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Giant resonance spectra have been measured for ' 'Pb, "Sn, ' Zr, "Ni, and "Ti, using inelastic scattering of 152-
MeV alpha particles. In addition to some low-lying states, the spectra were analyzed to yield separate peaks for
the giant quadrupole resonance and giant monopole resonance, except in 4'Ti, where no evidence was found for
a giant monopole resonance. The results for the monopole resonance when compared to distorted-wave Born-
approximation calculations show that -100% (~20%) of the T = 0, L = 0 energy weighted sum rule is depleted
for nuclei with A & 90. For "Ni only 40% of the monopole sum rule is found. The excitation energy of the giant
monopole resonance follows the systematic trend -80 A '" MeV. The data are also compared with folding
model calculations using Tassie transition densities and an effective interaction derived from elastic data. Good
agreement was obtained for low-lying quadrupole and octopole excitations, but this model yields considerably
too little cross section for the monopole resonance. This probably indicates a deficiency in the Tassie model
breathing mode transition density.

NUCLEAR REACTIONS Pb, Sn, Zr, SNi, Ti(u, u'), E =152 MeV, Ex
= 0-40 MeV; measured g(Ex, 8}; discuss giant resonances, folding model cal-

culations, deduced L, P&.

I. INTRODUCTION

During the past decade the existence of the giant
.quadrupole resonance (GQR) has been firmly es-
tablished and properties of this resonance have
been measured for a great many stable nuclei. '
Of special interest are the recent direct observa-
tions' e of a giant monopole resonance (GMR).
The GMR is of particular importance since the
energy of the resonance yields a direct measure
of the nuclear incompressibility. While previous
(a, a') measurements of the GMR dealt with nuclei
having A ~ 90, a recent publication~ has reported
observation in the (P, P') reaction of the GMR at a
systematic excitation energy of -80& ' ' MeV for
several nuclei between g = 58 and 208.

Most measurements of giant multipole resonances
have been made by inelastic scattering of protons,
electrons, and alpha particles. While protons and
electrons can excite both isoscalar and isovector
states, inelastic alpha scattering provides only
negligible cross section for isovector resonances.
Thus, the (a, a') reaction is especially useful for
studies of isoscalar, electric giant resonances,
which are the subject of the present work.

Previous studies' of the giant quadrupole reso-
nance using inelastic scattering of 96-120 MeV
alpha's have yielded important results in the giant

multipole resonance field. However, the use of
higher energy alpha particles provides a significant
improvement over these earlier measurements in
two major ways: (l) resonance cross sections
are considerably larger for incident 152-MeV
alpha's than for incident 100-MeV alpha's, which
leads to a larger ratio of giant resonance cross
section to continuum cross section, and (2) con-
tamination of the giant resonance portion of the
inelastic alpha spectrum from the kinematic pro-
cesses n+n- 'He*- n+n and n+P —'I.i*-n+t)
is eliminated. The existence of the process des-
cribed in (2) has been particularly troublesome to
the study of giant resonances using -100-MeV in-
cident alpha's. It has been shown' that part of the
continuum distribution formed by alpha particles
from the breakup of 'He* and 'I.i* occurs at the
same location as the GQR peak in light nuclei when
100-MeV alpha's are used. For the GMR which
is located at higher excitation energies than the
GQR, and is generally smaller in cross section
than the GQR, the contamination from 'He* break-
up is even more serious. However, for 152-MeV
incident alpha particles the peak from the 'He*
breakup should be at least 10 MeV away from the
maximum extent of the expected location of the
GMR.

In the present paper we present the results of
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measurements of giant multipole resonance spec-
tra using 152-MeV incident alpha particles. We
have studied several targets in the mass range of
46-208 in order to extract systematics for the
GMR and GQR. The large resonance cross sec-
tions, "clean" continuum, and selectivity of iso-
scalar excitations have enabled us to provide
strong evidence for the GMR excitation energy
systematics suggested earlier from the (p, p )
measurements. 4

II. EXPERIMENTAL RESULTS
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Giant resonance spectra were obtained by inelas-
tic scattering of 152-MeV alpha particles from
the Indiana University Cyclotron Facility (IUCF}.
Spectra were obtained from '"Pb (4.30 mg/cm'),

cSn (4.85 mg/cm'}, 'oZr (4.10 mg/cm'), ' Ni
(4.50 mg/cm'), and 4'Ti (4.86 mg/cm'). All tar-
gets were isotopically highly enriched and self-
supporting. Inelastically scattered alpha particles
were detected in a silicon surface-barrier counter
telescope consisting of two 2000- p.m and one 5000-
p, m detectors. The thickness of the "AE" detec-
tors was sufficient to stop -110-NeV alpha par-
ticles. Thus, the spectra covered an excitation
energy range of -40 MeV. Particle type identifica-
tion was achieved by the AE xE method and the
complete separation of the alpha-particle spectra
from neighboring 'He events was achieved. Fur-
ther, the thickness of the b,E detectors was suf-
ficient to ensure that elastically scattered alpha
particles that undergo reactions in the 5000-p.m
detector did not interfere with the giant resonance
spectra. The energy resolution of the detection
system was -150 keV.

