= L, classically allowed periodic solutions exist
in region III, q, &q&L, completely analogous to
those in region I, with action

Thus, the period of the classical trajectory should
be such that the corresponding classical energy is
equal to the value of E which appears in the left
hand side of Eq. (2.2). The contribution to
Tr(H, E) '-of a given solution T„of the condition
(2.9) consists of a phase factor e'~(~) with

L

W,(E)= 2 (2m[E —V(q)]P 'dq
03

and period

T,(E)= 2 Jl dq.
2[E-«q)]

(2.15)

(2.16)

W(E) = ET„+S„(T„) (2.10)

(2.11)

and a multiplicative amplitude similar to A. in
(2.5). The SPA result is obtained by the summa-
tion over all solutions T„of (2.9). In the energy
range E, & E& E, one possible class of such solu-
tions is generated by a classical trajectory trav-
ersing the classically allowed region I, q, ~ q ~ q2,
shown in Fig. 1. The period T„of this trajectory
and. the corresponding action W, are obviously giv-
en by integer multiples of the basic period

T,(E)=2 Jl'"I
I

'
dq

2

(2.1V)

is imaginary. The most general classical solution
is obtained if one considers all possible trajec-
tories in the two allowed and one forbidden re-
gions. The stationary points in the complex T
plane now constitute a lattice

In addition, a completely different class of classi-
cal solutions exists which correspond to traversing
the classically forbidden region II, q2~ q & q3.
Since in this region E ~ V(q), the corresponding
period

and the basic action T,„,= uT, (E)+nT,(E) + IT,(E), (2.18)

~ jS'y (S)
e jklV~ (E)

e~w~ (s) (2.18}

with poles at energies defined by the quantization
condition

)q(E)-=2f [qm[E —q(q)]]'~'dq

= 2Nm, N —integer. (2.14)

This result differs from the familiar %KB quan-
tization condition only because our neglect thus
far of quadratic corrections has omitted the turn-
ing point phases required to obtain the proper fac-
tor 2(N+ ,')v Precis—ely. this type of SPA summa-
tion [Eq. (2.13)] was used in Ref. 5 to obtain quan-
tized states of large amplitude nuclear collective
motion.

In a potential with unstable bound states, two
additional classes of classical solutions are pres-

2((E)= 2 J [2m[E —q(q)]]"'dq. (2.(2)

For a potential with stable bound states, denoted
by the dashed line in Fig. 1, this is the only possi-
ble class of solutions. In this case, the SPA ap-
proximation to the time integral in Eq. (2.2} thus
yields an infinite sequence of stationary points
along the real axis. Summation over all these
stationary points yields the geometric series

where k, &, and l are arbitrary positive integers,
and the corresponding stationary phase contribu-
tions is

exp [ik W,(E) —nW, (E) + il W,(E)],
where

(2.19)

qq(E) = 2 f [2m[V(q) .- ]] Edq. I(2 22)
02

Retaining the complex solutions of Eq. (2.9) is
consistent with the general saddle point method in
which all the stationary points of the integrand
must be considered irrespective of whether or not
they lie on the integration contour. The contour
should then be deformed to pass through all the
points in the direction of the steepest descent,
and if these are far enough apart, the SPA result
is given by the sum of the contributions from aQ
these stationary points. Although a mathematical-
ly precise treatment of the SPA is beyond the
scope of the present work, a relevant discussion
of possible complications is found in Ref. 8.

To emphasize the essential physics of the decay
width, let us first sum over the classical trajec-
tories which involve aQ combinations of cycles in

regions I and II. The trace over q is then approx-
imated by the sum of all trajectories which begin
and end in region I plus the sum of all those be-
ginning and ending in region II. The first sum is
conveneiently performed by noting that any number
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of cycles in region II may be attched to each cycle
in region I, with the result

e'~&~ g e " ~
~

= [1 —e'~&(l —e ~~) '] ' —1
Q 1 k n=o )

~ jw~

] g jwg g wp
(2.21)

We have omitted the quadratic correction factors
analogous to the amplitude A in Eq. (2.5) and will
discuss their role at the end of this section.

The corresponding sum for cycles beginning and
ending in region II is obtained by interchanging iW,
and -W„so that the final result is

&&w~+ &-w~

~]w, ~-w, (2.22)

which has poles at energies which satisfy

~w~ (s) &-w~(z) (2.23)

so that

where

N 22 N (2.25)

sw&(Ez)» &~~& &c&(Ez)
N

(2.26)

and we have used Eqs. (2.11) and (2.12) to rewrite
sW, /sE in terms of the frequency &o„(E~) of the
allowed classical motion at E= E„. This result of
summing all cycles involving regions I and II thus
reproduces the familiar WKB expression for the
width of an unstable state in the limit of large W„
but with w instead of 2m in the denominator. This
"missing" factor of —,

' is discussed in detail in Ref.
9 and the discussion is presumably also appli. cable
in our case.

Although it is intuitively evident that trajectories
in regions I and II should dominate the decay rate,
it is still desirable to formally demonstrate that
periodic solutions in region III do not contribute
in the present order of appi oximation. Indeed,
the sum over trajectories in regions I and II is
conceptually incomplete, since we have not yet

Assuming that e w~'~' is small, we m'ay solve Eq.
(2.23) iteratively. In zeroth approximation, we
neglect e ~~'~&, in which case Eq. (2.23) repro-
duces the same WEB energies inside the well given
by Eq. (2.14). Proceeding to the next iteration of
Eq. (2.23), we denote by E„the solution of Eq.
(2.14) with given ~, set E= E„+aE„ in the first
term of Eq. (2.23) and E=E„in the smaller second
term. Expanding in powers of hEN, one finds

expi W, (EN)+ aE„+e~» =1 (2;24)
8 W&.(Ez)

8E

had to specify whether we are working in a very
small box, which would necessarily have well-
separated real eigenvalues, or dealing with the
physically interesting case of the limit of an arbi-
trarily large normalization box, for which the den-
sity of states approaches a continuum. A particu-
larly convenient way of demonstrating that periodic
trajectories in region III contribute negligibly to
the physical decay rate is to calculate the smoothed
density of states in an arbitrarily large normaliza-
tion box, and this derivation is presented in Ap-
pendix A.

In conclusion, we observe that the decay width
of an unstable state arises in the SPA as a result
of the interference of the contributions from clas-
sical trajectories in classically allowed and for-
bidden regions I and II. The latter trajectories
formally represent solutions of the classical equa-
tions in imaginary time [Eq. (2.1'I)j. The substi-
tution t= iy in the classical equation

d'q 1 ey
dt m 8q

is equivalent to reversing the sign of the potential
V (see Fig. 1}, thereby making the motion possible
in the region which was classically inaccessible
in the original problem.

It is important to emphasize that in the present
context, the concept of imaginary time is a direct
consequence of the stationary-phase evaluation of
the time integral in Eq. (2.2) and effectively ac-
counts for the quantum superposition of different
real time intervals which contribute to the propa-
gation with a given energy E in (2.2}. It is also
seen that when treated carefully, the SPA is rich
enough to retain the part of the interference which
approximately reproduces the correct resonance
structure of Tr(H —E) '.

