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Analytical theory of pion single and double charge exchange in resonance region.
I. Geometrical limit
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We derive analytical formulas for angular distributions o.(8) of pion single and double charge exchange to
analog states. The result is based on the eikonal approximation and assumes that the interactions are
invariant under isospin rotations. The theory reproduces semiquantitatively the results of exact coupled
channel, lowest order optical model calculations and explicates the dependence of cr(0) on the structure of
the nuclear target. The cr(8) for single charge exchange is proportional to the square of the ratio of the
valence neutron density b p(R) to the total density p(R), The theory predicts R as a function of energy and

mass number A; for pion kinetic energy T 180 MeV, p(R) 0.1—0.2 of central density. The o.(8) for
double charge exchange is proportional to [Ap(R)/p(R)]'. The strong dependence of o.(0) on Ap/p
suggests that the single and double charge exchange reactions may develop into a sensitive probe of the
neutron halo. The dependence of cr(8) on the diffuseness of p and hp is also evaluated. Assuming that the

neutron and proton densities are proportional, the relative A dependence of cr(0) for single and double

charge exchange is calculated. The result is in qualitative agreement with recent measurements for single

charge exchange and predicts that a similar set of measurements for double charge exchange may be
feasible. Realistic densities are used to calculate the magnitude of cr(8). Large enhancements are found in

this case, but cr(H) falls below the preliminary data by as much as a factor of 4, Difficulties in reproducing
the observed angular distribution of the ' 0(m+, n. )"Ne reaction are similar to those of other theories. The
extent of discrepancy suggests the occurrence of strong modifications of the pion-nucleon interaction in the
nuclear medium.

Nl3CLEAR HEACTIONS Pion single and double charge exchange; analytical
formulas for angular distributions.

I. INTRODUCTION

Angular distributions for pion single' (SCX) and
double"' (DCX) charge exchange to the analogs of
the target ground state are just becoming avail-
able. These data contain important information
about the isospin dependence of the pion-nucleus
interaction and also presumably about the higher
order terms in the optical potential, which if iden-
tified, may reveal important information about
the dynamics of the pion and 4 propagation in the
nuclear medium. To extract this information,
very thorough theoretical investigations are re-
quired. However, it is appropriate to be less
ambitious at this early stage and examine the
physics at a more elementary level. In this work
we derive simple analytic expressions for the sin-
gle and double charge exchange on the basis of a
semiclassical theory which, as we shall argue,
accurately reflects the sensitivity of more exact
computer calculations to the geometrical aspects
of the underlying theory. A comparison to the
experiments will then give a clearer physical
feeling for the process than is possible with large
computer calculations and will also indicate the
extent to which we will have to add physics beyond
basic information about the nuclear size.

There have been many previous theoretical cal-

culations' of both single and double charge ex-
change in semiclassical theories, in coupled chan-
nel frameworks, ' and in other approaches. ' It has
been emphasized' ' that charge exchange cross
sections are sensitive to the nuclear density dis-
tributions. In this work we explicate this rela-
tionship and show that large mistakes can be made
unless realistic densities are used in calculations,
especially in the case of double charge exchange.
Our work is to be distinguished from previous
semiclassical results in the simple quantitative
relationship which we find between the angular
distribution and the underlying neutron and proton
density distributions. Because of the semiclassi-
cal nature of the approach, we mill restrict our
investigation to the energy region near the (3-3)
resonance. This is an interesting energy to study,
because large discrepancies between theory and
experimental total SCX cross sections to analog
states have been noted here. '

II. BASIC THEORY

The most general form for the isotopic spin de-
pendence of the pion optical potential is given by

U = u, +u, g T+u, (P T)', (&)

where y is the pion isospin and T is the nuclear
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isospin operator. The quantities up, u„and u, are
complicated functions which depend on the nuclear
spin and which are in general nonlocal. The opti-
cal potential is assumed to describe only the
elastic scattering from, and charge exchange
among, an isospin triplet of states. In this work
we restrict ourselves to cases in which the nu-
cleus has zero spin; we will then be able to study
such interesting cases as "0, "Ca, "Zr, ~ Sn,
and ' 'Pb. Also, we ignore the Coulomb interac-
tion. Koren' and Miller" have shown that at least
in the case of cross sections for single charge ex-
change that the results are very insensitive to the
Coulomb effect.

Expressions for up and u, may be found readily
in standard lowest order optical potential models.
In this work we shall for the most part ignore all
partial waves except for P waves. The reasons
for this are that (1) the P waves are the most im-
portant partial waves for the energy region in
which we are interested, (2) the 8 waves are rela-

— tively easy to include but complicate the expres-
sions which follow without adding to the qualitative
understanding which we are after. The ~ waves
should of course be included in any calculation
where quantitative accuracy is needed.

As an example, in the lowest order Kisslinger
theory, ' the P wave pieces of u, and u, are given
(see Appendix A)

(-V' + U, )gr =k'(„
(-V' + Ur, )(tr, = k'lC'v,

where

U, , =u, —(x+1)u, +(r+1)'u„

Ug =up- u~ +u2 ~

Uz+~ —up+Tu~+T u2 ~

(4b)

(4c)

(5a)

(5b)

(5c)

the pion and at least two nucleons, and thus the
leading order term is a "higher order correction"
to the optical potential. The u, and u, pieces also
contain higher order corrections, but not as the
leading order. There are many sources of these
corrections, which wiQ be treated carefully in a
separate paper.

In order to solve the Kisslinger theory in the
eikonal framework, we have to simplify the Klein-
Gordon equation. The difficulties are (1) the
coupled channel nature of the equation and (2) the
nonlocal character of the optical potential. The
first difficulty may be overcome by observing
that the interaction is isotopic spin invariant.
Thus, the interaction is diagonalized in the rep-
resentation in which the pion and nuclear isospin
are coupled to a definite total isotopic spin & =T
+g. The coupled equations then reduce to three
uncoupled equations for the wave functions gr,

( + r+ z)4r+z = 6'+z ~ (4a)

and

u =-A ' V ~ p(r)V

~( i)
u, = ' v ~p(r)v .

(2a)

(2b)

Assuming that u, = 0 and that u, and u, are given in
Eq. (2), we have from Eq. (5)

Ur =-v ~ gr(r)v, (6a, )

where

p(r) = p„(r)+p,(r)

and n,p(r) is the valence neutron density,

&p(r) =p„(r) p, (r). —

(Sa)

(Sb)

In these expressions T is the isospin of the target,
and g,'~ and X,' are strengths for the isoscalar
and isovector optical potentials, respectively.
Normally Xp and &, have different values, but in
the example of a scattering entirely due to the
(S-S) channel we have

g(i) p g(d (2c)

where the constant P is related to the free pion-
nucleon amplitude. In Eqs. (2a) and (2b) and
throughout the rest of the paper, p(r) is the total
density,

g (r) =&", p(r)+r "(&)~,"&p(r) (6b)

with r '~ (v ) given in Table I.
The second difficulty may be overcome by making

a transformation to a local interaction. This
transformation is well known' and some of the
details are given in Appendix B. The resulting
local interactions are, to lowest order in gz,

Ur =n'~r(r)+ ,'V'(, (r). - (7)

Because U has the form given in Eq. (1), the
scattering amplitude I (8) may also be written as

&'(8) =f,(e) +f,(e)p '& +f,(e)(g &)'.