Considerable time was spent in an effort to en-
sure that the spectra were free from nontarget
background. No slits were utilized in the IUCF
beam transport system after the final magnetic
bend of the beam. Targets were mounted on thin
aluminum frames with a 2.5 cm diameter apera-
ture. Measurements were made of scattering
from a blank target frame which had an aperature
of only 1 cm diameter. Upon proper beam tuning,
essentially no events were detected from the blank
frame at the smallest scattering angle used in the
experiment, 5 .

Data were taken in one degree steps for giant
resonances at laboratory angles between 5' and
-25'. In the angular range of -8'-ll', the giant
resonance peaks are obscured by alpha-particle
scattering from hydrogen contamination in the
targets. For '"Pb, data were taken at only a few
angles to compare with px evious measurements"
of the GQR and GMR. Elastic scatteririg data were
also taken from "Zr on both sides of the beam in
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FIG. 1. Inelastic alpha-particle spectra from 152-MeV
alphas incident on ~Pb, Sn, OZr, Ni, .and Ti. The
giant resonance structure located near the excitation en-
ergy 63A"'~3 MeV has been decomposed as sho~ by the
solid curves in the spectra. Peaks arising from alpha
scattering from hydrogen contamination on the targets .

are labeled (H). The peak cross sections for lour-lying
states are generally considerably off scale. The elastic
scattering peak for 4 Ti was experimentally suppressed.



l834 F. E. BERTRAND et ul.

order to determine the absolute zero angle.
Figure 1 shows spectra from five targets for

scattering angles indicated on the drawing. Each
of the spectra are characterized by a flat, fea-
tureless continuum which merges into the giant
resonance peaks. The peak located near 27 MeV
of excitation for Pb and Sn arises from alpha-
particle scattering from hydrogen in the targets.
It is to be noted that for the favorable angles shown
on Fig. 1, the giant resonance peak rises to a
magnitude nearly equal to the magnitude of the con-
tinuum. This clearly demonstrates one of the ad-
vantages discussed earlier of the use of 150-MeV
alpha's.

For Sn, Zr, and Ni, the structure observed at
excitation energies just below the GQR peak is
from excitation of the so called low-energy oc-
topole resonance. ' This resonance is, in fact,
comprised of K&u, 3 strength. For Ti, Ni, and
Zr no structure is observed in the continuum at
excitation energies above the GQR-GMR peak
(other than the hydrogen peak). In the 20'Pb and"Sn data there is some evidence for the existence
of a broad structure (several MeV wide) centered
around excitation energies of 17 and 20 MeV,
respectively. However, whether, and if so, to
what extent, this additional structure is present
depends critically on the shape assumed for the
underlying continuum. However, as pointed out
earlier, alpha particles from the 'He* breakup are
certainly present in the spectra and may obscure
resonance peaks, or artificially create peaks, at
excitation energies higher than that of the GQR-
GMB peaks. Figure 2 shows spectra at several
angles from "Sn. The enhancement of the giant
resonance peak above the underlying nuclear con-
tinuum is seen to vary rapidly with angle, as is
more clearly seen in the angular distributions
which follow. - We find that, unlike the giant reso-
nance angular distributions, the cross section for
the underlying continuum falls steadily with in-
creasing angle over the angular range studied.

As is rather clearly seen in Fig. 1, the giant
resonance peak in ' 'Pb is comprised of two peaks
located at 10.9 and 13.9 MeV. These two peaks
have been observed previously, "although some-
what less clearly, with lower energy incident
alpha's and have been identified as arising from
the GQR and GMR excitations. For the other
nuclei we find, as was found earlier in inelastic
proton scattering, that the giant resonance peak
is asymmetrical, being wider on the high-excita-
tion energy side. We interpret this asymmetry as
an indication of the existence of a second, weaker
resonance located 2-3 MeV higher in excitation
energy than the GQR. The fact that the two peaks
are not well separated in the lighter nuclei as they

1000
I I

'~So(a, a)

800 Ea =152 MeV

600

400

1000

800

600

'IOOO

800—

600

400

1000
V)

2

800 14 deg

600

1000

800

600

400

1000

800

600

400—

200
I I I I I I I

40 35 30 25 20 15 &0 5 0

EXCITATION ENERGY (MeV)

FIG. 2. Inelastic alpha-particle spectra at several
angles from Sn bombarded by 152-MeV alpha particles.f20

The peak located at -13.3 MeV arises from excitation of
the giant quadrupole and monopole resonances. Peaks
(11, 12 ) near 30 MeV arise from alpha scattering from
hydrogen contamination on the target.
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resonance has been discussed in detail in Refs.
1 and 7 and we follow the techniques discussed
therein.

