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On the basis of a conventional nonrelativistic fluid-dynamics model, we study the expansion of spherically
symmetric nuclear matter that is initially compressed and excited in head-on collisions of equal targets and
projectiles at a laboratory bombarding energy per nucleon of 250 MeV. We use a new functional form for the
nuclear equation of state which has the property that the speed of sound approaches the speed of light in the limit of
infinite compression. For various values of the nuclear compressibility coefficient, the fluid-dynamical equations of
motion are solved until the matter expands to a freezeout density at which fluid dynamics ceases to be valid. At this
point the remaining thermal energy is superimposed in terms of a Maxwell-Boltzmann distribution with appropriate
nuclear temperature. For nonzero values of the compressibility coefficient ranging form 100 to 400 MeV, the energy
distribution at the freezeout density of the expanding matter depends slightly upon the compressibility coefficient.
However, the final-energy distribution after thermal folding is independent of the compressibility coefficient to
within graphical accuracy. For zero compressibility coefficient, which corresponds to the expansion of a perfect gas,
the energy distribution is significantly different form that for nonzero compressibility coefficient at the freezeout
point, and is slightly different from that for nonzero compressibility coefficient after thermal folding. For both zero
and nonzero values of the compressibility coefficient, the final energy distributions are significantly different from a
Maxwell-Boltzmann distribution corresponding to entirely thermal energy, and are moderately different from the
energy distribution corresponding to the Siemens-Rasmussen approximation.

NUCLEAR REACTIONS Equal target and projectile, Eyon/nucleon=250 MeV;
calculated energy distribution of expanding spherically symmetric nuclear mat-
ter. High-energy heavy-ion collisions, nonrelativistic nuclear fluid dynamics,
nuclear equation of state, nuclear freezeout, thermal folding with Maxwell-
Boltzmann distribution, Siemens-Rasmussen approximation.
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I. INTRODUCTION

High-energy heavy-ion collisions provide a uni-
que opportunity to explore what happens when
heavy nuclei become highly compressed and ex-
cited. As part of the recent surge of interest in
this area, several calculations of high-energy
heavy-ion collisions have been performed on the
basis of fluid-dynamical models}™°® where the
basic input is the nuclear equation of state. It is
of crucial importance to know the sensitivity of
the calculated results to the input equation of state.

Although some two-dimensional and three-dimen-
sional calculations have been performed for differ-
ent equations of state,®® the fairly large numerical
errors that are present have precluded an accurate
assessment of this sensitivity. It is our purpose
here to study one aspect of this question in a
simple, one-dimensional calculation for which an
accurate numerical solution is possible. In par-
ticular, we study the sensitivity of the energy dis-
tribution of expanding spherically symmetric nu-
clear matter to the nuclear compressibility coef-
ficient.

The particular nuclear equation of state that we
use is introduced in Sec. II; it is a new functional
form for which the speed of sound approaches

the speed of light in the limit of infinite compres-
sion. We discuss in Sec. III the fluid-dynamical
equations of motion, along with our initial condi-
tions and method of solution. In Sec. IV we cal-
culate the energy distribution of the expanding
matter, both at the freezeout density at which fluid
dynamics ceases to be valid and after superim-
posing the remaining thermal energy in terms of

a Maxwell-Boltzmann distribution with appropriate
nuclear temperature. Qur conclusions are pre-
sented in Sec. V.

II. NUCLEAR EQUATION OF STATE

The nuclear equation of state, which specifies
how the pressure depends upon density and ther-
mal energy, can be written as the sum of a con-
tribution from the compressional energy and a
contribution from the thermal energy. This is
seen most clearly by recalling that the total in-
ternal energy per nucleon is given by *

En,9)=8,(n)+3,
where §,(n) is the ground-state energy per nucleon
at nucleon number density » and 9 is the thermal

energy per nucleon. The pressure p is then ob-
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tained from the fundamental relation*

88 (n,9) dd,(n)  ,84
=42 2 =,2%%0 227
" an s " o s’

6

with differentiation at constant entropy per nucleon
S.

