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Isoscalar monopole, quadrupole, and octopole states are calculated in closed shell nuclei. A delta interaction is

used, its strength determined by the multipole condition, namely that the mean single-particle-single-hole potential

energy difference is equal to the corresponding kinetic energy difference. This interaction is used to obtain particle-
hole matrix elements appropriate for a random-phase approximation calculation. The strengths given by the

different multipole conditions are different but (except for L = 0) they appear to approach each other as the mass

number A becomes large. The monopole mode has already collapsed somewhat before the strength implied by the
quadrupole condition is reached. Some of the calculations were repeated using a zero-range Skyrme interaction. We
observe a very high degeneracy in our calculation which we are able to explain in terms of L-S coupling and the fact
that the particle-hale matrix element of a delta interaction is of the form ffp H (r)fp H (r)r
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NUCLEAR STRUCTURE Closed shell nuclei, 0', 2', 3 T = 0 states, delta inter-
action with multipole condition, RPA calculations.

I. INTRODUCTION

This work may be regarded as a continuation
of a previous work' in which the delta interaction
with the quadrupole condition was introduced. In
that work we wanted to study, in as uncluttered a
way as possible, the behavior of effective charge
with mass number A. We therefore considered
a model in which the spin orbit splittings were
neglected so that the closed shells become 4 =4,
16, 40, 80, 140, 224, 336, 480. . . . We added
a particle to the closed shell, allowed the particle
to polarize the core, and calculated the isoscalar
quadrupole effective charge e'= 6e" + 6e~, i.e.,
the sum of the effective charge corrections when
a valence neutron and valence proton are added
to the core. It was noted that in random phase
approximation (RPA) calculation e increased
from about 0.5 to 1 as A varied from 4 to infinity
(we reached infinity by an extrapolation method).

The RPA calculation may be regarded as a cou-
pling of the valence nucleon to the vibrations of
the core. In this work we wish to study the vibra-
tions by themselves using the same closed shells
as in the previous work. We will consider here
not only the isoscalar quadrupole state, but also
the monopole, dipole, and octopole states as well.
In the next section we will generalize our inter-
action from the quadrupole to the multipole con-
dition.

Before proceeding, some comments are in
order. First, we are not trying to duplicate ex-
perimental results. Rather, we define an inter-
action in a fixed way (multipole condition), rig-
orously stick to this interaction, and let the con-
sequences be what they may. Although the authors

have done, and hope to continue to do, work that
is of experimental relevance, we feel that it is
sometimes necessary to proceed as we are doing
here. By following an experiment too closely it
is never clear if one has really explained what is
happeni. ng or merely parametrized what is hap-
pening.

What we do here is define in a sharp way the
zero order picture, which we feel, strangely
enough, has not up to now been done. This will
better outline the path that must be taken via
correlation rearrangements, etc. , in order to
reach agreement with experiment.

II. THE MULTIPOI. E CONDITION

The delta interaction can be written as
- G(1 +xP')5(r, —r,), where P' is the spin ex-
change operator. Here we will be considering
isoscalar vibrations in closed shell nuclei—
quadrupole, monopole, dipole, and octopole. The
mean energies of these states are independent of
x. We therefore set x =0 and have only one pa-
rameter G to determine.

When harmonic oscillator wave functions are
used, and we deal with closed shell nuclei, then
the vibrations are linear combinations of one-
particle-one-hole states. The unperturbed en-
ergy in the oscillator model for both the quadrupole
and monopole is 2k~, for the dipole 1k', and for
the octopole a mixture of 1h~ and 3k~. In the case
of the octopole mode for A =4 only 3hco enters;
for A =16 it is 70%%uo 3h&u and 30% 1he, and asymp-
totically one gets a 50%%uo mixture of lb&a and 3h~.

The parameter G is chosen for any given' pole
so that the mean single-particle-single-hole po-

22 1980 The American Physical Society



1756 AFSAR ABBAS AND LARRY ZAMICK 22

and assign a weighting factor to a given particle
hole proportional to ~(O~+r y~(ph') )~'. Thus
for the quadrupole mode the interaction —G5(r,.
—r,.) is chosen so that the mean potential energy
difference for the I- =2 mode is 18+. The cor-
responding values for the dipole and monopole
modes are h(d/2 and k(d.