It is obvious that the value E, denoted in Fig. 1
satisfies the quantization condition (2.14) with N
= 0. In this case, &o„(E,) represents the frequency
of the harmonic motion in the infinitesimal vicinity
of q= qo. The corresponding trajectory in the for-
bidden region has a part near q, where the motion
is infinitely slow and the corresponding period
T,(E,) is infinitely large Following .Coleman,
we call this trajectory a bounce.

Finally, we comment on the quadratic correc-
tion factors omitted in (2.13). It is known" that
their absolute values depend on the initial and final
momenta p(0) and p(T) of a corresponding classical
trajectory, analogous to the similar factors p '~'
in a WKB wave function. Since the trajectories in-
cluded in (2.13) all have the same p(0) = p(T), the
absolute values of the quadratic corrections do not
effect the poles of (2.13). Their phases are re-
lated to the turning points along a given trajectory
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and will modify Eg. (2.13). Each of the turning
points in the classically allowed region contributes
v/2 so that W,(E) is replaced by W,(E)+v. The
right hand side of (2.14) will accordingly be
changed to (2M+ 1}m. For the lowest state in the
well, for instance, this will introduce the zero-
point motion correction to the bottom of the well
energy E,.

m. -MEAN-FIELD EQUATIONS FOR SPONTANEOUS
FISSION

As was presented in Ref. 4, the time-dependent
mean-field approximation to the nuclear many-
body evolution operator U(T) = e '"r is conveniently
discussed in the framework of the stationary-phase
evaluation of a functional integral representing
U(T). Studying the poles of the energy transform
of U(T), it was shown in Ref. 5 how the SPA
leads to periodic time-dependent mean-field solu-
tions describing nuclear bound states. The par-
tic~»ar case of a static solution reduces to the
usual static HF approximation. In the situation
where a nucleus can undergo spontaneous fission,
the energetics of the problem obviously are such
that along with the static HF solution describing
the ground state of the fissioning nucleus, there
exist time-dependent mean-field solutions with
the same energy, corresponding to the asymptotic
motion of fission fragments in all the open decay
channels. These are simply the ground or excited
states of the fragments boosted with the appropri-
ate momentum to match the energy of the fission-
ing nucleus. .

Since, as was discussed in the Introduction, the
ordinary TDHF equations cannot, in principle, de-
scribe the tunneling process which connects these.
two solutions, we will now extend the SPA treat-
ment of tunne1ing in one-dimensional quantum me-
chanics to the many-body problem by considering
the mean-field approximation to Tre '~~ for a gen-
eral complex value of T. The counterpart of
closed periodic classical trajectories will be per-
iodic determinantal solutions to TDHF equations
in real or imaginary time, so that the single de-
gree of freedom q is replaced by the infinite num-
ber of degrees of freedom in the one-body density
matrix of Slater determinants. Figure 1 is now

replaced by a complicated multidimensional sur-
face of classically allowed and forbidden regions,
and we wish to explore all the stationary deter-
minantal trajectories in this surface relevant to
spontaneous decay of an unstable nucleus.

One immediate complication is the problem of
connecting periodic solutions in allowed and for-
bidden regions. In Fig. 1, it is obvious that a tra-
jectory which makes one cycle in region I followed

(3.2)

where T„denotes the ordering with respect to the
parameter q,

(x ~) e ir'r 6/x) e- gJc'Trl'
Z'= A ——V(O),

A.
(3.3)

K is the kinetic energy, V is the two-body interac-
tion (taken for simplicity, spin-isospin indepen-
dent), and A is the number of nucleons. In (3.2),
a local form of the density operator was chosen
to represent U(T). As was discussed in Ref. 4,
this will eventually lead to the Hartree rather than
Hartree-Fack expressions for the mean field in the
subsequent stationary-phase approximations. The
way to obtain the full HF treatment was outlined in
Ref. 5 (cf. also Ref. 11}.We will not repeat it here

by a cycle in region II can be built up from a fun-
damental periodic solution in region I and a per-
iodic solution in region II. However, in general,
for the many-body problem, there is no assurance
that a periodic determinantal wave function in a
classically allowed region exactly equals that in a
classically forbidden region at the turning point.
Thus, the simplification in one dimension of sum-
ming a geometric series to build all trajectories
out of a few fundamental solutions is, in general,
replaced by the formidable task of constructing
each multicycle traj ectory independently. The
case of spontaneous decay from an HF stationary
state, however, is special in that a certain class
of imaginary time tunneling solutions in the count-
erpart of region II do, in fact, join to the quasi-
stable solution in region I. Thus, we will assume
for the moment that such joining is possible and
derive the equations of motion and corresponding
contributions to the action for such periodic tra-
jectories. It is, of course, crucial to the present
development that we do not need to include con-
tributions from the counterpart of region DI,
since at the outer turning point we are unable to
join periodic solutions.

Applying the method of Ref. 4, we find it useful
to start by defining a dimensionless parameter g
such that

(3.1)

where. t is the time variable and a symmetric in-
terval is chosen for later convenience. The inter-
action representation of U(T)= e '"r is expressed
via density operators p(x) as

t 1/2
U(T) = T„exp iT J dq-

1/2

x CxCx'" x, g Vx-x' p x', g
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but for the sake of notational clarity will proceed
on the basis of (3.2) a,nd the Hartree approxima-
tion.

As in Ref. 4, we use the Hubbard-Stratonovich
transformation to linearize the exponential (3.2)
and obtain

(ri) eia«(r)+1/2)y ((Ti)

The functions u«(q) satisfy

A.(n, T)u,(n) = o(-«u«(n),

subject to the boundary condition

(3.11)

(3.12a)

U(T)= /Dec" &"" "U(T) (3.4) where we define

(3.12b)

where

U(T}=T e 'T( v rU
fy

For notational convenience, we define

(3.5)
and

8
A.(q, T) =i —, —TI.(q) (3.13a)

1/2
(o, Vo) = dq dx dx'(T(x, q) V(x -x')o'(x', q)

-a/2

(3.6)

and similarly for (p, Vo).
Using E(l. (3.4), one obtains

TrU(T)= JDee'' r"" "TrU(T).
fy

(3.'l)

To construct TrU, (T), we use the same procedure
as in Ref. 5.

Consider a single particle equation

—,V(O)+ V(x-x')a(x', q)dx'~ y, =o9 P8$2sl ).
(3.8a)

2

U(r)) = ——,
' T(0)+ f T(e -e')e(e', U)ee'.

(3.13b)

In this representation, the a~ are the eigenvalues
of A, in the space defined by (3.12b).