When f„f„and f, are known, then the formula

TABLE I. Values for y ~(g).
In these expressions p„(r) and p~(r) are normalized
to the neutron number N and proton number Z,
respectively.

The isotensor term in Eq. (1) is not well under-
stood. The effect requires a collision between

T+1

(r i) 1
2T

1
2
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can be used to find elastic, single, and double
charge exchange amplitudes. However, Eq. (4) is
solved for the amplitudes 5 ~ which are the pro-
jections of F(e) in Eq. (8) onto states of good &.
We find from Eq. (8),

F,, = ( &~; r, I. I F(e) I v'Nf; r, 1)

v(~+ 1) r(—r+ 1)- 2
0 2 1

2

K(&+ I) —T(T +1) —2 '
f2.

(,)
2V' —1 '/' 1 1

T T+1 2T+1

X [Er F—r, —T(E r ~, +Fr, —2Fr )] . (14b)

Equations (12) and (14) are the desired results,
which show how to calculate elastic and charge
exchange amplitudes once I'~, E~ „and F~, are
known.

III. EIKONAL THEORY FOR ELASTIC SCATTERING AND
CHARGE FXCHANGE

Inverting this relationship we have

1
f0=Fr+ 2T (Fr~, -I'r, ), (10a)

The theory of Ref. 10a gives simple, analytic
expressions for the elastic scattering amplitude
corresponding to a Klein-Gordon equation with an
optical potential U of the form

(T +2) (T —1)
(2T+ 1)(r y 1) ++~ T(2T yj)

F~
T(T+ 1) ' (10b)

F = (m TIE(e)l m-r)=f.+Tf, +&f.,

F'=(mor~F(e)j m' r) =f, +rf„
which in terms of E~ are

(1la)

(lib)

(llc)

Fr -, Fr+i 1()T(T+1) T(2T+1) (T+1)(2T +1)

Qn the other hand, the elastic amplitudes are
easily found from Eq. (8):

F'= (m+TI F-(&)I m+T) =fo —Tf, + T(T+1)f„
(16)

Here k is the pion-nucleus center-of-mass mo-
mentum and q is the momentum transfer. The
quantity &z is defined by

—(2 ma+ ~) '~' 1m U~(& ~) = ln2,
1

(17)

where a& is the diffuseness in channel V evaluated
at some appropriate A,

U = P(k'p + 2 V'p) .
The opticai potential U~ has a similar form [see
Eq. (7)], so we may apply the results of Ref. 10a,
suitably generalized. (There is a minor change
made in Eq. (17) from that appearing in Ref. 10a.
See Ref. 10b.) In channel V' the amplitude is

E~(8) =E(e, A~) =ikR~ ' . ~ +AX.„Z,(@RE-) ., J,(&g)

T+1 (T+1)(2T +1) 2T+1 -I/a~ = Im U~(R)/I—m U~ (EC ) . (18)
& =Fr+~~

p T Fg+, (12c)

The quantity' in Eq. (16) is defined as

A =ika[C +lnln2 + —,
' ln(1+ Y')] + ka tan 'F, (19)

where C is Euler's constant
Similarly, the single charge exchange amplitude
E ~ and double charge exchange amplitude I' +

E' ~~ = (m'. r, —r+ ll E(e)i m': r r)— and

C= 0.5772

&q- =—ReU~(R )/ImU~(R) .

(2o)

= ~~(f, —Tf.),
E '=-(m: T, — T+ 2]E(6)i 'm. T, —T)

= [T(2T —I)]'~'f, .
These may in turn be written in terms of F&.

+T(2E „—E —F,)],

(Isa)

(Isb)

(14a)

The cross section for elastic scattering from
the target nucleus may be evaluated from Eqs.
(16)-(20) and Eqs. (12a)-(12c). We shaQ not be
further concerned with elastic scattering in this
paper, but we shall use the expressions in Eqs.
(16)-(21) to evaluate single and double charge ex-
change according to Eqs. (14a) and (14b). The for
mulas of Ref. 10a have been extended by Germond
and Johnson "b to provide a better description of
elastic scattering for angles between the first and
second diffraction minima. In this work we shall
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base our results on those of Ref. 10a because they
are somewhat simpler. However, the results of
Ref. 10b could be used to obtain analytical for-
mulas giving more accurate results at larger
angles.

The differences between the channel optical po-
tentials U~ are rather small, and therefore the
differences in Eg. (14) can be evaluated in terms
of derivatives of the E in E(l. (16). Thus, the dif-
ference FT —ET, in Eg. (14) is found by making a
Taylor series expression about A. (A also depends
on the channel V' [see Eq. (19)]and the dependence
of this term on E should also be expanded out. As
long as we are close to the (3-3) resonance this
term is small, and we shall neglect it. ) For ex-
ample,

F(8,AT)=F(8, A)+(RT -A) =—(8, A)

+-,'(RT —A)' —,(8,A).
—2dF

(22)

We then easily find

F(8,AT) —E(8,AT, )= (RT -AT, ) —(8, A)

y~(AT -AT, )

x (RT+AT, —2R), (8,A) .GPE

(23)

We will choose & later to simplify the theory. We
also need the double differences in Eq. (14). We
find

ET +, +ET, —2ET = (FT+, ET)——(ET —FT,)

dE
=(AT+, +AT, —2AT) ~

+
2 dR2 [0 T+1 T)AT+1 T ~) T A -T)(1T+ T-1 ~)]'1 d'F

By choosing B appropriately the expression sim-
plifies,

dF
ET+1+ET-1 ~T +T+1+ T 1~T) dR-

O'E
+(RT+1-AT)(RT -AT, ) ~, ,

(26a)

where

S' '=(2r'-1)(A, -A, ,)+r(R„,-A, )

+ T(RT+, —AT, ),
P ~~ = T(RT„AT,)(AT„--AT),

A = 2 (AT +AT, ) .

(27c)

(27d)

where

A = —', (RT+, +AT,), (26b)

Similarly, combining Egs. (14b), (23), and (25)
we find

The result in E(l. (24) may also be used to evalu-
ate the difference 2F~+, —F~ —F~, We find

dF2F, —F —E,= (2R, A-A, )—
dE—(A -A, )(R „-A,)

)(g) (2T —1 '' 1 11/2

T T+1 2T+1
2 1

x S~ 'i —(R)+P, (A), (28a)
(

where

8 '~ = (T 1)+(R AT)T

where

A = —', (RT +A T, ) .