The construction of densities for use in folding
calculations has been discussed elsewhere. " The

TABLE II. Woods-Saxon optical model parameters.

a„g r~ a~
Target (MeV) (fm) (fm) (MeV) (fm) (fm)

"Ti
58Ni

SOZr
120Sn
208pb

118.2
118.2
117.5
119.4
110

1.24
1.24
1.27
1.26
1.32

0.79 20.47
0.79 20.47
0.78 21.02
0.76 30.7
0.71 21.3

1.59 0.57
1.59 0.57
1.56 0.57
1.43 0.70
1.51 0.67

HI. THEORETICAL ANALYSIS

A. Elastic scattering and optical models

1. Woods-Saxon potentials

Our data for elastic scattering are not complete
enough for a definitive optical model analysis to
be made. However, rather complete elastic data
have been taken elsewhere" at about 140 MeV for
the targets Ti, "Ni, ' Zr, and ' Pb. Further,
~'Sn+e elastic scattering has been measured"
at 166 MeV. These data were analyzed using 6-
parameter Woods-Saxon potentials of the usual
form

U(r) = —V(1+e ") ' —iW(1+e' ) ',
where

x„=(r—R„)/a„, x„=(r -R„)/a
Here R„=r„A'", R =@~'", and A is the mass
number of the target. We used parameter sets
from those analyses in the present work since they
were found to reproduce satisfactorily our elastic
data at 152 MeV. The parameter values are listed
in Table II. In each case the Coulomb potential
from a uniformly charged sphere of radius 1.3A"'
fm was added to the nuclear potential of Eq. (1).

2. Folded potentials

Because of our intention to apply the folding
model to the inelastic scattering measurements,
the elastic data" at 140 MeV were also analyzed
using this approach in order to determine the ef-
fective interaction parameters. The folding model
used is the standard one" and consists of a nucleon-
alpha interact'ion v„~ folded into the density dis-
tribution p(r) of the target nucleus:

rr (x)=f p(v')v„, (lr —r'I r'. ))

densities of Negele" were used for 'Ca, "Zr,
and '"Pb, while the shell model was used" to con-
struct densities for the other targets. That for
"Ni was as described in Ref. 14, except that the
neutron well depth was increased to 60 MeV; this
reduces the neutron rms radius to 3.64 fm so that
it is 0.08 fm smaller than the proton radius, in
better agreement with recent analyses of 1 GeV
proton scattering. " We assumed that the least-
bound neutrons and protons in 4'Ti were purely
lf, I, with binding energies given by the separation
energies. The shell model potential used was
similar to that adopted" for "Ni except both
neutron and proton wells were taken to be 55 Mev
deep. This gave rms radii of 3.493 fm (protons)
and 3.475 fm (neutrons). The protons in "oSn were
assumed to occupy the Z=50 closed shells, while
the configuration (lgvl, )'{lh»&,)'(2d, i, )' was adopted
for the neutron excess. Again, shell model poten-
tials with the same geometry were used, but with
depths of 50 MeV (protons) and 60 MeV {neutrons).
These result in rms radii of 4.581 fm (protons)
and 4.807 fm (neutrons), which seem to be in rea-
sonable agreement with electron and high-energy
proton scattering data. "

We also need to specify the effective interaction
v„. In the present work we are concerned with
inelastic data for quite small scattering angles,
0 -25, In these circumstances it is quite suf-
ficient to use a simple 3-parameter density-inde-
pendent Gaussian model for v~ with a complex
strength. (Consequently, the real and imaginary
parts of U~(r) have the same radial shape. This is
in contrast to the Woods-Saxon potentials of Table
II which have imaginary parts with radii signifi-
cantly larger than the radii of their real parts.
However, these latter potentials were obtained"
by fitting data out to much larger angles, beyond
the rainbow angle. ) Then our interaction is

v„„(s)=-(V +iW )e ""~
The parameters V~, W~, and e were determined
by fitting at small angles (8 ( 8 ) the 140 MeV
elastic data" for "Ca, "Ni, "Zi, and "'Pb. The
values of V~ and W~ were optimized, using the
standard X' criterion, for a series of values of
the range n. The results given. in Fig. 6 show
that there are well-defined minima in X' for es-
sentially the same value of n for each target. We
use here the average value n =1.94 fm, which is
very close to the value 1.95 fm adopted by the
Karlsruhe group" and similar to the long popu-lar"'"'" n =2 frn. With this choice we are re-
duced to a 2-parameter model. The corresponding
optimum values of V~ and W~ are given in Table
III. These are in good agreement with those found
previously" '"'" with this model. The average
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For reference we also give in Table III the strong
absorption radii As+, defined as the distance of
closest approach for the Rutherford orbit, which
has the same angular momentum J.», as that for
which the optical model indicates a transmission
coefficient TL, z(2 2 It is well known" that the
forward scattering (elastic and inelastic) is most
sensitive to the interaction potential in the region
t'=Rs„. (The values of R~ at 152 MeV are very
close to those at 139 MeV. )

It was verified that these folding model param-
eters also gave satisfactory agreement at 152
MeV with the elastic data taken in the present
experiment for the same targets. The curves
shown in Fig. 3 correspond to the folding param-.
eters determined from the 140 MeV data, except
for ~'Sn. In this case the 152 MeV data them-
selves were used to obtain the V~ and W~ given
in Table III. The 152 MeV data for the target
"Zr show some tendency to decrease less rapidly
with increasing angle than the predictions. The
dashed curve in Fig. 3 shows the improvement
obtained by reducing W~ from 21.1 MeV (Table
III) to 17.4 MeV. This is 23% smaller than the
average value from Table III, but fortunately this
ambiguity only leads to some 10% uncertainty in
the cross sections predicted for the inelastic
s cattering.

B. Inelastic scattering models

1.4 1.6 1.8 2.0 2.2 2.4 2.6
RANGE, a (fm)

FIG. 6. Variation of X with the range of the Gaussian
used in the folding model when the real and imaginary

strengths are optimized to fit elastic data at forward
angles (see Table II) for 140-MeV alpha particles. The
quoted experimental errors were used.