The functional derivative 6o.«/6o in (3.10) is sim-
ply evaluated using perturbation theory for the
change of a„when o is changed to o+ 5o. In Ref. 5
this was done in the case of real T, which corre-
sponded to a Hermitian A,. Allowing for general
complex T, one should deal with the perturbation
of a non-Hermitian A,. In the standard way, we
introduce a biorthogonal set (u«, v«), where u„are
solutions of (3.12) and v«are determined by the
adjoint operator

with boundary conditions

P„(x,q= —,')=e ' «P,(x, g= ——,'). {3.8b)

A.'(n, T)v,(n) = P«v«(n)-,

v„(-,') = v„(--,'). (3.14)

Using the basis of states formed by the solutions
of (3.8) with a given o(x, q) one obtains

Obviously, for a general complex T and o.

(3.15)

TrU, = Q exp iQ n-«(x«Io],
I, ngj k=&

where

(3.9a)
and

(3.16}

n«=0 or 1, g n«=A. (3.9b) Also, we assume the normalization

The expression (3.9) holds, since Slater deter-
minants built of single particle wave functions sat-
isfying (3.8) are eigenfunctions of U(T). The sum
in (3.9} is over all possible sets of occupation
numbers {n«}satisfying (3.9b). Notice that since
T in (3.8) is allowed to be complex, the eigenval-
ues n~ are, in general, not real.

The stationary-phase condition for the integral
over o in (3.7} applied to each term in the sum
(3.9a) separately reads

T V x-x' o' x', g dx'= ~~
-- . 3.10

«,1 "60 xiTI

To calculate the right hand side of this expres-
sion, we write (3.8) in eigenvalue form by defining

4/2
dg dxvf(x, q)u«(x, rf) = 1,

1/2

and notice that fdx v«~u« is independent of g.
From (3.12) one finds

(3.1'f)

60g 5

( } 6 ( } d7J dx v«AU(g i T)u«

6A,()Ti') = -TV(x -x')6(q —q'}.6o' x, ri
(3.19)

The variations of v~ and u~ do not contribute be-

= T V x-x' v~ x', g u~x', g dx',

(3.18)

where we have used
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cause of (3.1V).
Inserting (3.18) in the SPA condition (3.10), one

obtains

o,(x, T})= Q v»~(x, Tt}u»(x, Tt) . (3.20}

For notational simplicity, we have defined the oc-
cupation numbers such that n~= l for 1 & 0 & A, and
zero otherwise. The self-consistency condition
(3.20) together with Eqs. (3.12) and (3.14) define
the general mean field equations for the time
evolution with complex values of T.

It is easily verified that when T= T, is real, a~
= a~, N~= z~, and o, acquires-the familiar Hartree
form. In the case of a pure imaginary T= -iT„
o»= -n»~ is also imaginary, v»~(T}) = u»(-q), and the
mean field equations become

Q p2—+ r, ——,'V(0)
eq ' 2m

+ V x-x' oo x', q dx' . ~=0, 3.21a

o,(x, Ti) =g y,(x, T})y„(x,-q), (3.21b}

with boundary conditions

y,(x, q= —,') = e- »y„(x, q= --,'),
where the real parameter X~ is defined

(3.22a}

(s.aab)Xq= i 0~

and we have used )3I)» rather than u» of (3.11).
As was discussed in the preceding section, the

SPA for the imaginary-time propagation de-
scribes the process of tunneling and leads to the
complex poles in the trace of (H-E) '. We now

show that the properties of Eqs. (3.21) suggest
that this is also true in the present mean-field
approximation for the many-nucleon problem.

We start by noticing that (3.21) represent a sys-
tem of 2A equations for )t)»(q) and @»( Ti) analo--
gous to )t)»(t) and )t)»*(t) in the real time TDHF.
Continuing the analogy, it is not difficult to show

that )t)»(T}) and )t)»(-Tt) can be regarded as canoni-
cally conjugate variables and that Eqs. (3.21) are
classical Hamiltonian equations with the Hamil-
tonian functional

A

xx(V,) q) y,(q)) Q f,dx y,(x=, x)xy,(x xI)-,
A

+- g d dx'y, (x, n)y, (x, n)-
2

x y(x -x')y, (x', -q)

x y,(x', n), (3-23)

Q2
——,

' V(0).
2m

(3.24)

Clearly, since X does not depend explicitly on g,
it is conserved by (3.21}, which can also be veri-
fied by explicit evaluation of d3C/dq.

Equations (3.21) possess other conserved quan-
tities similar to ordinary TDHF, such as particle
number

A

d y,(x, q)y, (x, -q)=~. (3.28)

By the usual substitution [Eq. (3.11}]with in»= X»,

Eqs. (3.21) are transformed into the eigenvalue
form defined in the space of functions on the inter-
val ——,'- Tt - —,

' with "periodic" conditions (3.12b).
Since o(q) is symmetric, a(Tt) = c(-q), the opera-
tor on the left hand side of (3.12a) is Hermitian,
provided the inner product is defined as

Z/.2

J dq dx v(x, -T})u(x, Tt) (3.26)

for any two u(x, Tt) and v(x, T}) satisfying Eq. (3.12b).
The set (3.21}has particular solutions closely

related to the conventional HF stationary states.
and the random-phase approximation (RPA) exci-
tations built upon these states. For all solutions

e» and )I)» of the static HF equations,

y»(x, Tt) = e '»T»"y»(x) (3.2V)

satisfies Eq. (3.21). Furthermore, if XI»I, I'I»),
and ~„are solutions of the standard RPA equa-
tions, then

( »rtx) = e '»T»")1)»(x)

(X(v)e v)vT»»+ -lx(v)e)vvT»»))t) (x)e-s»T»»
jk t

g =A+1

(3.28)

satisfy Eq. (3.21) for infinitesimal amplitudes X
and F. It follows then that if all the eigenfrequen-
cies &„of the RPA equations are real, in which
case the static HF solution is stable with respect
to the TDHF evolution in real time, the corre-
sponding solution to the imaginary time mean-fieLd
Eqs. (3.21) is unstable, since Eq. (3.28) does not
contain i multiplying ~„.

Thus, the mean field approximation to the many-
body problem is analogous in many respects to the
simple one-dimensional problem of Sec. II. In Fig.
1 the classical solution which corresponds to a
static HF solution is q(t) = qo. This solution is
stable with respect to the real time classical equa-
tions, and the frequency of smaLL oscillations in
the vicinity of q, corresponds to the real RPA fre-
quencies in linearized TDHF. The classical equa-
tions in imaginary time formally describe a mo-
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tion in the potential of Fig. 1 with the reversed
sign. In such a potential, q(t}= q, is still a static
solution; however, this solution is unstable and
actually should be considered as a starting point
of a trajectory which travels inside the barrier,
bounces from its outer wall, and is reflected back
to q,. Because of the infinitely small velocity near

gp the time period of such a bounce will be infin-
itely long. However, the action fp(dq/dt)dt ac-
cumulated during the bounce will be finite and pro-
vides the information on the quantum-mechanical
penetrability through the barrier. The energy of
the bounce is obviously equal to the energy of the
static solution qp.