(26a)

(26b)

—T(RT„-AT),
P +~ = ', (2T+1)(RT=+, AT)-

x(RT -AT, ),

(26b)

(28c)

Combining Eqs. (14a), (23), and (26a) we find and

A = —,(AT„, +AT.,). (26d)

(27a)
There are several observations to be made at

this point. The first is that Eqs. (27) and (28)
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=&pe, (g) +A[a, (qR) —~J,(g)], (29)

, =ill, (P) —qRT, (P)]

have been derived consistently from the expres-
sion in Eq. (14) in which only the first two terms
in the Taylor series were retained. As we shall
see, this is essentially an expansion in 4pg)/
p @), which is a small quantity in the nuclear
surface. In what follows, the terms will there-
fore be kept consistently through order (dp/p)'.
The second point is that the derivatives of E are
easily evaluated from Eq. (16): 1 ~'&;(R)

~,(R)
1 V'~, (R)

2I' g, (R) .
a,, (;(R)

gj a 2 g2 4

/1+ 5)2a;,
)il —5/2a, ,

1+bR, q/2. R'
+-.' ln "i, ~ (S8a)

Using the definition of g in Eq. (6) this may be
written

-A q[J, (qR) + QZ, (@)].
It should be clear that the higher order derivatives
vanish as progressively higher powers of q as
q - 0. Thus, truncating the expansion in Eq. (22)
is also reasonable for evaluating the cross sec-
tion for small angles. The quantity A in Eqs. (29)
and (30) is given by Eq. (19).

According to Eqs. (27) and (28) the single and
double charge exchange cross sections depend on
combinations of the following three differences of
radii

Rearranging terms in Eq. (38b), we get

1+5/2a, ~

1 —5/2a)~

, , &I+~R„/2R &

+2
I&1 ~R /2 (S9a)

R~ -R~-z y Ar+I-Rg, and A, ~+, -R (31) where
The physics of single and double charge exchange
thus reduces to an understanding of these three
differences. In the eikonal theory the connection
between the differences and the quantities of the
underlying theory is given by Eq. (17).

To solve Eq. (17) and obtain the differences
dA, ,=—R,. —R& of Eq. (31), we write

R) R' + AR„./2, -

R~ ——R' —&R„./2

(s9b)~= [&.(R) &, (R)—]/[&;(I )+&,(R)],

[v (R)/h (R) —v (R)/5 (R)
[v;(R)/h;(R)+ v;(R)/5;(R)1

[Note that y is the difference of the second deri-
vative at R; see E q. (38b).] The quantities x and y
are generally small numbers because for large R
the nuclear densities and their rates of falloff are
roughly the same. Expanding the logarithms in
Eq. (39a), we get

and

a, =a;~+5/2,

a, =a,, —5/2,

and assume that

(34)

(35)

m, , =m, (I)+m„(2)+m„(s), (41a)

+2x+2g + (40)
a,.&

2R' 2a;, '

where the omitted terms are third order in the
smallparameters. Solving Eq. (40) for ~,, we have

V, (R, )= V, (R) exp(R .-R, .)/a,.(R) . (s6)

We choose R to be the same as R in Eqs. (25b)
and (26b). For notational simplicity it is to be
understood in the remainder of- the paper that U,

g, and A mean ImV, Imp, and ImA, unless stated
otherwise. Thus,

&;(R) —&;(R)
2R —a,, (,.(R) + g,.(R)

(41b)

v, (R)/&, (R) —v, (R)/4 (R)
2R -a,, V, (R)/&, (R)+V, (R)/(, (R) '

(41c)
U a 1j2

(37) (3) si I

PjR —a,) 2a,)
(41d)

or In this equation we have let R'=&, which intro-
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We are assuming in this paper that the dynamics
of charge exchange is governed by the lowest or-
der optical potential. By deQ. nition, the strength
of this interaction is determined by the scattering
of a pion from a free nucleon. Therefore the de-
tails of the charge exchange cross sections, e.g.,
the variation of the magnitude with N and Z, are
determined by geometrical properties of the nu-
cleus. The geometry is defined by the effective
nuclear radius R, the diffuseness of the surface
in the vicinity of &, and the relative valence nu-
cleon density b, p/p at this point. In this section we
shall derive simple expressions for the cross sec-
tions which explicate the dependence on the nu-
clear geometry. In Sec. IVA we assume equal
diffuseness for neutrons and protons, but this
assumption is relaxed in Sec. IV B.

'A. Equal diffuseness for p and Qp

Suppose we consider a model in which /ocagy the
neutron and proton densities are varying expo-
nentially with the same diffuseness, i.e.,

p„(r) -e~~', r =Z

p, (r)- e~~~, r~R.
(42a)

(42b)

Because we are dropping p' terms, Eq. (42) im-
plies that ~,~(2) =0=~,~(8), and thus

4Ra g, (R)- ]~(R)
2R -a g, (R)+4(R) (48a)

duces only small error at order a/R
We have not made any special assumption about

the radial dependence of Ur(R) except that it is
approximately exponential in some region about
R in channel 7' [see Eq. (36)]. Thus, the results
of this section could be used to calculate elastic
scattering and charge exchange for rather general
forms of Ur(R). The procedure for charge ex-
change would be to evaluate the differences ex-
pressed in Eq. (41) and to use these results in Eqs.
(27) and (28). If the assumptions about the form
of Ur(R) are sufficiently simple, then it is pos-
sible to evaluate ~&& analytically in terms of a
few parameters characterizing the theory. In the
next section we shall make the evaluations in the
framework of a lowest order optical potential.

IV. CHARGE EXCHANGE IN THE GEOMETRICAL LIMIT

+[y(l) (~) ~ (1)
( )]

1 pP )
(44)

Expanding this through second order in wp/p, we
find

[y(z) (&) (x) (.)] i p(. )-2Ra . g~& g (s2

) (j)

~(i) 2
'[y(iP(f) y(i) (2)l

x('y@~)* (45)

The sums and differences of the y's in Eq. (45)
may be determined from Table I and the results
are given in Table II.

