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By employing a system for three bound identical bosons, a simple connection is made between Faddeev’s and the

K -harmonic approaches.

[NUCLEAR STRUCTURE Quantum few-body problem.]

Some progress has been made in the last decade
concerning the quantum three-body problem.
Faddeev’s equations! and the K-harmonic met-
hod®? provide, in principle, the possibility of
solving that problem exactly. However, cases
where those approaches present convergence dif-
ficulties are sometimes encountered. Although
both approaches have a common origin in the
Schrédinger equation and are exact in their con-
text they can lead to different results. This is
mainly because they are structurally represented
by different equations and hence their numerical
solutions can follow different paths of conver-
gence. As a simple way to analyze their conver-
gences, one can start from Faddeev’s equations
and expand the wave functions in terms of K-har-
monics. The numerical solution of the set of
equations obtained can be compared with the cor-
responding K harmonics. This procedure? can
be done for different classes of pairwise interac-
tions. For each method certain classes of poten-
tials will give solutions which are not convergent.
For pairwise functions, examples of this type are
Coulomb potentials, »" potentials,® etc., in Fad-
deev equations, and »™"(n>2) potentials, for K
harmonics.® On the other hand, it is possible to
select a common set of potentials where solutions
can be obtained from either of the approaches.
This is the case, for instance, for Gaussian, ex-
ponential, etc. forces. We are interested in this
common situation.

For definiteness and facility to conceptualize,

a description for three identical bosons is con-
sidered here. Certainly, a generalization of this
case can be made.

An appropriate choice of Jacobi coordinates
useful in the three-body problem is the following:
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where 7,7,% are the three numbers of the set
(1,2,3). The sign of n; is fixed by the condition
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that (ijk) should form a cyclic permutation of
(123). The above equation defines three equiva-
lent sets of coordinates i=1,2,3 for the descrip-
tion of the three-body problem. A relation” among
them can easily be found. Faddeev’s equations

for three-body bound states are given by!

(H0+VM-E)¢u=_Vu(¢u+¢k) ’ (1)
where (u,v,))=(1,2,3) signifies a cyclic permu-
tation, V=V, (|T,~T,|), H, is the kinetic energy
operator, and E is the binding energy.

For identical particles, the functional depen-
dence ¥, is obviously the same for u=1,2,3. In
this case, the total wave function ¥ can be written
in terms of the permutation operator P as

V=(1+P P, +P P,
=(1+ Py +P,)9,=(1+ P)},, (2)

since P ,¥,=,, and the coupling in Eq. (1) is re-
moved. We obtain the differential equation

Hy=ENWo( &) = <Vo(E, 1)1+ Py(E,, 7). (3)

By applying the symmetrizer (1+P) on Eq. (3)
we obviously get back the Schrédinger equation.
This simple connection will be used later.

The K-harmonic or hyperspherical approach?
consists in expressing the 3-body coordinates
in generalized spherical coordinates (a hyperra-
dius p?=£,2+ 7%= £,2+ n,%= £+ ;% plus 5 angles
{€,,7:,6,}, 6; defined by &, =psing;, n,=pcoss;,
0<6;<7m/2). The total wave function is then ex-
panded in a complete set of angular functions, the
K harmonics or hyperspherical harmonics:

P= KE [Pras(P)/0°/2]| Ky, (4)

where {K, @,} stands for the appropriate quantum
numbers necessary to specify the systems and
{|Ka,)} the complete set of angular functions.
The kinetic energy operator is diagonal in this
representation and contains only derivatives with
respect to the hyperradius vector and a general-
ized centrifugal term which acts to suppress the
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high partial waves. The two-body potentials are
not in general diagonal,? but if they are local they
will remain so in the hyperradius vector. Hence
the K-harmonic method converts the original
three-body Schrédinger equation to an infinite set
of coupled ordinary differential equations®®

(Ho~E)ya,(p)= -3 KZ (Ka,| V(o costy) | K al)
5

X (PK'a':,(p)r K=0,...,»
(5)

where

B[ AM+1) o
Ho—zm[%i— p2 ], A=K+73 (6)

and the factor 3 in Eq. (5) appears since we are
]

|K, LM, 1,0, = |K,&,,)=N; Y (\mym, |£)Y,

™ My

xPlgiu/z.lniu/z

(K-lg;=In;)/2

where we are supposing a system of 3 identical
bosons (0*) with a definite total angular momen-
tum L. We should notice that N; is the normaliza-
tion constant, P3'7(x) the Jacobi polynomials, and
{6,%,7} the 5 angles in the 6-dimensional hyper-
space of the 3 particles from which the c.m. mo-
tion was removed. Choosing [, even, the sym-
metry in the pair (1,2) is guaranteed. Moreover,
that set is specially suited if one can restrict

the pair interaction V, to act only on a certain
number of partial wave states.

For ¥ we need totally symmetric basis func-
tions. We may choose as basis states the set
|Kag)=|K,LM,vQ), as constructed in Ref. 2.