The data obtained for inelastic scattering were
analyzed using the distorted-wave Born approxima-
tion (DWBA}. Two models were used for the
transition potentials. " The distorted waves were
generated from the corresponding optical poten-
tials (Table II or III). We extract the percentage
depletion of the standard energy-weighted sum
rules (EWSR}"by comparison with the measured
cross sections.

TABLE III. Folding model potential parameters for e =1.94 fm.

Target'
Vp

(MeV)
Wy

(MeV) L(/
-ReU~(RsA)

(MeV) (fm2)

40Ca
4BT i
58Ni
90Z r

120Sn
208Pb

Average

27
250
30'
30'
23'
46'

37.4
36.7
35.5
36.4
31.9
40.5

36.4+ 2.5

21.5
24.3
21.5
21.1
20.4
26.0

22.5+ 2.0

30.5
31.9
33.4
38.3
42.8
47.4

6.8
7.1
7.3
8.2
8.8

10.4

4.4
3.9
4.0
3.9
3.6
3.0

11.46
12.13
13.55
18.02
22.22
31.42

Data (Ref. 11) at 140 MeV for 0~8m» fitted, except for Sn, where the results are for
fits to 152 MeV data taken in the present work.

Mean square radius of the ground-state density distribution used in the folding calculation.
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1. Deformed 8'oods-Suxon potential model

This is the standard model in which the surface
r =It of the Woods-Saxon optical potential (1}is
deformed. The resulting transition potentials for
isoscalar, normal-parity excitations with L ~ 2
have the radial form"

U„(r}=P,adU(r)/dr, I, (4)

Sl, =Q E)pq (i)=(K /2m(r ))(4v/5A)L(2L+I),

(6)

where P~(i) is the deformation parameter for ex-
citing the ith excited state whose excitation energy
is E, Also, m. is the nucleon mass and (r') is the
mean square radius of the ground-state density
distribution (see Table III). For isoscalar mono-
pole excitations we have instead

So = Q E)o."(i)=ig '/2m(r )A.

Although these sum rules are only approximate,
they provide a useful standard by which to mea-
sure the strengths of giant resonance excitations.

2. Folding model transition potentials

In this approach'4 the transition density (in
general, nonspherical) is inserted into the folding
integral (2) in order to give the transition poten-
tial. The transition density may be obtained from
microscopic structure calculations, for example, '
those using the random-phase approximation
(RPA). In principle, these calculations provide
the magnitude as well as the shape of the density
(unless one is using the analog to an "effective
charge" to compensate for truncation of the model
space used). However, there are a number of un-
certainties whose importance has not been deter-
mined. Most calculations of this type result in
discrete energy levels even for the unbound states
such as the giant resonances. If the RPA is used,
these states are simply composed of I-particle,
1-hole configurations (with some ground-state cor-

where P~ is the deformation parameter to be
determined by comparison with the data. In the
case of the potential (1}, the prescription (4) is
applied separately to the real and imaginary parts;
we assumed the same value of P~ for both parts.
A similar expression, "supplemented by a volume-
conserving term, was used for the isoscalar
breathing mode with L, =0:

U„(r) =&[SU(r)+rdU(r)/dr], L=o.
In this model the usual isoscalar E%SH for

I.~2 may be expressed as

p„(r) =n~r 'dp(r)/dr, L» 2 (8)

where p(r) is the ground state density distribution.
The corresponding result for the L, =0 compres-
sional mode is

p„(r) =o.,[3p(r) +rdp(r)/dr], I, =0.
If the excitation energy of the state is E, the
amplitudes are given by

&a'&, 4vL, a'
+I IP ilEg(gl -2) 0 Eg( 2) ( )

where again the averages (r") are to be taken over
the ground-state density distribution. The "door-
way dominance" hypothesis of Fallieros ef aL"
then suggests that the transition densities of Eqs.
(8) and (9) are a good approximation for those
strong transitions which exhaust a large fraction
of the isoscalar sum-rule strength. In the present
study we also used them for transitions to the low-
lying states, even though these carry a much
smaller fraction of the K%SR. The ground-state
densities p(r) used in Eqs. (8) and (9) Were the
same as those employed in the calculations of the
folded optical potentials.

The remarks made above about the sensitivity
of the results to the tail of the trasition density
apply here also, of course. The main advantage

relation effects built in, of course}. In practice,
the unbound states will be broadened by particle
emission. They also couple to the background of
2-particle, 2-hole states which causes them to be
spread and mixed. These points are of importance
because it is the tails of the transition densities
which contribute most to the folding integral for
the potential near the strong absorption radius.
In the case of o, +' Pb, for which Rs„-—10.4 fm,
calculations for the 3 first excited state indicate
that the transition density needs to be known ac-
curately out to r =12 fm or more in order to give
the transition potential accurately at Rs„. A den-
sity which is cut off at r =10.4 fm results in an
error of about 10%%uo in U~(R~„), or about 20%%uo in
cross section. Most RPA calculations do not
provide densities which are accurate out to such
large radii, .not because they cannot, but because
they are not needed for other purposes and it
would be computationally expensive to do so.