The single charge exchange amplitude, Eq.
(27a), requires that we evaluate the quantities
S+' and Pa' [see Eqs. (27b) and (27c)]. Here
we are interested in evaluating the expressions
for single and double charge exchange to lowest
order in the small parameters. It is clear from
Eq. (45) that the term P does not contribute to
lowest order in p. %e easily find from Table II

(2T —l)[y (T) —y '(T-1)]+T[y (T+1)—y' (T)]

+ r[y"'(r+1) -y")(r 1)]=-,'(2r+1)(x+1).
(46a)

Hence, to lowest order in &p/p, we find from Eqs.
(45), (27b), and (46a)

2R —a
'

(47)

TABLE II. Differences of p ~~ and y

Hence, the expression for the single charge ex-
change amplitude, Eq. (27a), gives

ap(R) ~()(, aR
(
—

)
p(R) Po'" 2R- a

where, according to Eq. (26b), R= 2(Rr+Rr q). —

For double charge exchange, Eq. (28a), we

The sums and differences may be determined from
Eq. (6), which gives

4( ) h (R) =[y ( ) y (2)]& &p(R) (48b)

$;8)+&;8)=»,"p(R)
+[y"(~)+y"(~)]~,'"~pA) (48c).

Combining the results in Eqs. (42) and (43), we

1
2

T+1
2T

7' (i)-7 (j)

T —12

4T2

2g+ 1,
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need the combinations S '
and I ' in Eqs. (28b)

and (28c). We easily find from Table II

(T+ I)[~'"(T)—8'(T - I)]
—7'[)'"'(T+ 1)- ) "'(Z)] = 0 (48)

(T+ I)[P' (T) —~"'(T- I)]

4TT[ (1) (2T ~I) (1) (T)]
(2 + I)(T+ 1)

(49)

Hence, to lowest order in &p jp, we find from Eqs.

O. I

(45), (28b), (28c), (48), and (49)

( .) a (2 T + 1)(T + 1) X)"' '
2 4T

(5Oa.)

X

b

~-"=-;(~r.i)(; )-;.(,
"„",

1
~p(R) ' 4R'

p(R) (2R - a)' '

and thus from Eq. (28a)

2T —1 ~~2 &pR a

Using Eqs. (29) and (30), setting A=0, gives

(„) 2T —1 zkR ~p A. g 2Rp

)& f J' (qR) —(a/R)[J'o(qR) —qRj (qR))},

(5Ob)

(5Oc)

O,OI—

l]
I

I)

lO 500 20 50 40
8 (deg)

FIG. l. Angular distribution for single charge ex-
change in mb/sr. The solid curve is an exact coupled
channel calculation and the dashed curve is the semi-
classical approximation. The pion energy is 180 MeV;
the nucleus is N = 28, Z = 20.

where R =-,'(R&+) + R, ,).
In order to get some feeling for the validity of

these formulas, we have solved the Klein-Gor-
don equation for elastic scattering using the pro-
grarn PIRK." We included only the (3-3) pion-
nucleon scattering amplitude to construct the
optical potential. The target nucleus was N =48,
Z =40.with p„proportional to p~. For the density
we chose a Woods-Saxon form with half radius
= 3.V4 fm and diffuseness = 0.564 fm. The Cou-
lomb interaction was turned off. The elastic scat-
tering amplitudes I"& ~, E~,~, and E& were used
to obtain the solid curve in Fig. 1 using Eq. (14a).
The dashed curve is the semiclassical formula
result corresponding to the present work. We in-
cluded all terms in the amplitude required by Eq.
(16). The quantity plotted is o(&) at a pion kinetic
energy of 180 MeV:

o«) = IF"'(8)I', (»)

where

(,)( )
ika &p(R) 7P

p(R) 2Z a)-
)(IZ()(qR) + (a ~R) [Zo(qR) —qRJ )(qR)1(A —iB)},

(52a)

A =C+ lnln2+ —,
' ln(1+& ) = 0.2165,

B= tan I = 0.1079, &p/p =vs,

y= 0.1083, R = 5. 13, a = 0.690.

(52b)

(52c)

(52d)

The values of A and a were obtained by solving
Eqs. (17) and (18). This calculation demonstrates the
semiquantitative validity of our approximations. The
calculations agree to within IO/q at 0 and be-
comes progressively worse in magnitude at larger
angles. At the position of the second maximum
the approximation overestimates the exact result
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by about a factor of 2. However, the locations
of the first minimum agrees to within 2 ' and the
position of the second maximum seems to be cor-
rectly r eproduced.

Figure 2 shows the corresponding calculation for
double charge exchange. The double charge ex-
change amplitude is

~(- )(8)
&&&

{I)i)~ &p{R)'
16 p(R) 2R —a

x(J (qR) —{a/R)[JO(qR) —qRrg(qR)]

x{1 A+iB)j, (52e)

where we used the values given in Eqs. {52b)-
(52d), except now R=5.10 and a=0.697. At e=0',
the approximation for o "(8) is 44% below the
exact result. The locations of the minima now

X
O
O
b

agree to 4', and the maxima are shifted by sev-
eral degrees.

The approximation for the double charge exchange
amplitude is somewhat inferior to that of the single
charge exchange. Both calculations underesti-
mate the exact results at forward angles and have

their minima at slightly smaller angles. The
approximations overestimate the height of the
second maximum, but this discrepancy would be
diminished by using the analytical formulas of

Ref. 10b rather than 10a. The extent of disagree-
ment in Figs. 1 and 2 at forward angles would

presumably tend to be removed by retaining higher
powers of &p/p in the expansions derived in this
paper, at the expense of making the formulas more
complicated. The simpler formulas are a suffi-
cient reproduction of the exact result for the pur-
poses of our present investigation. Wallace" has

made a careful study of the eikonal theory and

written explicitly a set of corrections which are
needed to improve the extent of agreement be-
tween the eikonal theory and an exact solution of

the wave equation. These corrections are sec-
ond order and higher in the density and one might

therefore expect the double charge exchange cross
section to be more strongly affected by their
absence than the single charge exchange.

It is interesting to note that the first minimum

of the SCX and DCX cross sections occur at a
smaller angle than the minima in the elastic scat-
tering angular distributions. To a first approxi-
mation the second maximum of the SCX and DCX

cross sections occur at the same angle as the
first minimum of the elastic scattering angular
distributions [compare Eqs. (16), (47), and (50d)];
it is this angle which is usually determined by the

effective nuclear radius R.

I O.

IO0 20 50
8{deg}

FIG. 2. Angular distribution for double charge ex-
change in p, b/sr. The solid curve is an exact coupled
channel calculation and the dashed curve is the seini-
classical approxiInation. The pion energy is 180 MeV;
the nucleus is N = 28, Z = 20.

50

9. Different diffuseness for p and Dp

where

k $)(R) + V' $, (R)/2
u' ~,'(R) + V'~,'(R)/2

Now, we define the diffuseness a, and a~ so that

I'p(R) + V'p(R)/2
u'p'(R) + V'p (R)/2

(55a}

In Sec. IVA we made the approximation of

assuming that p(x) and &p(r) had the same rate of

falloff in the nuclear surface. In this subsection
we shall investigate the corrections to this approx-
imation. In order to do this we must carefully
study the terms &R~&(2) and &R&&(S) in Eq. (41).