A. Compreséional contribution

For the ground-state energy per nucleon &,(»)
we use a new functional form which has the prop-
erty that the speed of sound approaches the speed
of light in the limit of infinite compression. This
is achieved by taking & () for » greater than or
equal to a critical value #, to be a parabola in the
square root of the density, so that in the limit of
infinite compression it increases linearly with
density. In the limit of zero density, &,(r) is taken
to be the difference between a specified term pro-
portional to #2/3 that represents the kinetic energy
of noninteracting nucleons and a term proportional
to » whose coefficient is adjusted so that the two
forms join smoothly with continuous value and first
derivative. )

To be specific, our equation for §,(n) is

an?’®-bn, n=n,

Sote)= 80(n0)+%1{[(£;)1/2-1]2, n=n, @

where

3 /372 2/3 n2
=35(5)

and m, is the nucleon mass, which we take equal
to the average of the proton and neutron masses.
The quantity

d%
-0, 2 0
P _)0

is the nuclear compressibility coefficient, and

1
"o = (an/3)r?
is the normal nucleon number density. We use
7,=1.18 fm

for the value of the fundamental nuclear-radius
constant!! and ’

&,(n,) =-8 MeV
to simulate the effects of surface and Coulomb
energies for finite nuclei. The critical density
n, is obtained by solving iteratively the equation

2 K
$an!*+garamy/ = [8olng) +§K]=0.

The coefficient b is then given by

2. a ] 1 1
b "3 n;/3+‘§K[(nano)1/2"no]'

The resulting ground-state energy & ,(n) is shown
in Fig. 1 for five values of the nuclear compres-
sibility coefficient K ranging from 0 to 400 MeV.

B. Thermal contribution

For the thermal contribution to the pressure we
use the nonrelativistic Fermi-gas model, which
yields*

b, =n22— =2pg 3)
thermal o s 3 .
Unlike what is often implied, this is a general re-

sult for the nonrelativistic Fermi-gas model that
is valid to all orders in the temperature.

III. NONRELATIVISTIC SPHERICALLY SYMMETRIC
EXPANSION

A. Initial conditions

We consider in this section the head-on collision
of an equal target and projectile with laboratory
bombarding energy per nucleon of 250 MeV, which
corresponds relativistically to a center-of-mass
energy per nucleon of 60.53 MeV. We make the
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FIG. 1. Compressional contribution to our nuclear
equation of state, for five values of the compressibility
coefficient K. The arrows denote the thermal energy per
nucleon 9 and the nucleon number density » achieved in
the head-on collision of an equal target and projectile
with laboratory bombarding energy per nucleon of 250
MeV.
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drastic geometrical assumption that during the
collision the nuclear matter is uniformly com-
pressed and excited into a sphere at rest in the
center-of-mass system, with constant initial val-
ues of the density, compressional energy, and
thermal energy determined by relativistic Ran-
kine-Hugoniot relations.?* These relations are ob-
tained by integrating the relativistic equations of
fluid dynamics over an infinitesimal volume near
the contact point in a head-on collision. The solu-
tions for the cases considered here are illustrated
in Fig. 1. With increasing compressibility coef-
ficient, the initial compressional energy per nu-
cleon increases, whereas the initial density and
thermal energy per nucleon decrease.

These quantities serve as initial conditions for

the spherically symmetric expansion of the matter,

which is treated nonrelativistcally in two stages.
In the first stage, corresponding to densities
greater than a freezeout density, we integrate
numerically in one dimension nonrelativistic equa-
tions of fluid dynamics. Relativistic effects are
negligible for the 60.53-MeV center-of-mass ini-
tial energy per nucleon considered here. These
equations express the conservation of nucleon
number, momentum, and energy, for a particular
nuclear equation of state. We neglect the surface
energy, Coulomb energy, nuclear viscosity, ther-
mal conductivity, and single-particle effects, as
well as the production of additional particles and
the associated radiative loss of energy from the
system. ‘

B. Equations of motion

For our purpose the equations of motion'? are
written conveniently as

mn -
—51;+V-(nv)—0,

a(nv")

+V+ (nVV) +—vp 0,

and

a(n) D4V [V(r+p)]=0

The quantities », §, and p were defined in Sec.
II, and V is the velocity of the fluid.