Finally, such calculations are only available for
a limited number of nuclei. Consequently we felt
it was worth using a simplified model for the
transition densities. U the EWSR of Eq. (6) is ex-
hausted by excitation of a single state, it has
been shown" that the corresponding transition den-
sity is the same as that given by the Tassie or
hydrodynamical model whose radial part has the
form
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of this hypothesis is one of simplicity and "reason-
ableness"; it also provides an unambiguous pre-
scription for the tails of the densities. ' Further,
these Tassie forms are frequently used for charge
densities in analyses of inelastic electron scatter-
ing; in principle, we then have a consistent way
of comparing results from electron and hadron
measurements. Previous comparisons have been
somewhat ambiguous because, while analyses of
electron measurements often use Tassie densities,
the deformed potential models (4) and (5) have been
used to extract strengths from hadronic scattering.
The precise relationship between these quantities
is not clear.

Figure 7 provides two examples of comparisons
of transition potentials from the folding and from
the deformed potential. Only the real parts are
shown. The overall shapes obtained from the two
models are significantly different. [These differ-
ences are even more marked for the imaginary
parts, for while our folding model gives both parts
with the same shape, the imaginary part of the de-
formed Woods-Saxon potential peaks at even larger
radii, at r =8.94 fm for 'O'Pb (see Table II). How-
ever, when comparing the imaginary shapes we
must remember that the folded potential was ob-
tained b'y fitting elastic data at small angles, but
the Woods-Saxon potential was required to fit the
large angle data also. ] However, the two models
give much more similar results in the important
region near the strong absorption radius, r = RL .
The real folded potential is slightly (-10%) larger
at r =Rs„, but the imaginary part is slightly
smaller (-20%) than the deformed Woods-Saxon
for the shape oscillations (L, ~ 2). Consequently,
both models give similar cross sections for these
transitions. The monopole L=O behaves quite
differently; both parts of the folded potential are
smaller at r =RSA, so that the folding-plus-Tassie
model predicts about —', the cross section given by
the deformed potential.

For comparison, calculations were also made
for ' 'Pb assuming transition densities closer in
spirit to the deformed potential model of Eq. (4):

p„(r) =P~Rzdp(r)/dr, L&2 (11)

where 8 is the radius where p(r) falls to half its
central value. The density (11) peaks at a slightly
smaller radius than the Tassie density (8) because
of the absence of the r~ ' factor. Further, alpha
scattering weights the large radii even more than
r~ ' so that, for a given depletion of the EWSH,
the cross section predicted by use of Eq. (11) is
somewhat smaller than predicted for the Tassie
density. The reduction in cross section for ' 'Pb
is about 20% for L =2 and 33% for L =3. We shall
see below that for excitation of the 2.61 MeV 3

10
I I

&0
2
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2
K

)0

)00

IO
l2 (4

FIG. 7. Real parts of the transition potentials for ex-
citation of 3 and breathing mode 0' states in Pb by al-
pha-particle scattering. Solid curves: folding model,
using Tassie transition densities; dashed curves: de-
formed Woods-Saxon potential. The strong absorption
radius y =RE for alpha's of 140 MeV is indicated. The
monopole density is normalized to unit amplitude (0. = 1),
while the octupole density corresponds to 18% of the
ENSR.

B(EL)) f p~~(x)x~ dr 'e', I»-2". .(12)

It is in the spirit of the collective model for strong

level in '"Pb the use of the Tassie density gives
excellent agreement with measured B(E3) values
whereas use of the density (11) does not. The
shapes of the predicted angular distributions, how-
ever, are almost indistinguishable.

3. Electric transition rates

Transition strengths are frequency expressed in
terms of B(EL) values. If the proton transition
density is p~ (r), we normalize it so that
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isoscalar transitions to assume" that the proton
part is related to the total transition density by

(13)

It is easy to verify that the transition density (8)
with the amplitude (10) exhausts the EWSR with

B(ZI)4( ) (—) e'. (14)

For monopole EO transitions it is common to use
the definition

B(EO}= p~~ (r)r4dr e'.

Making the same assumption (13) for isoscalar
excitions, the density (9) with amplitude (10) also
exhausts the EWSR with

(16)

It is possible to calculate the proton and neutron
parts of p„(r}separately with the independent-
particle model we use for the ground state density
p(r}. This was done for a few cases. Although
significant deviations from the ansatg (13}are
found as a function of ~, it gives the averages
(r") correctly to within a few percent.

C. Applications to inelastic data

The curves in Figs. 4 and 5 are fits to the present
data using the models just described; the solid

curves are from the folding model and the dashed
curves are from the deformed potential model.
Also indicated are the percentages of the EWSR
deduced from Eqs. (6), (7), and (10). These results
are collected in Table IV for the low-lying states
and Table V for the giant resonances. The GMR
curves for the folding model in Fig. 5 are drawn
for 100% of the EWSR, while Table V gives per-
cent estimates to fit the data. In some cases
there is uncertainty as to the best way to normalize
the theoretical curves to the data. However, the
strength required for choices other than those
shown in the figures are easily obtained by scaling
the values shown.

Except in the case of "'Pb, Coulomb excitation
contributions were not included in the calculations.
Even for ' 'Pb the cross section magnitudes were
changed only a few percent by inclusion of Coulomb
excitation with very slight angular distribution
changes in the angular regions shown.