1 et us begin by considering &R;,.(3}:

&R„(3)=-,'(a, -a, ), (53)
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k'~p(R) +V'~pS)I/2
k'~p'(R) + V'~p'(R)/2 ' (55b)

Taking $; from Eq. (Ga), Eq. (54) becomes [using
Eq. (55)]

(1)(k2p ~ 1 V2p) + y(l)(i))( (1)(k2Zp + 1 V2 i)p)
a, =a 0

o)(k2p + 1V2p) + ~ r(1)(i)) (1)(k2gp ~ ( V2gp)

(56)

Using Eq. (58), we find from Eq. (53)

((( ) ~a ~ [Pl)( ) (1)(.)]1 —ap ag 2

[y(1)( )2 Pl)( )2 (59)

Dividing numerator and denominator by &0' (k'p
+-,'V p), we find

1+r'"(i) (2)(,' 1+ (a,/a, )r"'(i)()(1(1 '

Next consider &R;i(2) [Eq. (41)], which may be
rearranged to read

~a V $(/$; —V (1/g
k' 2+ (V'g, /~, +V'~, /(, )/(2k') .

where we define

g (1)
Q=—

0
and

I vAp
2k' &p
1 v'"p

1 +
2/2

(57b)

(57c)

We shall first find an expression for V $,/f(.
Using Eq. (6a),

V2 / (1)( ) 2g
i i 1+r(1)()+ (61)

where we have used the definition of o.', Eq. (57b).
Expanding Eq. (61) to second order in (2, we get

Expanding Eq. (57a) to second order in the small
parameter &, we find

P+

a;=a, +a, 1 —~ &K1 "i
Clg

2

=V p/p —(V pip —V bp/6p)

x [~r &'& (1) —~'r""(i)] .

&2 2/1) (.),
ag

(58) Substituting Eq. (62) into Eq. (60) we find, dzop
ping the second order term in the denominator,

where

g2a„-.,( [r("(i)—r("(j)]—~2[r'" (i) —r'" (j)]j
1 —(&)(1/2)[r"'(i) + r'"(j)]

7(il = (V'p/p —V ~p/)2p)(2k'+ V p/p)
' .

Expanding Eq. (63) to second order in (2, we find

&R,)(2) =-a(11(lo[r (i) —r' '(j)]+a,&i()(2 [1—()(,/2)][r (i) —r (j)].
Making use of the following relationship between K1 and 7K1

1 —K1=K1)

Eq. (65) becomes

Q
aR„.(2) =-a,la(1 —)(,)[r '(i) —y"'(j)]+ ' (1 —r(1 )[r"" (i) —r (j)].

(64)

(65)

(66)

(67)

Now, we need a,&
in order to evaluate &R,~(1) and &Ri&(2). This quantity may be evaluated from Eq. (58).

To first order in Q',

a, ,=—a,. +a,.=a, + ~2 & — «1 r'" i + r' j
Using this in Eq. (45),

I

~a„(()=a.Ia[~"'(i) —P(()]——,'a' ( —~, & —' [P (() —P ())]I,
a~

alld ill Eq. (67),

(68)

(69)
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1 — o.2
&R)~(2) =-a,(i —v, ) o'[r'"(i) —P'(j)] + ' ' [1+K2a, /a0 j[P' (i) —r'" (j )] . (vo)

Finally, putting together the results of Eqs. (59}, (69), and (VO) we find

Q
AR&&

—ua —(3 —a~/a~) [P(i) —8'(j}]— '[(a,/a~)tc2 (2- a, /a~) j[P' (i) —y' ' (j)] . (vl)

In the limit that a, = a~, rc~
—1, this result is the

same as Eq. (45), as it should be.
We may now evaluate the modified SCX and DCX

amplitudes. Repeating the arguments following
Eq. (45), we have

S' '(new) =S '(old) —'(8 —a,/a~)

and

S' '(new) =S' '(old}

&& [(a,/a~) e2 (2 —a~/a~)] . (72b}

The I' ' function is unchanged to the order we are
considering. However, P ' becomes

l2
& '(new) =P (old) —'(8 —a, /a~)

2
(V2c}

The amplitudes may be evaluated from Eqs. (27a)
and (28a); explicit expressions for cross sections
are given in Eqs. (V3) and (V4) below.

In the next section we shall try to understand the
importance of the various terms of the theory by
making a comparison to the experimental data
which exists.

V. COMPARISON OF GEOMETRICAL MODEL TO
EXPERIMENT

The theory of Sec. IV was derived under the
following set of approximations:

(1) The underlying interactions are isospin in-
variant.

(2) The optical potential is first order in p and

bp.
(8) Only the leading terms in &pip are retained

in the expressions for the single and double charge
exchange amplitudes.

We also assumed that there is no S-wave pion-
nucleon scattering, which is approximately true
in the region of the (8-3) resonance.

Let us begin by recording the complete expres-
sions for the angular distributions in the semi-
classical theory. We have, from Eqs. (27), (28),
(48), (5O), and (V2),

~p(R) ~,'"&I (u .)'
(R) X ''] 4T.-'(3-'/"'~ J '( R) (V3a)

4 (R /2)z 0 q

with

R=-,'(R, +R, ,), (73b)

with

hp(R) X )i (ka, ) 2T —1 R
' p(R) X '") 8 (2T) (R —a,/2)'

&&((a /a~) (2 —a, /a~) J0(qR)

—~(3 —a /a~) (a, /R)[J'0(qR) —qRJ, (qR)]]

(V4a)

R =-', (R„,+R, ,), (v4b)

where xq, a„and a~ are defined in Eqs. (5Vc),
(55a}, and (55b), respectively. These simple ex-
pressions express the dependence of the single
and double charge exchange cross sections on the
nuclear geometry. We have omitted small terms
involving the quantity A [see Eqs. (29) and (80)].
These become slightly more important away from
resonance and should be included for more accu-
rate studies of the angular distribution.

If the assumptions (1)-(3)are valid, then a compar-
ison of the theory to experiment provides an experi-
mental means of verifying the nuclear model from
which', p, &p, a~, Rnda&are obtained. Becausethe
cross sections are exceedingly sensitive to these
quantities in the tail of the nucleus, single and double

charge exchange could become a valuable tool for
studies of nuclear structure, especially the neutron
halo.

However, it is by no means clear that the as-
sumptions expressed here are sufficient for a
complete theory. Difficulties of previous theo-
ries to reproduce experiment' suggest that they
are not. Perhaps the most interesting informa-
tion is contained in the discrepancies between the
experiment and the geometrical model with realis-
tic nuclear densities, as this is a measure of the
extent of modification of the pion-nucleon inter-
action in the medium. Because the data analysis
for the single charge exchange measurements is
still in progress, a detailed comparison between
the theory and experiment will have to be made at
a late& time. Although there are preliminary
data published in Ref. 1, we will not quote these
results because there are some sizeable correc-
tions to some of these points. However, there



202 MIKKEI, B. JOHNSON

P„(r)= A— P (~),
X

z
(75a)

(75b)

in which case

~p(~) x z
p(r) A

It then follows that for a given energy

&"'(8) (At —z)x-"'z, '(qR) .