Returning to Eqs. (3.21}, we observe that also
in this case, a solution which has a nontrivial q
dependence with finite derivatives 8$„/8v, y= T,ri
tends to static solutions (3.27) when T,-~. The
boundary conditions. (3.22) suggest that this hap-
pens at both g- ——,

' and g-+ -,' and that X,= &,T2.
Since the energy [Eq. (3.23)] of this solution is
conserved, it is equal to E„"F""in analogy with the
simple problem of Sec. II.

The conjecture made above about the behavior
of the solutions of Eqs. (3.21} in the T,-~ limit,
'though far: from being rigorously proved here,
seems to reflect a general property of classical
equations in the presence of unstable equilibrium
points. It pertains to all imaginary time (Euclid-
ian) solutions to classi. cal field equations dis-
cussed recently in the literature. ' The crucial re-
quirement is, of course, on finite values of the
derivatives 8$„/8& or, equivalently, the finite
action corresponding to the bounce solution [cf.
Eq. (3.31)]. In the next section we present an ex-
plicit numerical example of a bounce solution in
the context of a nontrivial many-body problem.
Further discussion of the properties of Eqs. (3.21)
can be found in Appendix B.

From Eqs. (3.7) and (3.9a} it follows that the
action associated with a bounce solution is

A

S,=-' '(~„V~,)+i+&„[e,], (3.29)

which is obviously finite since u~(rJ) approaches
the static HF solution as g-+-,'. One also ob-
serves that since u„(-&I) and N„(&7) are canonically
conjugate, the expression (3.31) is of the form

fpqdt.
Thus far, our discussion of spontaneous decay

has assumed only one bounce solution, which
evolves from the HF ground state to the classically
allowed region for the evolution of separated frag-
ments. For a nucleus with many open decay chan-
nels, there should, in general, exist distinct tun-
neling solutions for symmetric fission, asym-
metric fission, nucleon emission, alpha decay,
as well as more complicated many-body breakup.
Dismissing, for the moment, problems associated
with c..m. motion in mean field theories, which
will complicate light particle emission, these dis-
tinct tunnelling solutions should be mell-separated
and thus summed independently in the SPA. De-
noting by W2'~ the self-consistent bounce solutions
to Eqs. (3.21} evolving from the stationary HF
point to the ath distinct fragment configuration,
the sum of all periodic trajectories beginning in
region I and comprised of any combination of cy-
cles in regions I and II yields the contribution to
the trace:

The sum over all periodic trajectories beginning
either in region I or region II is then

(3.33)

If analogous bounce solutions could be joined to the
same periodic TDHF solutions infinitesimally
above the static HF energy, then by the arguments
in Sec. II, one would obtain the total width as a
sum of partial escape widths

Q F(a&

with 00 and X„defined in Eqs. (3.21). Since the en-
ergy of the bounce is equal to H„"F~"c, we can easily
find the reduced action, Eq. (2.20), corresponding
to the W2 in Sec. II.

where

rrr j.
F(((& 2( ""

(
-&&' (s&

(( 8E ](
(3.34)

zS"2- -zEHF "T2+S2

(3.30)

(3.31)

X/2
= -iT2 Xdg+ S2.

1/2

Using the expression (3.22) for X and Eqs. (3.21)
one obtains, in terms of N~,

A

((',=I, f dn Jt u,(-q) 8' ch,

This result has the very intuitive feature of having
each bounce solution determine the penetrability
for the corresponding partial width, and one might
well hope to understand microscopically the com-
petition between symmetric and asymmetric fis-
sion, for example, as one progresses through a
sequence of isotopes.

The action (3.31) calculated on a bounce solution
defines the penetrability factor exp(-W,"&) in the
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general expression (3.34) for the partial width.
Although the penetrability itself only requires
joining solutions at the stationary HF energy,
which occurs automatically for our bounce solu-
tions, the derivation of the pre-multiplying factor
requires joining solutions in the classically al-
lowed and forbidden regions infinitesimally above
the static HF energy as well. For real values of
T, solutions to Egs. (3.12}, (3.14), and (3.20}were
discussed in Ref. 5. When the deviation from
E"~" is small, they are the regular RPA modes
obtained from the linearization of the TDHF equa-
tions. The corresponding solutions for the imagin&
ary T are determined by linearizing Eqs. (3.21}
around the bounce solution discussed above. In or-
der to construct a. periodic solution for a general
complex T it is necessary to understand how these
pure real and pure imaginary solutions should be
matched. Although the discussion in Appendix B
suggests that the matching should occur at the gen-
eralized turning point of Eqs. (3.21), we have not

yet been above to find the correct matching pro-
cedure. Because of this it was not possible to de-
rive the expression for the preexponential factor
in Eg. (3.34}, and to this extent the present dis-
cussion is limited to the determination of the pene-
trabilities expt-W,"'(E)].

of the Coulomb force to render it energeticaQy
favorable for a massive bound one-dimensional
system to break up into two lighter daughters.

The simplest effective interaction applicable to
a mean-field theory of real nuclei embodying these
features is the modified Skyrme interaction" of
the form used in Ref. 13. The basic attraction is
provided by a short-range two-body force, the di-
rect Coulomb force is included, and saturation is
effected by means of a zero-range repulsive
three-body force. The exact orthogonality of a
HF theory and simplicity of a purely Hartree po-
tential are simultaneously achieved by multiplying
the finite range two-body force by the operator I'
= —"+—P„, where P„ is the space exchange op-
erator, which makes the exchange term vanish
identically for spin-isospin symmetric systems.
An analogous effective interaction is therefore
used to define our model problem in one spatial
dimension. For convenience, we define dimen-
sionless variables x and t such that xl, denotes a
position, tt, denotes a time, and energies are ex-
pressed in units of E,. Once the length scale l,
has been specified, E, and t, are defined by

E = (4.1)
fÃ p

and

IV. APPLICATION TO A MODEL MANY-BODY
SYSTEM

The preceding formalism is useful for nuclear
physics only if bounce solutions with the properties
assumed in the last section can actually be ob-
tained for self-bound saturating -many-fermion
systems. Therefore, it is crucial to apply these
ideas to a tractable model system embodying the
essential features of finite nuclei.

Since we have been unable to find a satisfactory
analytically solvable model relevant to nuclear
fission, we turn to a numerically solvable prob-
lem, and for computational simplicity, restrict
our attention at present to one spatial dimension.
The most crucial feature of finite nuclei which
must be embodied in our model is nuclear satura-
tion; the fact that infinite nuclear matter in the
absence of Coulomb forces has minimum binding

energy per particle at a finite density p„M, and
that finite nuclei have density distributions which
are roughly constant and approximately equal to

p» in the interior with steep surfaces of roughly
constant diffuseness. Since in the absence of Cou-
lomb forces, the binding energy per particle of
finite nuclei would monotonically approach that of
nuclear matter with increasing A, aside from
small shell fluctuations, it is also necessary to
introduce an appropriate one-dimensional analog

where

+ 3 V3 p (x ~ t) q (4.3a)

2

V(x)=g ' e"'~~~',
j=~ Wry, .

p(x, t) =Igj.(x, t)y.(x, f),

(4.3b)

(4.3c)

p*(x, t) for real time solutions.(x, f) =
p(x, t) for tunneling sol—utions .