The result for the octopole mode is a bit more
complicated because the operator Zx'y' raises
~X=1 and ~Ã=3 modes. The relative strengths
of the modes are given in Bohr-Mottelson, Vol.
II as follows.

The transition strengths for a single completed
shell with total quantum number Ã is

v¹vN+1

VN+x r 3'3, o VW

~

&(&+1)(&+2)(&+3)(&+4),
64m (m(d, )

vN~vg+
V~+3 r J3 o Vg

(v+1)(@+2)(V+3)(@+4)8+5),
64m m~o

where v„represents the quantum numbers needed
to specify the single particle state in the shell N.
For the ~Ã=3 case one has to add 3 terms cor-
responding to the transitions v~- vN 3p vN ] vN 2j
and vg 2 vN

Once the parameter G is chosen for a given I-
and A, we use this value for calculating the par-
ticle-hole matrix elements that enter into an HPA

calculation of the collective vibrational states.
This procedure then defines the multipole condition.

Our previous experience suggests that this in-
teraction is not adequate for the monopole mode.
A delta interaction does not lead to nuclear satura=
tion. Since the monopole state is explained in
terms of the vibration about a stable minimum,
achieving saturation is crucial for describing this
state. Indeed, we will get the wrong answer for
this mode.

One motive for choosing such an interaction,
and this was discussed to some extent in our pre-
vious work, is that it will hopefully shed some
light on the Bohr-Mottelson dynamic self-con-
sistency conditions', which the authors use exten-
sively, as does Suzuki, ' for calculating the en-
ergies of vibrational states and polarization
charges. We shall see, however, that although

tential energy splitting is equal to the mean kinetic
energy splitting. To obtain the mean we construct
the L, pole state

h NP=0 P r~)~(ph ')~ (ph ')'),

the delta interaction leads to results which are
in some cases the same as those of Bohr and

Mottelson, there are some significant and interes-
ting differences.

III. THE SINGLE PARTICLE SPLITTING —TWO
CHOICES

Although we have chosen the mean value of the
single-particle-single-hole splitting to be a sim-
ple multiple of h~, e.g. , 1k~ for quadrupole and
monopole h(d/2 for the dipole case, this does not
mean that the single particle spectrum obtained
with our interaction reproduces the harmonic os-
cillator spectrum. In particular, with an oscil-
lator all energy levels within a major shell are
degenerate. With our delta interaction there is a
very large spread in the energies. One example
will suffice.

For 'Ca with v=0.289, h(d=11.988, and G
= 336.61 (octopole case) we get for potential en-
ergy in units of MeV:

(Os, -43.654),
(Op, -34.241),
(1s, -27.353), (Od, -27.838),
(1p, -21.241), (Of, -18.522),
(2s, -20.667), (1d, -17.861), (Og, -12.685),
(2p, -17.448), (1f, -15.195), (Oh, -8.366) .

We have performed the calculations with two dif-
ferent choices of the single particle energies, SPI
and SPII. They are defined as follows:

SPI. We use the delta interaction with the multi-
pole condition to calculate the single particle .

potential energies. The single particle kinetic
energies are given by the harmonic oscillator val-
ues. Indeed, the single particle energies just
presented above correspond to SPI.

SPII. Because the fluctuations in the single par-
ticle energies within a major shell are very large
using SPI, and this may be unreasonable, here we
take the single particle energies to be those of a
harmonic oscillator, e.g. , for the quadrupole and
monopole state, every single-particle-single-
hole splitting is taken to be 2h(d.

The particle-hole interaction is the same for
both of the above cases, SPI and SPII. Note that
we have here chosen S(h) =41/A'~', hence v

=0.9887/A ~ and 5 =1/vv .
However, because of the multipole condition

we see that every matrix element of the RPA
Hamiltonian is proportional to Sm. Hence if the
resulting eigenvalues are expressed in units of
k~, the answers are independent of h~. The
coefficients &, and ~, which describe the RPA
wave function of the nth state are also independent
of 8+. Thus the specific prescription which is
used to obtain h(d is not very important.
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The energy weighted sum rule for the E1 tran-
sition is of course proportional to b'~ (b' for L =0)
and hence to (1/bur)~. The convention we use for
RPA is given in Appendix, B. Appendix C con-
tains the sum rules.