(75c)

We show a plot of Eq. (76) at & =0' for selected
nuclei throughout the periodic table, in Fig. 3.
The structure seen in this figure is due to the
diffractive character of the scattering and would
presumably be seen in single charge exchange for
any strongly absorbed probe. The theory repro-
duces the general trend of the data, but tends to
underestimate the scattering from the lighter
elements.

I I I I I I I I I

I I I

40
I I I I I I } I I

80 I 20 I 60 200 240
A

FIG. 3. Belative A dependence according to Eq. (76).
The magnitude is normalized to unity for Zr.

is double charge exchange data available and a
comparison between the theory and experiment
will be made in this case. A comparison between
this theory and the data is an important step in
understanding the nature of the charge exchange
reactions. It complements the more comprehen-
sive computer solutions by providing direct physi-
cal insight into the causes of success or failure
of the calculation. We are not able to calculate
the total cross sections to analog states in this
theory, because the eikonal theory on which our
results are based is valid only for forward scat-
tering.

First, consider the & dependence of the single
charge exchange cross sections. We shall dis-
play the relative & dependence in which case the
following three assumptions are plausible. '

(a) a is constant throughout the periodic table.
(b) R~A'".
(c) The neutron and proton densities are related

to the total density p(r) by

Next, let us consider the absolute magnitude of
the angular distribution. In order to calculate
this we shall need R, n, and &p/p. According
to the theory of Ref. 10 the radius combination in
Eqs. (73b) and (74b) should be evaluated from Eq.
(17). However, it is important to verify that the
theory used to evaluate charge exchange is con-
sistent with elastic scattering data, and to accom-
plish this we have determined TI, from empirical
total cross sections rather than from the theory.
This will ensure that our cavalier treatment of
such refinements as Fermi averaging and rela-
tivistic transformations between the pion-nucleon
and pion-nucleus center mass frames would not
lead to an incorrect value for R. To obtain R we
use the relationship

o„,=2vR +4vaR[C'+lnln2+ —,'ln(1+1')]. (77)

This expression follows from applying the optical
theorem to the elastic scattering amplitude [see
Eq. (23) of Ref. 10a]. We took &r„, a.s the average
of the m' and m total cross sections. " The data is
not sufficiently accurate to distinguish between
A~, A2.,&, and 8& q. The quantities a and F are
defined in Eqs. (18) and (21); we used realistic Har
tree- Fock densities' evaluating a(R) and &p(R)/
p(R) for heavy nuclei and densities of Ref. 14b for
light nuclei. The results of this calculation are shown
in Table III for T, = 180 MeV. For energies as
low as 100 MeV this procedure for obtaining 8
does not yield sensible results, except for the
heavier nuclei, due to the increased nuclear trans-
parency and scattering from the real part of the
optical potential.

From the results of Table III we calculate the
single charge exchange cross sections from Eq.
(73a) and show the results in Table IV under the
column headed e'" (realistic p). The enhancement
factor between the simple theory and the realistic
theory is also shown in Table IV. We have as-
sumed that the diffuseness in the simple theory is
the same as the diffuseness of p in the realistic
theory and that R is the same in both theories.
We conclude that in order to evaluate realistically
the single charge exchange cross sections, it is
necessary to use the best available densities.
The enhancement is largest in the far nuclear
tail; for energies different from 180 MeV, which
corresponds to a smaller 8, the enhancement will
be smaller because &p/p is more similar to (&
—Z)/A. No comparison to the data will be made
here for the reason stated above, but there is a
systematic tendency for the theory to underesti-
mate the preliminary data in Ref. 1a, by as much
as a factor of 4 in some cases. In the case of the
lighter nuclei, particularly Li, the method of cal-
culating the diffuseness a in terms of the deriva-
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TABLE III. Parameters needed for evaluating 0.(8) in the geometrical model at T =180
MeV. R0 is defined as R0=(0, , /2&), vrith values of Ot, t taken from Ref. 12. R is defined in
Eq. (77). We use p0=0.16 fm 3.

Target g0 (fm) g (fm)

Simple
theory
4 p/p

Realistic theory
P/P0(B) &P/P(R) a~(R) a, /a~(R) Kg

Li
$3C 3.

58N,. b

"Zrb
120Sn b

208Pb b

2.84
3.39
5.64
6.51
7 ~ 02
8.27

2.61
3.25
5.50
6.37
6.87
8.12

0.143
0.0769
0.0345
0.111
0.167
0.212

0.185
0.128.
0.0781
0.0639
0.0765
0.0710

0.172
0.114
0.0526
0.160
0.366
0.432

0.854
0.685
0.670
0.642
0.696
0.681

Q. 393
0.618
0 ~ 642
0.937
0.667
0.751

0.697
0.742
0.743
0.931
0.786
0.826

' Densities from Bef. 14b. Densities from Ref. 14a.

tive of the density at R becomes questionable. Be-
cause densities p & p(b) contribute to the amplitude
for scattering at a given impact parameter b, a
better prescription for a in the light nuclei would
be to take for it the distance & such that p(R+ &)
= e 'p(R). This has been done in Table III for the
case of I i.

Finally, in this section, let us consider double
charge exchange. To estimate the relative ~
dependence, we make the assumptions (a)-(c)
above Eq. (75) and apply these to Eq. (74). We
then find

' '
(0) -A (N —Z)(N —Z —1) .

In Table V we show the cross sections at ~ =0'
relative to those of O. According to this table,
the double charge exchange cross section to the
double analog of "Ca should be the same as for "0.
The experiments' have resolved a clear signal for
"0, and a measurement for 'Ca would appear to
be feasible at present. According to this table it
may be possible to measure the double analog in
heavy nuclei with modest improvements in the
statistic s.

According to Table IV there are large correc-
tions to the SCX cross section arising from the use
of realistic nuclear densities. The same is true
for DCX, but the effects are larger due to the fact
that the &p/p term in Eq. (74a) is raised to the
fourth power. In Table V we show the corres-

ponding DCX enhancement factor for several heavy
nuclei evaluated at 7",=180 MeV. The effect of
using realistic densities is particularly pronounced
in the case of Sn.