In spherical polar coordinates », 6, and ¢, the
equations for a spherically symmetric system take
the form

&.‘.n(%_i.z_vt) 0 s

Dt r 7
Do, 1 8 _

Dt wmn or

and
D8 » G&: &&)_
Dt +mn ar * o,

where the Lagrangian time derivative is defined by

D _b® +3.%
«V.

Dt Bt
For the bound-nucleon mass m we use the mass
unit!3

m =931.5016 MeV/c?,
where ¢ is the speed of light.

C. Numerical solution

It is convenient to solve these equations numer-
ically by means of a Lagrangian-mesh finite-dif-
ference technique.!* We define N spherical fluid
cells of constant thickness; the ith cell contains
all matter satisfying v, =#<7,; (v,=0). The mat-
ter in the ith cell is characterized by a particle
density #; and an internal energy per particle & ,.
The cell boundaries have velocities v, and v,.
With a superscript j denoting the value of a quan-
tity at time ¢ =jAf, the finite-difference equations
are

ri=riteoit2a,

=1 j=1)3
NI (5 ) ik (o %))
T W
8i=[811 - (38 + QI +Q)Fiat] (1 + FFiat)™
and
v;’ellz =1j.2-1/2 - 4(1){” —-P‘;)
X At[(yJi'+1 - 'r{-]_)(nz-u +n{)]-1
where the pressure
pi=nj(@i+38)),
as !
@f=niZal_ 8,001,
and

1/2 1/2 UJ-1/2+1)]-1/2

pit/2 _pit

Tt i
rivrit-ri,

J =
k! -7 2 7{+’r"‘+r’ +1~i': ’
The quantlty Fiis the finite-difference approxima-
tion to 2V V. At the outer edge of the mesh it is

necessary to modify the equation for vJ**/2 to
1/2 — ,,j=1/2 i L j -
ot 2= o 2 e 2l A [vh - v+ 0 — v )1

We solve these finite-difference equations with
200 points that are initially equally spaced but that
move as the matter expands. The time step is
taken to be about 3 X 10726 s for nonzero values of

. the compressibility coefficient and about 1 X 1072 s
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for zero compressibility coefficient, correspond-
ing to a perfect gas.

The numerical calculation of the expansion is
continued until the density in a cell falls below a
freezeout density at which fluid dynamics ceases
to be valid.}*” For succeeding times, that cell
expands with the velocity it had when freezeout
occurred. To accomplish this we set the pressure
in that cell equal to zero. The time integration is
stopped when all the cells have frozen out.

D.. Freezeout

Since it is difficult to describe correctly the
complicated transition from a fluid to noninter-
acting nucleons and light nuclei,*5"'” we adopt a
two-part criterion for freezeout.  First, freeze-
out is taken to occur if the pressure [Eq. (1)] in
a cell becomes zero or negative, which would lead
to the formation of clusters even in a fluid-dynam-
ical description. In some cases, the thermal pres-
sure [Eq. (3)] is always larger than the magnitude
of the negative compressional pressure, so that
the pressure never reaches zero. In this case,
freezeout is taken to occur at the density at which
the compressional contribution has its maximum
negative value. For the equation of state given
by Eq. (2) and shown in Fig. 1, this density is
< n,, a result independent of the value of K. With
our initial conditions, this latter criterion governs
the freezeout for K=100 and 200 MeV. However,
for K=400 MeV, freezeout occurs when 2=0.75
n, because the total pressure becomes zero at that
point.