IV. EXPLANATION OF HIGH DEGENERACY IN
L-S COUPLING

Although a j-j coupling basis was used for these
calculations, it should be noted that the inter-
action we use is central, and we are not intro-
ducing a one body spin orbit interaction. This
means that the quantum numbers L and S are good.
This manifests itself in the fact that most of the
states that we obtain in an RPA diagonalization
have vanishing B(EL)'s to the ground state. These
correspond to states with SW 0.

Furthermore, if we choose the single particle
energies to be those of a harmonic oscillator
(this was described in more detail earlier as
SPII), we find that even fewer states than are
permitted by L Scoup-ling have finite B(EL) tran-
sition to ground states.

Furthermore, we observe that these states which
have vanishing B(EL)'s have eigenvalues which
are some multiples of S~. For the quadrupole
states there is a high degeneracy of 25~; in the
octopole case at 1k& and 3k&. Take for example
the I =2' states in "O. We find that there are
4 states which are degenerate at exactly 2k+.
These states have zero B(E2) strength to the
ground state. This degeneracy can be partly ex-
plained by looking at the expression for the par-
ticle-hole interaction in L-S coupling which is
given in Appendix A.

The particle-hole states forming the 2' states
in "0 can be divided into 3 classes.

Class (1) L e2 S =1 (Op 'Of)L=3 (Op '1p)L=1

Class (2) L =2 S=0 (Os 'Od) (Op 'Of) (Op '1p)

Class (3) L =2 S =1 (Os 'Od) (Op 'Of) (Op "1p)

The 3j symbol

l„l,L

L. O 0 Oi

vanishes unless l„+l,+L is even. Hence all the
matrix elements in class 1 will vanish. This
explains two of the four states at 28. I

We next note that for every matrix element in
class 2 that vanishes there mustbe acorresponding
one in class 3 that vanishes. This is because the
entire spin dependence is contained in the factor
(1-4 5, , br, + 2 xmas, —2xbr, ). Since we are '

setting x=0, this factor will be 1 for S=1 and -3

for S =0. The particle-hole matrix elements in
class 2 are -3 times those in class 3.

Thus two of the four degenerate states are from
class 1, one is from class 2, and one from class
3. The ones from class 2 and class 3 are expected
to have the same radial structure, differing only
in the spins. Only class 2 states ean have finite
B(E2)'s. This is because the E2 operator Qr'y,
has no spin dependence and therefore cannot con-
nect spin one to spin zero. Thus, in this example
we are left with one nontrivial degeneracy (class
2) to explain, as well as the vanishing B(E2).

To explain this, we note that the J--S coupling
expression for the particle-hole matrix element
(given in Appendix A) has the structure

((p'h"] V[ph '] ) = ff„(v) ()w)r'dr,

where from here on we use the symbol k to desig-
nate ph.

Let us denote the class 2 state at 28&@ by g and
expand it in terms of particle-hole components
(we limit ourselves to TDA states in this dis-
cussion).

We expect

This can be achieved by demanding

Let us first consider the schematic approxi-
mation in which the integral f&„...(r)&„...(r)
XI'„, (r)R„, (r)r'dr is replaced by a constant. '
In this case the particle hole matrix element has '

the structure (k'V, „k) g~.g~, where g does not
depend on x. We can regard the g, as elements
of a vector of dimension D, where D is the number
of particle-hole states for a given LST configura-
tion, e.g. , in the above example, "O L =2, S=O,
T=0 we have D=3. The quantities a, are also
elements of a vector of dimension D, and the con-
dition'„z„g, =0 simply means that the vector
(z) is orthogonal to the vector Q).

There are clearly (D —1) vectors (z) which are
orthogonal to Q). Each of these (D —1) vectors
will have a vanishing particle-hole matrix ele-
ment. Thus the class 2 degeneracy at 2hw will
be (D —1). This will also be the class 3 degen-
eracy. Thus for the J =. 2, S=0, and T =0 states
in "0 we expect a twofold degeneracy from class
2. This was confirmed by a calculation. We ob-
tain the same degeneracy in class 3.