1. The 2.61 Ne V 3 st&e of208Pb

This transition is particularly useful for study-
ing the validity of the models. It is strong, has
been studied intensively by inelastic electron scat-
tering, and the B(E3}value is well known. Fur-
ther, various RPA structure calculations" indi-
cate a theoretical transition density which is quite
similar to the Tassie transition density of Eq. (8).
Although the present data for this state (Fig. 4)
are very sparse, extensive data were obtained"

TABLE IV. Results for low excited states as percentages of the EWSR.

Target

2+ states

4'Ti
Ni

90Zr
120Sn

08Pb

(MeV)

0.889
1.454
3.309
1.17
4.086

Folded
potential

5
9.5

19&
6

13

Deformeda
potential

4 0
7

15
7

13

B(EI)
(% EWSR)

7.8+ 0.3
6.7+ 0.2

5.3+ 0.1
13.0+ 1.3

% EWSR from
other (n, n') data

7.5'
7d

3 states

Ni
"Zr

'"Sn

4.47
2.748
2.4
1.615

10
gh

8
18

6.5
7
8

18

10
5.8+ 0.2

8
17.5+ 1.0

7 5c
15+5'

18c,e
20f

Values quoted are those used for the curves in Fig. 3.
"Reanalyzed using the same folded potential as used to analyze present data.

From (n, n') data (Ref. 11) at 140 MeV.
From (n, n') data (Ref. 22) at 115 MeV.

~From (n, n') data (Ref. 22) at 96 MeV.
From (n, n') data (Ref. 2) at 120 MeV.

gReduced to about 16% if Sp = 17.4 MeV used.
"Reduced to about 8% if S~= 17.4 MeV used.
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TABLE V. EWSR depletion for giant resonances.

Target (MeV)

% EWSR
folded

potential

% EWSR
deformed
potential

% EWSR
(e, e')

% EWSR
other
(u, n ')

Isoscalar quadrupole

46Ti

Ni

"Zr
120Sn
"'Ib

17.6
16.0

14.1
13.3
10.9

70+ 14
43+ 10

75 +15
70+15
73+ 15

50+ 10
45+ 10

65+ 13
70+15
77+ 15

57+ 6
48+ 6
56+ 17

95+ 35

-50'

80'
-75g

Isoscalar monopole

46Ti
58Ni
90 zr

'"Sn
208Pb

20.0
17.0
16.9
13.9

Not observed
120+20
180e~40
150+20
140 + 30

40+ 10
80+ 20

100+ 20
100+ 20 105+20h

125+ 25g
85'

Values quoted for the GQR are those used for the curves in Fig. 5.
From Ref. 1.
Reanalyzed using the same folded potential as used to analyze the present data.
From 115-MeV (0, ,0. ') data of Ref. 22.
Reduced by -15% if Wz= 17.4 MeV is used (see Fig. 3).
From 96-MeV (n, o. ') data of Ref. 22.

g From 120-MeV (e,o. ') data of Ref. 2."From data of Ref. 3 (Youngblood et al-).
i From Ref. 6 from which the authors' folding model analysis appears to be the same as

that used in the present paper.

at 139 MeV and other data are available" at 96
MeV. These are shown in Fig. 8 together with the
folding model fits. (The calculations for all three
energies were made using the same parameters. )

The measured B(E3) is (6.65+0.35}x10'e'fm',
which is (17.5+0.9)% of the EWSR (14). The theo-
retical curves shown in Figs. 4 and 8 for this
transition also use this value. The agreement
with the measured (n, n') cross sections at all
three energies is seen to be excellent. This re-
sult lends further support to the use of the Tassie
density with the idea" of relating hadron cross
sections to B(EL,}values through the ansats of
Eq. (13}. On the other hand, when we use in the
folding model the density of Eq. (11), normalized
to correspond to the same B(E3) value, the theo-
re'tical cross sections are only —', as large as the
measured ones.

102

10
1

b o10

10

~ 96 MeV (x 10)

139 MeV

r

II

I I I I I I I

Pb (o, a')
2.61 MeV

18, L=3

2. Other low-lying excited states

Data and calculated cross sections for several
other low-lying excited states are shown in Fig.
4; the overall agreement is good. There is a
tendency for the folding model cross sections to

10-& I I I I I I I I I I

0 5 10 15 20 25 30 35 40 45 50
8 (deg)

FIG. 8. Comparison of folded potential predictions,
using 18% of the EWSR, with measured cross sections for
the 3 state at 2.61 MeV in Pb.
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peak at slightly smaller angles than the deformed
potential ones. Both models yield similar de-
pletions of the EWSR, within the uncertainties of .

fitting to the data, although there is a tendency for
the folding model to require more strength for
the lighter targets.

In the case of the 1.45-MeV 2' state in "Ni,
the measured" B(E2) =695 + 20 e' fm' represents
(6.7+0.2)% of the EWSR. This is in good agree-
ment with the deformed potential fit for this state,
while the folding model requires about 1.4 times
this amount. There is an even bigger difference
for exciting the 4.47-MeV 3 state, although here
it is the folding model which is in agreement with
the measured" B(E3) value of (10.1 + 0.3)% of the
EWSR. Excitation of these levels in "Ni by (n, o. )
has also been studied" with 139 MeV incident
alphas. A fit to those data with the present folding
model depletes about 7.5% (2') and 8% (3 ) of the
EWSR. Data for the 2' level taken" with 115-MeV
alpha's, although less complete, are in agreement
with calculations using the 6.7% deduced from the
B(E2) value. Hence there are some uncertainties
associated with these two transitions.