E. Calculated expansion

.Some features of the solution are illustrated in
Fig. 2, for a compressibility coefficient equal to
200 MeV. For small values of time, the radial
expansion of the matter near the surface is ac-
companied by a rarefaction wave that propagates
inwards through the matter thatis initially unaf-
fected. This is similar to the one-dimensional ex-
pansion of a semi-infinite compressed perfect
gas, for which an analytic solution is possible.!?
However, it is to be contrasted with the analytic
solution obtained by Bondorf et al.,'® where the
density profile remains rectangular in shape, with
a constant decrease in value and expansion of
radius. The reason for this is that in the calcula-
tions of Bondorf et gl. the interior thermal energy
is not constant but is instead assumed to decrease
parabolically with increasing radial distance,

“ reaching zero at the edge. We reproduce to within
graphical accuracy the results of Bondorf ef gl.
with our numerical calculation when we start with
their initial distribution of thermal energy. For
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FIG. 2. Time evolution of the density profile for the
spherically symmetric expansion of matter that is ini-
tially compressed and excited in the head-on collision
of an equal target and projectile with a laboratory bom-
barding energy per nucleon of 250 MeV. The nuclear
compressibility coefficient K is 200 MeV, The time
scale refers to the expansion of a system with 100 nu-
cleons. ’

larger values of time, our calculated density pro-
file develops a shallow minimum at the center of
the nucleus.

One measure of the accuracy of our numerical
calculation is the extent to which energy is con-
served. For the case of K=400 MeV, the total
energy at freezeout is about 0.2% less than the
initial energy, whereas for K=200 MeV it is about
0.3% less. For the K=0 perfect-gas expansion,
the final energy is about 1.2% less than the.initial
energy.

IV. ENERGY DISTRIBUTION OF EXPANDING MATTER
A. Distribution at freezeout

The kinetic-energy distribution N(E) of the ex-
panding matter, normalized to unity when integrated
over all energy, is obtained from the basic trans-
formation

N(E)|dE| =‘——"(")41Zz larl,

where the number of nucleons A in the system is
related to the initial radius R, and initial density

n; of the compressed matter by

A=é3-7—TRi3n‘ .
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Since the kinetic energy per nucleon at the radius
7 is given by

E(r)=zmv(r)?,
the kinetic-energy distribution becomes

3n(r)r?

NE)= mn;R o) ldv(r)/dr]’

To evaluate this equation in practice, we repre-
sent n(7) and v(#) in the neighborhood of the near-
est point 7; by parabolas adjusted to reproduce the
values at »,.,, 7, and 7,,,.

We plot in Fig. 3 the resulting kinetic-energy
distributions after freezeout for values of the nu-
clear compressibility coefficient K=100, 200, and
400 MeV. The distributions are very similar, al-
though there is a trend to narrower, higher dis-
tributions with increasing K. We also show the
kinetic energy distribution for the expansion of a
perfect gas, which does not freeze out. In this
case, the numerical evolution is continued until
the remaining total internal energy of the gas is
less than 1% of the initial internal energy. Since
the perfect-gas equation of state does not have the
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FIG. 3. Distribution of kinetic energy per nucleon after
freezeout, for three values of the nuclear compressibil-
ity coefficient K, and for the expansion of a perfect gas
that is initially compressed and excited with a center-
of-mass energy per nucleon of 52.53 MeV,

—8 MeV per nucleon ground-state energy, this
calculation was started with 52.53 MeV of internal
energy per nucleon, instead of the 60.53 MeV that
was used for the finite-compressibility cases.

B. Distribution after thermal folding

At the freezeout point, the expanding matter still contains some thermal energy that contributes to the
final energy distribution. To simulate the approximately 8-MeV loss in binding energy per nucleon cor-
responding to breakup into neutrons and protons rather than composite particles, we measure the remain-
ing thermal energy relative to zero energy rather than relative to the minimum energy at saturation dens-
ity. We assume that the particles’ momenta at freezeout in the reference frame of the moving fluid are
distributed according to the nonrelativistic Maxwell-Boltzmann distribution function, with a temperature

T equal to % of the thermal energy per nucleon (measured with respect to zero energy) divided by the

Boltzmann constant &.

The final kinetic-energy distribution N,(E) is obtained by folding the thermal energy at freezeout into the
kinetic-energy distribution at freezeout by means of the relation*®

N (B) = 3 ./O‘Rmun('r) v2dy

(2mmkT)2R? n; v(r)

where A =E*/2 and B={m[v(»)[?/2}!/2. In the cases
that we consider, 2T is a constant, since we cal-
culate an isentropic expansion to a constant freeze-
out density from an initial state with a uniform
internal energy distribution. In a more general
case, where k27T is a function of 7, it would need

to be included in the integration over 7.