We have treated DCX from 0 as a special case
because of the existence of an angular distribution
at T, = 164 MeV. In Fig. 4 we show the experi-
mental angular distribution. ' The value of R
is determined from Eq. (77), with the experimental
total cross section taken from Ref. 15, and the
a„a,/a~, and &p/p evaluated a,ccording to the
densities of Ref. ]4b. [The quantity A in Eqs.
(29) and (30) increases the cross section by 20%
and was included in the calculation. ]

The theoretical curve corresponds to Eq. (74)
assuming that the neutrons and protons have the
same diffuseness in the surface (i. e. , a, /a~ =1
= vq). The mark at a(0) =0.31 pb is the forward
cross section, assuming that a,/a~ and v, are
calculated according to the model of Ref. 14b. Its
shape is essentially unchanged from the curve
shown. The parameters in the geometrical limit
for the two cases are shown in Table VI. We
found some difficulty in obtaining a~ due to the fact
that the effective density hp+ V bp/(2k ) from
which a~ is calculated according to Eq. (55b) peaks
in the vicinity of R. In this case we have taken
a~ as the distance over which &p(t') fa, lls by 1/e
rather than evaluating it according to Eq. (55b).
Because the actual density for 0 does not fit

TABLE IV. Experimental and theoretical SCX angular distributions at O'. The incident pion
energy is 180 MeV.

Target 0'"(realistic p) ~(rea»stic p) /~("Zr)

Ll.
13C

58Ni

"Zr
"'Sn
208Pb

1.78
0.56
0.128
0.271
0.810
0.530

1.20
1.72
1.78
1.91
4.05
3.22

6.6
0.48
0.43
1.0
3
2
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TABLE V. A dependence for forward scattering to double analog of target.

Target ~ DCX /~(18O) (0', realistic p)/0 (0, simple p)

i8()
"t."a

Ni
80@r
"'Sn
208Pb
238U

1.00
1.06
0.Ql

0.21
0.34
0.27
0.26

0.BS

1.05
3.22
6.02
6.67

very naturally into the set of assumptions under
which the theory was derived, we believe that the
reduction factor due to different diffuseness of
neutrons and protons is probably not very reliable.
However, for heavier nuclei these difficulties are
not encountered and theory should be more reli-
able, accordingly. The theoretical angular dis-
tributions for "O(v', m )"Ne as shown in Refs. 2

and 16 are similar in shape to ours. The two
limits which we have considered span the model
dependence in these works. The minimum in our
theoretical curve gets filled in by the real part
of the amplitude, which consists of contributions
from 8 and P waves. We have omitted these
terms as discussed earlier.

The most puzzling feature of the 'O(&', & )
double analog angular distribution is the mini-
mum in the angular distribution, which occurs
in the experiment at about 20', and which occurs
in theories at about 40'. From an inspection of
Eq. (74) and Table pl, we see that the theoretical
curve is dominated by the J,(qR) term in the angu-
lar distribution. The term J,(qR) —qRJ&(qR) has
its zero at about 15'. Within the context of the
present theory what is needed in order to repro-
duce the location of the first minimum is an effect
which provides a coherent superposition of these
two terms with J,(qR) having the smaller coeffi-
cient. The main eff ects which have been omitted
from this investigation are the p' terms in the
optical potential. Our calculations show that the
greatest sensitivity of the DCX scattering to the
p' terms occurs in the coefficient of 4,", and that
this coefficient is affected most strongly by the
lsotensor piece of the optical potential. h im-
portant implication of this is that the position of
the minimum in the cross section of the

"O(m', m )"Ne analog transition may be an essen-
tially direct measure of the second order optical
potential. " The- p' terms are also presumably re-
sponsible for a large part of the disagreement in
the SCX comparisons. The details of this calcula-
tion will be presented in a forthcoming paper on

the ro)e of p' terms in pion charge exchange.

VI. SUMMARY AND DISCUSSION

We have derived analytical expressions for pion
single and double charge exchange. To lowest
order in a systematic expansion the results are
given in Eqs. (73a) (single charge exchange) and
(74a) (double charge exchange). These expres-
sions are applicable in energy regions for which
the nuclear scattering is diffractive. The expres-
sions are intended to accurately reproduce the
charge exchange corresponding to the Laplacian
model for the lowest order optical potential. In
order to arrive at expressions corresponding to
the Kisslinger model it is necessary to evaluate
corrections arising from second order terms in
the optical potential. A careful treatment of
higher order terms in U will be given in a sepa-
rate paper utilizing the framework established in
Secs. I-IV of the present paper.

As the development in this paper assumes that
the dynamics of the charge exchange is governed
by the lowest order optics, l potential, the strength
of which may be deduced from free pion-nucleon
scattering, the variation of the cross section as a
function of A is determined by the nuclear geo-
metry, i. e. , the diffuseness parameters, the
radius R, and the ratio &pip of the density of the
neutron excess to the total density evaluated at
A. Our results show explicitly the dependence of
the angular distribution on this geometry. The

TABI,E VI. Parameters for the geometrica} model of ~ 0 at T„=164 MeV.

a (fm) aP (fm) aP/a~ p/p (Q) &p/p(g) 4 P g (g /g )g (2 g /g )
(3-a /ag) ——

3.50
3.50

0.969
0.969

1 1
Q.781 0.580

0.184 0.208
0.184 0.208

0.276
0.115

1
0.320
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l.o

O
b

0.1—

20IO0 30 40 60
8 {deg)

FIG. 4. Angular distribution for O(.x', m ) Ne at
T, =164 MeV in pb/sr. The data is from Befs. la and

2. The solid curve is the theory without corrections
for different diffuseness for p (r) and 6p (r). The mark
at 3.1 pb/sr is the value of &zD~(0) when this correc-
tion is made.

strong dependence on &p/p suggests that the SCX
and DCX experiments may develop into a sensi-
tive probe of the neutron halo.

Even with the best available densities, the cal-
culations of SCX in the geometrical model under-
estimate the data by a factor of 2-4. However,
the general trend in the A dependence is qualita-
tively reproduced. There are puzzling discre-
pancies between the DCX cross section and exper-
iment, particularly regarding the position of the
first minimum in the angular distribution. As
we have stressed, it is very interesting to under-
stand the nature of the residual disagreement.

It is possible that the disagreement arises from
a breakdown of one of the three assumptions
stated at the beginning of Sec. V and/or that the
nuclear model used is wrong. Isospin violating
corrections could arise from Coulomb energy
shifts in the pion-nucleus interactions, from the

mass difference, from level shifts due to
the energy difference of the nuclear ground state
and the analog state, or from differences in the
wave functions in the analog and ground states.
There is no careful, systematic treatment of all

these effects, and the traditional view is that
isospin violating terms are small. '"

It is likewise unlikely that the nuclear model
can be in error by enough to account for the dis-
crepancies noted. The nuclear wave functions
have been taken from theories in which careful
consideration was given to consistency with elec-
tron scattering and removal energies of the bound
nucleons. However, for some targets considered,
the assumptions underlying the nuclear models are
less well justified than for others. For example,

Sn has a closed proton shell but the neutrons do
not form a closed shell. It is well known ' that
assuming that the ground state consists of a
single Slater determinant of filled single-particle
orbitals is not a good approximation for this nu-
cleus. We have estimated this effect to be mod-
erately small at T,=180 MeV. However, in the
case of Pb, the nucleus is doubly magic and the
occupation probabilities of the levels outside the
Fermi sea are much closer to zero. Sub-Cou-
lomb pickup experiments have given strong sup-
port to the neutron tail in Pb for the model
of Ref, 14a.