(4.3d}

to=—y
(4.2)

0

where m is the mass of the fermion. Since the
only physical length in one-dimensional nuclear
matter is specified by the saturation density, we
will define l, —= 1/p». For comparison, if one de-
fined analogous units in three dimensions such that

p„M = 0.16 fm ' —= 1/f, ', we would have l, = 1.85 fm,
E,= 6.03 MeV, and t, = 1.09 && 10 "s. With units
of /„E„and t, understood, the Hamiltonian den-
sity for a determinantal wave function in our one-
dimensional model problem is

Q2

X[j(x,f), y(x, f)]= ~g j.(x, f-), , y.(x, &)

+ 2 dx'p x, t V x -x' p x', t
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M denotes the spin degeneracy chosen to be 4 to
simulate the spin-isospin degeneracy of nuclei,
and Q denotes a sum over all occupied spatial
orbitals. Values of the parameters in Eq. (4.3)
are given in Table I. The attractive Gaussian po-
tential represents the attractive binding nuclear
interaction, and the very long range repulsive
Gaussian is intended to simulate the effect of the
repulsive Coulomb potential.

The binding energy per particle of uniform mat-
ter of density p in the absence of the Coulomb-
type potential V, is

E/N= — —
~

+ ~ V,p+ —, V,p,3 M)
(4.4)

which yields the nuclear matter binding energy per
particle

E/N i„u= —— ', = -0.372
2

16 [(v/waif)'+ V, ]
at the saturation density

(4.6)

TABLE I. Values of the parameters appearing in Eq.
(4.3) for the one-dimensional nuclear model.

3 Vg (4.6)" 4 [(v/m)'+ V,]
At equilibrium, the potential energy per particle,

0 5'7 8Ep is somewhat gre ate r in magnitud e than
the kinetic energy per particle of 0.206EO, in
qualitative agreement with ordinary nuclear mat-
ter.

Finite bound states are determined by solving
the static HF equations arising from the Hamilton-
ian density in Eg. (4.3):

d2
, + V(x-x')p(x'}dx'+ V,p'(x) u„(x)=e u (x).

(4 7)

The resulting density distributions and binding en-
ergies are presented for g = 4, 8, and 16 particles
in Fig. 2 and Table II, respectively. Clearly these
solutions possess the properties specified above
for our one-dimensional model system. As A in-
creases, the position of the surface of roughly
constant diffuseness increases linearly in A, while
the interior density is approximately constant and
is displaced slightly below the value p„M= 1 by the
presence of the Coulomb-type potential V,. The
maximum binding energy per particle in the per-

l.O

x [a.j IO

X,'=X[y(x), y(x)]+ g —fq,'- q'[y(x)] j',

where

Q'[j(x)] =M g fax(, (x)Q'(x)4, (x).

(4.8a)

(4.8b)

In this way, determinants may be constrained to
have arbitrary expectation values of relevant op-
erators Q'(x). For symmetric fission of a 16-par-

TABLE II. Ratio of binding energy per particle in fi-
nite nuclei to that in nuclear matter for three model nu-
clei.

FIG. 2. Hartree-Fock density distributions for 4-, 8-,
and 16-, particle systems. Since solutions are symme-
tric about @=0, distributions are only shown for positive
X+

I

iodic table occurs near A= 8, so that a 16-particle
system is unstable with respect to fission into two
8-particle daughters which, in turn, are stable
against further fission into 4-particle grand-
daughters.

Before presenting the bounce solution describing
spontaneous decay in this model, it will prove use-
ful to discuss briefly the static constrained HF
problem for this system. An immediate problem
in generalizing the discussion associated with Fig.
1 to the present many-body problem is what quan-
tity plays the role of V(q) and how to deal with the
infinite number of coordinates. Since the equations
of motion are the Hamiltonian equations associated
with R [p(x, t), p(x, t) ] in E(l. (4.3), one would ideal-
ly like to determine K[/(x), (]))(x}]for a family of
determinants which continuously deform through a
series of shapes from the HF ground state to the
saddle point and on to the scission configuration.
One practical way to do this is to calculate the con-
strained HF energy of. deformation surface. In-
stead of solving the static HF problem, one min-
imizes the quantity

M

Y$

V2

Vg

V2

V3

2
10
-1.489

0.40
0.5

4
8

16

0.574
0.619
0.583
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- 3.35— (b)

ticle system in our one-dimensional model, it is
sufficient to consider the single variable Q=x',
and a plot of values of K[g(Q,)] vs Q[P(Q,)] for a
range of Q, yields the deformation energy as a
function of (x') shown in Fig. 3. The maxima and
minima of this constrained energy of deformation
curve correspond to exact stationary solutions of
the HF equations, while the rest of the curve
smoothly interpolates between these unique sta-
tionary points. If one introduced other appropriate
variables to constrain, for example, asymmetry
and geometry of neck formation, one would obtain
a multidimensional surface in which the essential
topology of ridges and valleys would be determined
by the maxima, minima, and saddle points, which
are unique stationary points of the unconstrained
problem. One technical observation which is cru-
cial to the numerical solution of the subsequent
bounce equation. is the fact that unstable stationary
HF solutions, such as the saddle point denoted by
(b) in Fig. 3, cannot be calculated iteratively ex-
cept by the addition of a suitable constraint. If
one selected an initial determinant arbitrarily
close to point (b} and iterated the unconstrained
equations, the solution would ultimately approach
the 16-particle quasistable state corresponding to
the local minimum at (a) or the HF ground state
for two separated fragments of mass 8. Converse-
ly, the fact that one converges to a saddle point
solution with only one constraint conclusively
proves that the multidimensional energy surface
is not concave downward in any other direction.

x u~(x, q) = Xsu~(x, q) (4.9a)

with boundary condition

u, (x, —,') = u, (x, --,' )

or

(4.9b)

= T —,+ V(x -x') p(x', ri)dx'sy()(», q) s'
8$ 8x

+ v,p'(x, q) Ly,(x, q)3 y ) g t

with the boundary condition

(4.10a)

y, (x, —,') = e ~y, (x, --,' ),
where

u,(x, q) = e'a(""' "y,(x, rl),

p(x, q) = M Q u,(x, -q)u, (x, q)

(4.10b)

(4.1la)

=M ~x, -q ~ xq, (4.11b)

and a new time variable is defined as in Sec. III,

q= t/r. (4.11c)

The kinetic energy term and two-body force con-
tributions follow directly from Eqs. (3.12}and
(3.21). The three-body force contribution is de-
rived in Appendix C where the Hubbard-Stratono-
vich transformation is applied twice to the term

exp -l(v8($) f p (xt)dxdt';,

The mean-field equations of motion for a bounce
solution in the tunneling regions for the model de-
fined in Eq. (4.3) may be written as

8 8—.+T —,+ V x-x' px', g dx'+ P~p x, g8x i

— 3.40

— 3.45

L

4O 50 6O

& x'& P'. J

FIG. 3. Constrained energy of deformation curve for A
= 16 fission barrier.

and the resulting expression is approximated by
the SPA.