After thermal folding, the energy distributions
corresponding to K=100, 200, and 400 MeV are
indistinguishable from one another to within graph-
ical accuracy, as shown by the solid curve in Fig.
4. However, this common result for nonzero com-
pressibility coefficient peaks at a slightly lower
energy and has a longer tail than the dashed curve
calculated for zero compressibility coefficient,

{exp[-(A - B)*/ET] - exp[-(A +B)*/kT]},

f
corresponding to the fluid-dynamical expansion of
a perfect gas. Upon comparing with Fig. 3, we see
that prior to thermal folding, the energy distribu-
tions for nonzero compressibility coefficient are
significantly higher and narrower than the distribu-
tion for K=0. However, after thermal folding,

the results for zero and nonzero compressibility
coefficient are only slightly different from each
other.

As shown by the dotted line in Fig. 4, the Max-
well-Boltzmann distribution corresponding to
entirely thermal energy, which is used in fireball
and firestreak x‘n,oclels,”'/z"'21 peaks at a significant-
ly lower energy and has a longer tail than our cal-
culated solid curve. Finally, the dot-dashed curve
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FIG. 4. Distribution of kinetic energy per nucleon
after superimposing the thermal energy at freezeout in
terms of a nonrelativistic Maxwell-Boltzmann distribu~
tion. The results for three values of the nuclear com-
pressibility coefficient K are indistinguishable from one
another to within graphical accuracy and are shown by
the solid curve, which is compared to three other dis-
tributions with the same average energy per nucleon.

in Fig. 4 is calculated with the Siemens-Rasmussen
approximation,?? which assumes that one-half

the initial energy per nucleon appears as constant
kinetic energy, with the other half superimposed

in terms of a Maxwell-Boltzmann distribution with
appropriate nuclear temperature. Although this
result is shifted from the pure Maxwell-Boltzmann
curve in the correct direction, it still peaks at

a lower energy and has a longer tail than our cal-
culated solid curve. This approximation would
provide a much better representation of our results
if one assumed a uniform kinetic energy per nu-
cleon of about 40 MeV, with the remaining energy
thermal, instead of assuming equal amounts of
kinetic and thermal energy.

C. Distribution for different initial conditions

In order to see the effects of using initial con-
ditions other than those for a shock-compressed
state, we consider finally the case where the ini-
tial state corresponds to the center-of-mass ener-
gy being converted entirely into compressional
energy. The kinetic-energy distributions result-
ing from these calculations for values of the com-
pressibility coefficient K=100, 200, and 400 MeV
are shown in Fig. 5. Although the distributions are
somewhat different from those resulting from the
shock starting conditions, once again the differ-

FIG. 5. Distribution of kinetic energy per nucleon
after freezeout, for three values of the nuclear com-
pressibility coefficient K, where the starting condition
in each case is that all of the collisional energy per
nucleon of 60.53 MeV is in compressional energy.

ences caused by varying the compressibility coef-
ficient in the zero-temperature equation of state
are small.

V. CONCLUSIONS

We have integrated numerically the fluid-dynam-
ical equations of motion for the spherically sym-
metric expansion of nuclear matter that is initially
compressed to a density greater than normal nu-
clear density. For initial conditions we have con-
sidered both a shock compressed state with a large
amount of thermal energy and a compressed state
that contains no thermal energy. In both cases,
changing the nuclear compressibility coefficient
by a factor of 4 does not greatly alter the final
kinetic-energy distribution. In the former case,
where some thermal energy remains at freezeout,
the superposition of thermal energy and kinetic
energy of expansion leads to nearly identical final
energy distributions. We conclude that varying the
compressibility coefficient in the zero-temperature
equation of state does not have an observable effect
on the Kinetic-energy distribution of expanding
matter arising from high-energy heavy-ion colli-
sions.
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