Both models yield sum rule depletions for 4'Ti
which are not much more than one half of the
(7.8+ 0.3)% deduced from the B(E2) value. " On

the other hand, the measured B(E3) for the 3.31-
MeV state of "Zr and the B(E2) for the 1.17-MeV
state of "'Sn indicate somewhat smaller fractions
of the EWSR than are obtained from the present
measurements. It is not clear whether these dis-
crepancies represent failures of the models for
these transitions or merely (as may be the case
for "Ni) uncertainties in the various measure-
ments. The fits to the data for the 2.4-MeV 3
state in "'Sn and the 4.09-MeV 2' state in '"Pb
are in perfect agreement with the B(E2) measure-
ments.

Use of the folded potential adjusted to fit the
152-MeV elastic data for "Zr (W~ =17.4 MeV,
dashed curve in Fig. 3) merely increases the
calculated cross sections by about 10/0 and hence
reduces the deduced sum rule percentages by the
same fraction.

D. The giant resonances

The giant resonance results are shown in Fig. 5.
The two models yield essentially the same sum
rule depletion percentages for the giant quadrupole
l. =2 resonances, except for 4'Ti, where the fold-
ing approach yields about 1.4 times as much de-
pletion as the deformed potential model. The
angular distributions are in good agreement for
both models. The transition strengths deduced
are summarized in Table V.

The situation is quite different for excitation of

the giant monopole, L, =O, 7 =0, resonances. Al-
though both modes give acceptable angular distri-
butions, the folded potential consistently predicts
a much smaller cross section than the deformed
potential of Eq. (5). Indeed, its predictions are
smaller than the measured cross sections for
"Zr and heavier targets even with 100% of the
sum rule limit. This discrepancy persists to the
same degree when comparisons are made with
data at other energies. The difference between
the folding model and the deformed potential model
in this case can be understood from Fig. 7, which
shows that the folding model yields an appreciably
weaker interaction in the important region near the
strong absorption radius.

There can be contributions to the cross section
in this excitation region from the isovector giant
dipole resonance which almost coincides with the
giant monopole. These can arise from Coulomb
excitation, and also by nuclear interaction when
the neutron and proton transition densities have
different shapes, "even though the alpha is an
isoscalar particle. However, calculations for
'"Pb indicate that these effects, while not com-
pletely negligible, do not significantly affect the
comparison we have made with the data. The main
effect is to fill in the deep minima associated with
the pure monopole excitation and to increase
the peak cross sections by no more than -10/0.

The monopole part of the interaction v„ is just
that part which determines the elastic optical po-
tential and this was used to determine the param-
eters of v„. Further, its use for higher multi-
poles seems to be reasonably successful, especi-
ally for '"Pb. However, there may be some un-
certainty associated with the imaginary part of
v~; it is not obvious that the couplings to other
channels that this part represents will manifest
themselves in exactly the way that our simple
folding model predicts. The breathing mode ex-
citation may be particularly sensitive to this be-
cause of the difference of two terms that appears
in Eq. (9). In the present calculations for "'Pb,
for example, the imaginary part of the interaction
is responsible for 30% of the 0' cross section of
the folding model, or 40% of that from the deformed
potential model. Otherwise we must conclude that
the Tassie model [Eq. (9)] is not quite correct for
the transition densities for these monopole excita-
tions. The Tassie density used here for ' 'Pb
appears to be close to that obtained" from RPA
calculations and, indeed, the calculated (Wambach
et aL'o) cross sections using the RPA density for
excitation of the 0' state by (P, P ) appear to be
only about one half those observed4 with 60-MeV
protons. The calculated 2' cross sections, on
the other hand, are in agreement with the mea-
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surementg. Similar results were obtained in the
earlier calculations of Halbert et aL' For ex-
ample, a value of 2.6 mb/sr for the peak at 13.5'
was predicted for 115-MeV (a, a'} excitation of the
giant monopole resonance while the observed'
value at 120 MeV is about 4.5 mb. (The present
model predicts 2.9 mb. ) Similarly, the predicted
(p, p') cross sections were about 30% smaller than
the measured ones. For both (a, a ) and (P,P },
however, the predicted 2' cross sections were in
satisfactory agreement with experiment.

Only a small modification of the 0' transition
density is needed in order to reproduce the ob-
served scattering. For example, a 3% stretching
of the Tassie density p„" of Eq. (9),

p„(r) = p~r (r/1. 03),

is sufficient to give about twice the (a, a }cross
sections for '"Pb. This stretching corresponds
to moving the Tassie density outwards by about
0.2 fm in the surface. (It is only the outer part
of the density which contributes to the folded po-
tential; for example, setting the density [Eq. (9}]
equal to zero inside the node (p„=0 for r& 6.2 fm
for "'Pb) has no effect on the folded potential near
the strong absorption radius, while setting it
equal to zero inside the outer maximum (r =7 fm
for 'o'Pb) has only a few percent effect on the
folded potential. ) It is interesting to note that a
generator coordinate method calculation"-" of
the giant monopole transition density gives sig-
nificantly larger values than does the RPA or the
Tassie model in the nuclear surface.