Several salient features of evolution in complex
time are evident from Eqs. (4.9) and (4.10). The
real-time counterpart of Eq. (4.10a) has an addi-
tional factor of -j in the left hand side so that the
wave function p at any two times is related by a
unitary operator. As consequences, orthonormal
wave functions remain orthonormal, a static HF
wave function simply acquires a time-dependent
phase factor, and a coherent velocity field is de-
scribed by the phase factor e" '"', where u(x)
= (I'/m)(ds/dx). Although none of these properties
pertain for the imaginary-time equation (4.10),
and simple phase factors are replaced by growing
or decaying exponentials, nevertheless, physical
quantities remain sensible through the symmetri-
cal appearance of (Qe)(x, -q) and Q(x, g). Thus,
even though individual wave functions grow or
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decay exponentially in time, the combination

fdxP (x, -q)P.(x, q) is t™-independent and

p(x, g) remains properly normalized. Similarly,
even though an individual bounce wave function
which travels first to the right and then back to
the left might appear to be seriously distorted
spatially by the real factor e""', again compen-
sating factors of e""' and e ""'cancel out of the
bilinear combination appearing in p. Although the
physics usually associated with unitarity in TDHF
equations is thus retained by Eqs. (4.9} and (4.10),
the numerical difficulties associated with the solu-
tion of Eq. (4.10) are significantly different than in
the corresponding real-time case. All computa-
tional aspects of the solution presented in this sec-
tion are relegated to Appendix C.

The easiest way to think about iterative solutions
to the bounce equations is to view Eq. (4.9) as a
two-dimensional generalization of the correspond-
ing one-dimensional static Hartree equations. Ig-
noring the q dependence for a specified function
p(x), Eq. (4.9) is a one-dimensional eigenvalue
problem defined by a second-order differential
equation, and the associated two boundary condi-
tions that u vanish at the two edges of a large box.
Even though little is known mathematically about
the solution to such self-consistent equations,
starting from a given density p(x), one may solve
for the single particle wave functions u (x), con-
struct a new density from these u's, and iterate
until the sequence converges to the self-consistent
p(x) which is in some sense closest to the origi-
nal guess. Adding the first derivative with respect
to g in Eq. (4.9} and the boundary condition (4.9b)
that the wave function be periodic in time, simply
generates an analogous two-dimensional self-con-
sistent problem, which again may be expected to
converge to the stable self-consistent solution
closest to the initial guess p(x, q).

As has already been discussed, an initial guess
p(x) for the one-dimensional Hartree problem ar-
bitrarily close to the saddle point (b) will not con-
verge to the saddle point stationary solution unless
one adds a constraint. Similarly, we have found
that even if one begins with an initial density p(x, q)
arbitrarily close to the exact bounce solution,
which begins at the HF solution (a) at g= ——,',
passes through the saddle point (b), reaches the
turning point (c) at g=0, and then returns to the
HF solution (a) g= —,', unless one imposes a con-
straint, the solution will eventually converge to a
time-independent 16-particle static HF solution
or two static 8-particle daughters. Thus, the
bounce, like the saddle point stationary solutions,
has one unstable degree of freedom, and one must
therefore add to the potential terms in Eqs. (4.9}
or (4.10a) a constraint, which we took of the form

1/2
Vx(»)=& J dq j x"p(x', q)dx'-xo' x' ~

-X/2

(4.12)

Regarding the resulting self-consistent solutions
p„(», g) as functions of the parameter x„ the

0
bounce solution corresponds to thai x0 for which

tj/2
dx'x' p(»', g) =xo',

1/2
(4.13)

I

—IO 0
x [J.j

I

+lO

FIG. 4. Density profiles for A = 16 bounce solution in
evenly spaced intervals from g=-z to g= 0 in time incre-
ments of 20tp.

i.e., that value of g0 for which the constraint van-
ishes. Thus the constraint renders the system
stable with respect to small deviations away from
the bounce without altering the bounce solution it-
self.

Bounce solutions for symmetric fission of a 16-
particle system into two fragments are shown in
Figs. 4 and 5. Figure 4 shows the density distri-
bution p(x, q, ) for six evenly spaced intervals from
——,

' to 0. The top density is identical to the exact
static HF distribution, and one observes that most
of the shape deformation is localized in a small
time interval near g= 0.

Further insight into the behavior of the Slater
determinant is provided by the single-particle
wave functions graphed at q= ——,

' and g= 0 in Fig.
5. The left-hand wave functions are clearly just
the first four eigenfunctions of the 16-particle HF
potential well. The right-hand wave functions cor-
respond approximately to even and odd combina-
tions of the lowest two wave functions in two nearly
separated 8-particle wells. Hence, a more i)lum-
inating way to think about the determinant of these
wave functions is to consider a different repre-
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4 (x,-~r~) $„(x,o)

-10 -10

V
X [go] X [g, ]

FIG. 5. Normalized self-consistent bounce wave func-
tions at times g=-z and at g= 0.

sentation comprised of the sums and 'differences
of the first two and last two functions. To the ex-
tent to which two wave functions are then localized
on the left and the other two on the right, the de-
terminant approximately factorizes into the pro-
duct of two determinants describing two 8-particle
daughters. Thus, one observes that the bounce
solution for this one-dimensional model manifests
all the required physical properties of our formal-
ism. At large positive and negative times, it in-
deed joins the 16-particle HF solution, and near
time zero is evolved self-consistently through the
barrier to obtain a turning point configuration cor-
responding to two nearly separated 8-particle
fragments.

This turning point configuration can presumably
be used as the initial condition of the real-time
TDHF equations, which may provide information
on the development of the fragments on thei. r way
from the turning point to the asymptotic region of
complete separation. However, it is important
that the knowledge of the imaginary-time bounce
solution is already sufficient for the calculation
of the penetrabil. ity [Eq. (3.31)].

V. CONCLUSION

In this work, we have presented a mean-field
theory of the tunneling decay of nuclear many-body
systems. We have applied the SPA to a well-be-
haved quantity containing the physical information
concerning all possible decay channels without
having to specifically define reaction channels,
and have shown that the leading approximation to
the sum of partial widths depends only upon a dis-
crete set of periodic bounce solutions to TDHF-
like equations in complex time. In principle, this
theory should contain a wealth of information con-
cerning the competition of alternative decay chan-
nels for a wide variety of nuclei.