We now pose the question of how many basis
states are necessary in the expansions of ¢, and
¥, respectively, to achieve the same accuracy
for the energy eigenvalue and eigenfunction. This
question can be answered unambiguously, as we
shall show below. For definiteness we will re-
strict ourselves to L=0=1, =1, =1. Hence®® the
two types of states will be represented by )Kl)
and |Kv), respectively.

The Faddeev Eq. (3) in the space spanned by a
finite number of states |K1) reads

(H,-E) ; | KDy (K | 9,)

== 3 |KDCKLV,(1+P)| KK |9 . (8)

KlL,K'V

Projecting onto |Kl) we obtain the coupled set of
.ordinary differential equations

m
[

22 SIMPLE CONNECTION BETWEEN FADDEEV’S AND THE... 1797

treating a system of three identical particles
with angular functions of definite symmetry. The
hope is that the centrifugal term in Eq. (6) and
the form of the potentials will allow early trunca-
tion of the set given by Eq. (4) (at least for bound
states). Although it is not difficult to establish
the mathematical criteria for this truncation,?
little serious work has been done along these
lines.®

One may represent the Faddeev equation (3) and
the Schrodinger equation (6) in subspaces spanned
by a finite number of K harmonics. One cannot
choose the same sets of A harmonics since the
Faddeev component ¥, and the total wave function
¥ have to fulfill different symmetry requirements.
Thus ¥, is a symmetric only with respect to the
exchange of the pair (1,2) whereas ¥ is fully sym-
metric. For ¥, the following set is convenient®:

i(2 ‘)Ylnim"iﬁi)(sinei)'fi(cds 6;)tni

(cos26,) (7

i
(Hy - E) @y (p)= - KZ:, (K1| V(14 P) |K' 1)@ 1 (p)

9

where @, (p)={K1|¥y).

How can we compare the above set with the one
used in Eq. (5)? Let us apply the symmetrization
operator (1+P) on Eq. (8). Clearly (1+P)|KD) is
a totally symmetric K harmonics and allows,
therefore, the representation

(1+P)|KD)= Y AR |Kv) . (10)

v

Thus Eq. (8) becomes

‘ (Ho -E) Z Al({'.,)q’xx(p)

Ky

-~ :4;1 ) AR | Kv) KLV, | K'v )AL, @0 () .
(11)

If we define
b, (P)= };A;{',’%(p), (12)

Eq. (11) takes the form

(H,~E) ; | Kv) b, (0)

>

| Kn)AZ KLV | K'v )by s (P)
1.Kv,K' V'

(13)
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which is already close to Eq. (5) (resulting from
the Schrodinger equation).
The decisive step now is to show that

D AUXKI| =3(Kv| . (14)
]

To do this we should note that the fully symmetric
state [KV} can be represented® as a superposition
of the states |KI):

|Kvy= 3 C¥|Kl) . (15)
1 .
Furthermore, according to Eq. (10), we have

AL =(Kv|(1+P)|KD) . (16)

Since (1+P) is Hermitian, we may apply it to the
left, picking up a resulting factor of 3, and using
Eq. (15), we immediately obtain

AB=3c@)*, (17)

which proves Eq. (14).
Hence Eq. (13) writes

(H,y-E) ; | Kv) b, (p)

= —3KUZK; ' IKV)(KV[VS{K’V'>¢K,V, (p), (18)

or finally
(Hy = E)r, ()= =3 2 KV | V| K ) (0)

(19)

We find that there is a unique relation between the
Faddeev and Schrodinger equations represented

in the respective K-harmonics sets {lKl)} and
{|Kv)}. Using the same K=K,,,, the energy eigen-
value will be exactly the same calculated by either

Eq. (5) or (19). Also the resulting eigenfunctions
coincide:

V= (1+P) ; |KD)®y1(0)

= ;A}{’V’IKV)@K,(p): D |Kv)dg,(0).  (20)

Ky

However, the number of coupled equations may
be different in general. Thus up to X'=10 only
one totally symmetric state exists (v takes only
one value; see Ref. 2, Table II), whereas several
[ values come into play. Therefore, there are
several states ‘Kl), for each |KV>. If the situation
is such that a relatively small K, value is enough
to achieve convergence, the Schrddinger equation
for ¥ leads to a smaller number of coupled equa-
tions. The situation may be different if one con-
siders short-range interactions which are effec-
tive only for s waves (or for few low [ states).
Then a corresponding reduced number of ]Kl)
states occur furnishing a reduced number of
coupled equations in the Faddeev approach. In
contrast, the above assumption for V, does not
lead to a reduction of [Kv) states.? Since the de-
pendence on v in the states |KV> increases with
K, it is conceivable that the Faddeev set (9) is
more advantageous in a situation where large K
values are needed.

Finally, we should mention that for one-dimen-
sional systems of three identical bosons the two
approaches are absolutely equivalent.®*°
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