The possible deficiency. of the Tassie density for
the GMR has been noted" in folding model analy-
ses of "'Pb(a, a') at energies of 100 to 172 MeV.
In this case a real Gaussian interaction was used
which was not constrained to fit the observed
elastic scattering; Woods-Saxon potentials were
used for the distorted waves. Although their in-
teraction v~ is real, its volume integral per nu-
cleon, 446 MeV fm', is similar to the modulus of
ours for 'o'Pb (Table III), 489 MeV fm'; its range
is a little longer, e =2.07 fm compared to our
1.94 fm. Consequently it can be expected to give
rather similar inelastic cross sections.

These authors found that use of the Tassie
transition density underestimated their observed
GMR.cross sections by approximately a factor of
2. They attempted to resolve this discrepancy by
adding a term to the transition density. This term
corresponds to an oscillation in the surface thick-
ness of the ground state density. " By choosing the
appropriate sign and varying the strength of this
term, larger cross sections can be obtained.
These authors found an improved fit to the angular
distribution of the GMR excitation with 90% de-

pletion of the EWSR.
Recent RPA calculations' of the GMR show the

transition density to be smaller than the Tassie
model near the outer peak but larger at larger
radii. It remains to be seen whether this effect
is sufficiently large to explain our discrepancies.

IV. CONCLUSIONS

3B m
go o (@(o+)] (17)

a value of k -200 MeV is deduced from the energy
dependence 80& '" MeV with A =1.24' ' fm.
Within the correctness of the DWBA model used,
the results given in Table V show that essentially
all of the 7 =0, L =0, EWSR is accounted for in

We have presented the results of measurements
of the excitation by 152-MeV alpha particles of the
giant monopole and quadrupole resonances as well
as the.excitation of low-lying 2' and 3 states
for several targets from "Ti to "'Pb. For all the
targets we have studied, the ratio of continuum
to giant resonance peak cross section is nearly
one, larger than for lower-energy alpha scattering.
Such an enhancement in the resonance contributes
to a more certain extraction of the shapes, posi-
tions, and strengths of the giant resonance peaks.

Based on the clear appearance of two peaks in
the 'o'Pb giant resonance spectra (and from other
data" on '~Sm) we have assumed that an asym-
metry on the high excitation energy side of the
giant resonance peak indicates the presence of a
second resonance. We cannot demonstrate that
the asymmetry is not in fact part of a single GQR
peak. Small angle (a, a } measurements' using
lower energy alphas have made a convincing argu-
ment that two separate resonance peaks are in-
deed present for ' Sm and ' 'Pb. Our objective
was to extend the "two resonance" assumption to
lighter nuclei where lower-energy (a, a'} mea-
surements are difficult and where the (P, P') mea-
surements are possibly compromised by GDR
excitation. The results of our analysis presented
in Tables I and V are consistent with the exis-
tence of a GMR in all the nuclei studied other
than 4'Ti, in agreement with previous (a, a ),"
(p, p ),4 and ('He, 'He ) (Ref. 5) measurements.
Our analysis has been further substantiated by
recent small angle (a, a') measurements on '"Sn
and "Zr (Ref. 3, Rozsa et al. ).

We show in Fig. 9 the excitation energy of the
'

GMR from our measurements and for previous
measurements. The solid curve is the systematic
energy 80A '" MeV, which agrees very well with
all of the data. If the compressibility of nuclear
matter is given by the liquid drop expression
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nuclei with Aa90. However, for "Ni only -30%
is observed and for 4'Ti no evidence is found for '

monopole strength localized near 804 ' ' MeV. A
similar result was obtained for 4'Ca from (P, P )
(Ref. 4) and ('He, 'He ) (Ref. 31) measurements.

The inelastic data were analyzed both with a con-
ventional deformed potential model and with a
folded potential model using Tassie transition
densities. The alpha-nucleon interaction for the
latter model was deduced from fits to elastic
data. Good agreement was obtained for both the
low-lying states and the GQR states; the strengths

I I I I I I I I I

40 60 80 100 120 140 160 180 200 220 240
NUCLEAR MASS NUMBER

FIG. 9. Excitation energy (MeV) of the GMR for nuclei
in which observations have been made. Open triangles—
present results; circles —60 MeV (p, p'), Ref. 4; closed
squares —96 MeV (u, o"), Ref. 3; closed triangles —120
MeV (u, G."), Ref. 2. The solid curve represents the en-
ergy 8QA ~ MeV.

deduced are generally in good agreement with
other measurements. The shape of measured
angular distributions for the GMB excitations are
well reproduced by both models, but the deduced
transition strengths differ significantly. Com-
parison of the data with the deformed potential
model yields monopole strengths which exhaust
about 100% of the EWSR for "cSn and 'c'Pb, 80%
for 'cZr, and 40% for "Ni. This reduction for
the lighter nuclei agrees with earlier studies. 4

However the folding model predicts monopole cross
sections smaller by as much as a factor of 2 for
a given percentage of the EWSR, so that more
than 100% of the EWSR is required to fit the mea-
surements. We suggest that this is due to a de-
ficiency in the transition density obtained from the
Tassie model. The scattering in these cases is
very sensitive to the magnitude of the tail of this
density. Consequently, measurements of this type
provide a sensitive test of models for the GMR.
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