The formalism has been applied to a model sys-

tern of nuclei in one spatial dimension. Explicit
solutions for the symmetric fission of a 16-particle
system into two 8-particle daughters have demon-
strated the feasibility of numerically solving the
resulting self-consistent integrodifferential equa-
tions and have verified that the bounce solution
has the conjectured long-time behavior. Aside
from the immediat, e application, the one-dimen-
sional model presented in this work offers many
opportunities for future research. In addition to
exploring asymmetric fission and investigating
other particle numbers, the system provides an
ideal testing ground for many approximations cur-
rently applied to fission. For example, one way of
comparing mass parameters for any prescription
of collective coordinates (or inertial tensors for
many degrees of freedom) is to differentially
equate the penetrability factors:

Pl/, 3 8
J' dry dx Qu„(x, -rl) —u (x, q)

0 O

2M' Vq -~ '/2d~.
Cj

Despite the potential promise of the present the-
ory of tunneling, a number of formal and practical
problems remain. One obvious formal problem is
the joining of solutions at the interface between
classically allowed and forbidden regions which
was discussed in detail in the text. Center of mass
motion is always a problem in mean field theories,
and is especial. ly troublesome in the present case
in which many decays of interest involve light
fragments. Clearly, 1/A c.m. motion errors will
be catastrophic in dealing with nucleon, deuteron,
and alpha emission. Similarly, description of
the fission of 'Be into two n particles is hopeless
when the actual Q value is in kilovolts, while the
spurious c.m. energy of two alpha particles is
roughly 16 MeV higher than the spurious c.m. en-
ergy of 'Be. Other problems already encountered
in our previous investigation of large amplitude
collective motion, ' such as evaluating corrections
to the SPA and consistently deriving an effective
interaction, are equally relevant to this present
work.

Aside from these formal problems, a number of
practical difficulties arise in considering the ap-
plication of this theory to real nuclei in three di-
mensions. The computational difficulty is obvi-
ously far greater than the corresponding three-di-
mensional static HF problem because of the addi-
tion of the fourth time variable. In addition, it is
clear from the earlier mean-field treatment of
induced fission' that the breaking of axial sym-
metry by the mean field plays a crucial role in
fission dynamics, so it is essential to use a fully
three-dimensional rather than axially symmetric
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wave function. Finally, spontaneous fission is
strongly influenced by shell effects, which, in
turn, necessitate the inclusion of a spin-orbit
force, thereby severely escalating the numerical
problem.

Thus, for initial investigations, it appears pru-
dent to treat light systems in which one artificial-
ly increases the charge of the proton to obtain fis-
silities characteristic of actinide nuclei. Incor-
porating a number of obvious improvements'over
the brute force methods employed in this work,
satisfactory bounce solutions for nuclei from 'Be
to "8 have been obtained with very modest com-
puter times, "and a number. of fruitful investiga-
tions are clearly feasible in these systems. De-
pending upon the future improvements in numeri-

cal methods, the adaptability of sparse matrix
problems to array processing, and the availability
of computer resources, it may eventually prove
feasible to apply the theory presented in this work
to a realistic calculation for uranium.
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APPENDIX A. EVALUATION OF THE SMOOTHED DENSITY OF STATES

Following Ref. 16 we evaluate the smoothed density of states in a finite box of length L

p„(&)= —Im Tr(H —E —iy) '. (AI)

The discrete states in the box are smoothed with a Lorentzian width y, large compared to the level spacing

2E ~~2
y=g — =- g)) $ t (A2)

but small relative to the physical width of the metastable state. Thus, we no longer attempt to approxi-
mate the individual (real} eigenvalues of H, but rather approximate the smooth, averaged quantity p„(E}.
Evaluating the trace Tr(H -E -iy) by calculating the sum over all trajectories beginning in any of the
three regions, and containing all combinations of cycles in each region yi.elds

OO OO

(
OO ~k ( )st (

OO, OO cO ~ 00 00
mq l

e'w g le w2+ e'ws + Z I Z e'" ~e 2+e" 31 +2 e'w3 g le w2+ e'w
Q=l m.0 k g=0 m=& ~ n=o g*o l j. g mo k no j

~ jW'g + ~-W2+ ~ jW3 2~ j (Wj+S"3)

(AS)(1 e&wa)(1 e&w3) e "'2

where, of course, 8"„W„and 8', are evaluated
at energy E+jy.

Now w'e are in a position to demonstrate that re-
gion III contributes negligibly to the physical
width I'. In the limit of large L, the small imag-
inary part y contributes negligibly to TV, and lV,.
However, since the potential vanishes beyond
some point q in region III, s in%',

(-,'e w2)'+ (sin-,' W, )' (A6)

in region III may be rendered arbitrarily small by
choosing a suitable averaging width y. , The re-
maining terms in Eq. (AS) are identical to Eq.
(2.22), and we obtain

W2

p„(E)- Im-

W, =
Jl (2m[E+iy —V(q)]dq)'~'

03

+ [2m(E+iy)]'~'(I. -q.),
so that, using Eq. (A2),

ImW, ~ (~/2E)'~'yL -gw

(A4)

(A5)

W~(Ew} = 2'
and with widths

(A'I )

As before, this expression defines resonances at
energies

and e'~3- e ~'. Thus, the contributions of cycles

-1
I =2(' '

(A8)
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APPENDIX B. PROPERTIES OF THE IMAGINARY-
TIME MEAN-FIELD EQUATIONS

The equations of the real-time Hartree theory
have the classical Hamilton form with canonical
coordinates p~(x), momenta if'(x), and Hamilton-
ian

this is also true for the imaginary time Hartree
system described by the Hamiltonian (3.23) of Sec.

. III.
In imaginary time the canonical transformation

of the real variables p~(ri) and p~( rl),-which is
analogous to (B2}, is given by

A

ee&p:, p.& , I.=fd lpp. l'

A

e * I, f«« lp.&'e~ I'p~» -«'~ lp;b~ I'.
k, j=j

(al)

(q) [p (~)] i,-x„p

p (-n)= [ p(n) ]"'e"""',
with new coordinates

p,(n) = e,(n)e,(-n) = p,(-n)

and momenta

(B8)

P erforming a canonical transformation

4&= ~Pae
X

with new coordinates

and momenta

(B2)

(B3)

y = —(Inp, —lnp*), (B4)

transforms the Hamiltonian (Bl} into
A

&(X,p]=2 g )I P(&X)'d +'U(p),

where

'U(p) = g —dx+ —,
' g P~VP&dxdx'.

1 (&pa)'

a= pa

(B6)

In this representation the two terms in (B5) are
conveniently interpreted as effective kinetic and
potential energies of this classical system.

As was indicated in Sec. II, the continuation of
classical equations in imaginary time amounts to
reversing the sign of the potential energy or, more
precisely, in changing the relative signs of the kin-
etic and potential terms. We will now show that

y~(ri) = —2 [In'~(q) —Inp~(-q)] = —y„(-q) . (B9)

In terms of p„(q) and y~(q), the Hamiltonian (3.23)
becomes

"p,(vx,}'dx+Q(p), (B10)
+XXyp pyJ-—

2tFL
Q 1

where 'U(p} has the same functional form as Eq.
(B6}. In Eq. (B10) we omitted the additive con-
stant term —,

' V(0) from Eq. (3.24). One observes
that the transformation to imaginary time indeed
reverses the relative signs of the effective kinetic
and potential terms" as compared to the real
time expression (B5).