In the present paper, we have made the assump-
tion that the pion-nucleon form factor is zero
ranged. We have also made the "factorization
approximation" which effectively ignores certain
momentum dependent terms in the m-nucleon
interaction. One consequence of these additional
nonlocalities is to increase the diffuseness of the
nuclear surface. This result can be easily seen
following the arguments of Ref. 20, where the
spreading effect of finite range form factors was
shown to be taken into account approximately
through a convolution of the nuclear density and the
square of the pion-nucleon form factor. An in-
crease in the diffuseness would raise the cross
section as can be seen in Eqs. (VS) and (74), as-
suming the effect is the same for p and ~p. How-
ever, the increase arising from the form factors
should be a small effect, since the modern esti-
mates for the range of this interaction suggest a
very sho& range. In any case we have deter-21

mined R from experiment, which partly accounts
for these terms.

We are thus led to consider the effects of higher
order terms in the optical potential. These are
very poorly understood, and estimates of their
sizes have shown them to have a nonnegligible
effect on the charge exchange cross section. The
effects calculated include the Pauli exclusion prin-
ciple, '

. the energy shift of the &-nucleon scat-
tering from the valence nucleon due to the
core, ' ' ' and the spreading interaction in the iso-
bar-hole model. " It is likely that a sizable amount
of the discrepancy with experiment comes from
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these terms, and that the charge exchange reac-
tion will provide important information about the
dynamics of the pion-nucleon interaction in the nu-
clear medium.
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~(0) (Q) y(1)
n —

p 0 ~ (A4c)

It now follows from Eqs. (A4a) and (A4c) that

(A e)

and hence from Eqs. (AS) and (A2a) we find

(g —Q.

Equation (A4b) implies

(Ae)

Furthermore, because the scattering from an
isotopic spin zero target cannot depend on the
isospin of the projectile, we have

(+) (-) (-) (0) (0)~„ + o& —G„ + Q&
——Q„ + && (A4b)

and

(Ala)

APPENDIX A: ISOVECTOR AND ISOSCALAR OPTICAL
POTENTIAL TERMS LINEAR IN DENSITY

If the optical potential for elastic scattering is
known, then the functions uo, uq, and u2 of Eq. (1)
may be inferred from the isospin invariance of the
strong interaction. For simplicity we shall take
the optical potential to be purely I' wave and the
target to be spinless. Then,

&=-& g(r)v,

which gives according to Eqs. (A2b) and (Ae)

Ap,
1

2TN

where &p=—p„-p~. Finally, we easily show

~0 = ~0"'(p. +op) = ~0"'o .

(A8)

(A9)

where

&=4+4& 'T+ $2(p T)'. (A 1b)
In this appendix the subscript on $ refers to the
term in Eq. (Alb) and not to the total isospin
quantum number &. The relationship between $0,
$q, and h2 and the corresponding quantities $ ',
defined as

={~:TA' ~~= T'n
I
(I~-': ~~, T~=-TN), (A1c)

~h~~~
I

&': &&, T., =-7'„) is the isospin wave func
tion for the target nucleus and incident pion, is

—T~4 (A2c)
%e now want to determine the dependence of

$; on the neutron and proton densities. With p„
and p~ normalized to the neutron and proton num-
bers we may write ("as

(AS)

where &„' and +~' is a set of six complex numbers
independent of & and Z and proportional to the
pion-nucleon scattering amplitudes. Invariance
under isospin rotations implies constraints among
the $'s. Because the pion and nucleon may couple
only to total isospin —,

' and & it is easy to show that

(A4a)

Thus, to lowest order in the density the pion-nu-
cleus optical potential becomes in the Kisslinger
theory

Similar arguments give the form for the S-wave
optical potential U to be

p=z,"'p(~)+ — Y,"'~p(~)y T,

where &0 and &1 are the isoscalar and isovec-(1) —(1)

tor strengths for S waves. A relationship between
the & parameters and the pion-nucleus phase shifts
may be found in standard references'; we have
presented the above derivation of the form of the
potential because it easily generalizes to terms
quadratic and higher in the density. For the case
that the scattering occurs entirely through the
(S-S) resonance we have

(1) (1)

This relationship holds for energies close to T,
=180 MeV.

The isovector potential [Eq. (A8)] depends on
p„-p~. For all practical purposes this difference
gives the valence neutron distribution, since the
core neutrons and protons fill identical orbits when
the Coulomb interaction V~ is turned off. Even
when V~ & 0, the core orbits are nearly the same
and &p will continue to be very nearly the valence
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neutron distribution. However, for heavy nuclei
the Coulomb interaction leads to unbound analog
states, and therefore the wave function for the
final state is probably not very accurately de-
scribed in this model,

APPENDIX B: THE LOCAL REPRESENTATION

We are assuming that the optical potential in the
channel ~ of good total isospin may be written

V~=-V ~Jr)V+ (,(r), (BI)

where $r is the matrix element of $ [see Eq.
(Alb)] between isospin states of good T=T+ Q,
and gz is the equivalent matrix element for S
waves. Following Ref. 9 we make the substitu-
tion [P(r) is the wave function of the Klein-Gordon
equation with U given in Eq. (BI)]:

1„(.) = „„(),„. ,(.)
and find that xr(r) satisfies the equation

-~'x, (r)+ —, ,—[&'5,(r)+C,(r)+! ~&,( )r]x,( )r

——I+ & ( ) xr(r) =a x~(r). (~3)&,() '

Expanding Eq. (B3) to second order in (r(r), we
find

-~'x„( ) +9'(,( ) —~'(,'( ) + &,( ) —&,( ) (,( )

+ .'V -[,(r) — ~,(r)V ~,(r)
—l[&'r(r)]'jx~(r) =&'x (r) .

Now, using the identity,

(h-')',

(S4)

we find that the (local) optical potential in Eq.
(B4) may be written

Vr(r) =- u'[~~(r) —$r'(r)]+ ', V'[5-, ( )r—h,'(r)]
+ t' (r) —& (r)] (r)+-,'fV't'~. '(r)+[]'(r)]').

(I~6)

Thip expression for U is the local form of the
Kisslinger potential to second order in the density.
If we omit the $ terms, then we get what is com-
monly called the Laplacian model,

U (Laplacian) =k $ (r) + $&(r)+ ,'V $ (r—). (B'7)

The theory in this paper can easily accommodate
the Kisslinger and I aplacian theories, but to see
the differences we must calculate through order p .
These terms will be treated in a separate paper.
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