The transformation (B7) is also useful in inter-
preting the periodic condition (3.22a). Using the
symmetry properties of p~(q) and y„(q) given by
Eqs. (B8) and (B9) this condition becomes
2y„(g= —,') =A,„so that Vy~(+ —,') = 0. This means that
the kinetic term in Eq. (B10)vanishes at q= + —,',
and therefore the condition (3.22a) is simply a re-
quirement that the bounce solution starts and ends
at the turning point of the Hamiltonian (B10), i.e. ,
where its kinetic term vanishes. This observation
suggests that the matching of the real time peri-
odic mean field solution to the tunneling solution in
imaginary time occurs at the turning point of the
real time Hamiltonian (B5}where Vy, vanishes in
the kinetic term of Eq. (B5).'

APPENDIX C. FUNCTIONAL INTEGRAL REPRESENTATION FOR THREE-BODY FORCES

To treat terms in the Hamiltonian containing powers of p greater than two, the Hubbard-Stratonovich
transformation may be applied sequentially. Expressions containing even powers may be reduced by
writing

expl-e fp'" = fpp exple fp'"1 expl -pi fp "p (cl)

and expressions containing odd powers may be reduced by writing

exp(-ip'"") = exp[-(i/2)(p" + p"")'] exp[(i/2)p'"] exp[(i/2) p"""']

DXexp i 2 X' exp -i p"+ p"" X exp i 2 p'" exp i 2 p"""' (c2)
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and using Eq. (Cl). Successive application of Eqs. (Cl) and (C2) ultimately results in an exponential lin-
ear in p.

For the three-body delta function interaction contained in Eq. (4.3), Eqs. (Cl) and (C2) yield

exp -i(V/3) f 9' =exp -i(V/6) Jl (9+jY)' exp i(V/6) f 9' exp i('V/6) f9'

= J] p3 fpp exp i(V/6) f(2 —6') exp -i(V/3) f39 expI-i('V/3) f [3—6 —3/2]pI
366

J DyDp Do [det(y —p ——,')]'r ' exp i(V/6) (y' —p' —a'+ 2ya' —2po')

x exp -i(V/3) Jt (2xa —2(t)o —a+ J('.)p (c3)

where the integrals appearing in the exponents are with respect to g and g, and Dg denotes all contribu-
tions to the measure for the o integration which are independent of J( and p. Ordering with respect to q
is implied in (C3), which allows for the free manipulation of the noneommuting operators p(x, q). Carry-
ing through the steps in the derivation subsequent to Eq. (3.4), one observes that A, contains the additional
three-body contribution

=-
3

(2Xa-2ea-(r+X).(3) TV
(c4)

Noting that only the exponent is to be made stationary and that the premultiplying factor [det(y —(t) ——,')]'r '
is not varied, application of the SPA to the integrals over X, (t), and o requires that the quantity

i(TV/6) J
(X' —y' —(r + 2Xa —2/a') -i g o(„ (C5)

be simultaneously stationary with respect to variations in X, p, and o; The resulting equations for the
stationary functions y„P„and o, are

(TV/3)(X, +(r, ')=Q
5

=
3 (2(r, +1)ac,

&x

(TV/3)(-p, -a.')=g
&

'=
3

(-2a.)(r. , (C6b)

(TV/3)(-a, + 2X,(r, —2y, (r, ) = = (2X„-2y„-l)a, ,
& ap TP'

(C6c)

(CVa)

where o, is the self-consistent density defined by Eq. (3.21b} and X„and p„(r„and a, are understood to
be functions of x and ri. The solution of the set of equations (C6} is

2
&g= 0'0+0'0

y

2s=o'0
y

0' =0'Oy

so that the three-body contribution to the mean field, Eq. (C4), becomes

a."'= —eve ',
Q

(CVb)

(CVc)

(cs)
from which Eq. (4.9) follows immediately. Finally, as in the two-body ease, we note that the SPA to Eq.
(C3) yields the proper three-body total energy for the self-consistent TDHF wave function, since

exp i(V/6) J (3,'-6, ' —e, '+23,e, —.26,e, ') p T„exp -i(V/3) f(3,, 29 e-,+3)() .p.„„),
= exp i(2V/3) e,' V „T„exp]-eV e '(3] 6 ) (C9)

]
and the premultiplying factor exactly removes the overcounting of potential energy in the single-particle
equations.
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APPENDIX D. NUMERICAL SOLUTION OF THE
BOUNCE EQUATIONS

e, (x, , n) = g~„"'X„(x,, n), (D4)

+ V,p'(x, tl)+ V,(x)

and a single-particle wave function was evolved
for 8 time steps of size b, 7i= 1/J by expanding the
approximate evolution operator

ya(x, 7i+ alai) = exP(-i't (-,' f P(7i)+ P(7i+ nt})])n7i}ys(x, q}

(D2)

in an L term Taylor series.
For a given density p(x, , q}, Eqs. (4.10}were

solved by evolving N independent wave functions

(D3)X,(,, n= --.') = 5,,
for J ti.me steps to g= —,'.

Expanding each eigenfunction gs in this com-
plete set of states

Due to the simplicity of the model in one spatial
dimension presented in Sec. IV, the self-consis-
tent imaginary-time mean-field equations were
solved by a straightforward generalization of the
standard techniques to evolve solutions of the real-
time TDHF equations, with no attempt to obtain
optimal stability or efficiency. The single-parti-
cle wave functions were constrained to be sym-
metric and discretized on an N-point spatial mesh
of spacing b,x. A five-point approximation was
made to the derivative appearing in

82
a[p]=T' —,+ Jv(x x')p(x', n)a-'.

) ex'

the boundary condition, Etl. (4.10b), yields the
eigenvalue equation

where

jn n f t

and

M, „=lt„(x,, 7i= —,'), (D5b)

(D5c)

A new density for an A-particle system was com-
puted by evaluating

p(x„n) =M+ y, (x, , n)y, (-x, , n),

where p runs over the AlM lowest values of its in

Eq. (D5c).
After careful tests of precision, the final results

quoted in the text were obtained with N= 12 spatial
mesh points, J= 50 time steps, a spatial grid hg
=1.5, a time step Thy=2. , and L=10 terms in the
expansion of Etl. (D2). Excellent convergence was
obtained in 50 iterations. Since the bounce rigor-
ously approaches the stationary HF solution only
as T- ~, and thus the energy of the bounce H[p]
only approaches E„F in this limit, it is useful to
note how rapidly H[p] approaches the static value
in practice. For T 8010 corresponding to 40 time
steps, H [p ] = 3.4331E„whereas for T = 100t„
H[P] = 3.4349E„agreeing precisely with E„F to 5

significant figures.
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