We now consider the case where f,(r) is not
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approximated by a constant. We note that f~(r)
is proportional to the product of two harmonic
oscillator radial wave functions B,(r), R„(r) .Using
the variable x =r/b we note that the product can
be written in the form of an exponential times a
polynomial

MAO~&&

y,„(r)= e X' g a„(ph)X,
NMg N(Pll)

where 0 =0 or 1. I et NM, „=minimum of all
N„,mph) and let N~= maximum of all NM+ph).
To ensure that Zf, (r)z„=0 we demand that each
coefficient of X'" vanishes. That is,

a„k z„=o k=ph .
This leads to ~ conditions where ~=K„~-N»N
+1. We now have & vectors, the nth one of which
is [a„(l), a„(2), . . . , a„(D)]. The vector (z(k)} has
to be orthogonal to all of these. There are clearly
(D —&) such vectors (z(k)}. Hence the class 2

degeneracy is D- ~.
In our example (L =2, S = 0, and T =0 in "0) the

polynomial has terms in x and x TIius KMyN = 1
&

NM„x =2, and hence &= 2. Thus the degeneracy
(D- &) is one

In a major shell n, I, N (N =2n+l) the lowest
power that appears in a polynomial is x', the
highest power is x". Thus if the particle is the
shell n~, l~, N~, and the hole is the sheQ n„, /„, NI„
then we have

N»x(ph) =-, (N, +N„) if N, +N„ is even

=-,' (N, +N„—1) if N, +N, is odd,

N«„(ph) =-,'(l, +l„) if I,+I„ is even

=-,'(I, y&„—1) if /, +I„ is odd.

Just to give another example, consider the L =2
and T=0 states in 'Ca. There are seventeen
states in all, five in class 1, six in class 2, and

six in class 3.
The entire degeneracy at 2A& for the schematic

model is 15. Five of the states are from class 1.
Since D is 6 for class 2 the degeneracy here is
D —1=5. It is also 5 for class 3.

For the delta interaction the entire degeneracy

at 2h~ is eleven. Five still come from class 1,
leaving 3 from class 2 and 3 from class 3. We
find that the quantity ~ is equal to three. The
class 2 degeneracy is therefore D- ~=3, as
expected.

It is very easy to show that the B(EL) to ground
is zero for these degenerate states.

The B(EL) is proportional to

r'g f,(r)~, r'd r.

Since the integrand is zero, the integral will also
be zero. The above is not true when we approxi-
mate the radial integral by a constant.

It should be emphasized that while part of the
above argument involved spin isospin symmetry
(as discussed many years ago by de Shalit and
Walecka'), the crucial part involving class 2

degeneracies did not.
It is also worthwhile noting that for L-S coupling

the expression for the particle-hole matrix ele-
ment the spin-isospin factor is very simple
(1 —45~,6»+2x6~, —2xhr, ). The values of this
factor for the four different modes are -3 for S
=O, T 0; (1 —2x) fo-r-S=1,T=O; (1+2x) for S=O, T
= 1; and 1 for 8 = 1, 1' = 1.

Note that even if there is no spin dependence,
i.e., x=0, the S=O, T =0 mode comes down low
and is well separated from the other modes. This
affords a nice concrete example of the ideas of
de Shalit and Walecka. '

V. THE STRENGTH G

We have obtained the strength 6 by applying the
multipole condition. The values of G for the vari-
ous closed shells and various multipoles are listed
in Table I.

It should be noted that for large A. , say& =336,
it appears that the parameters for the quadrupole
and octopole conditions are nearly the same. This
may also be true for the dipole mode. Although
we cannot be completely certain, it may be that
the strengths for these different multipoles ap-
proach each other as A goes to infinity.

TABLE I. Strength for various multipoles (in units of,MeUfm ).

40 80 140 224 336 480

738.60
274.12
366.24
471.14

502.57
293.47
330.68
370.15

447.50
298.81
317.73
336.61

425.30-
304.50
312.79
323.33

413.22
305.57
309.57
314.60

403.69
306.58
306.04
308.87

400.61
307.72
305.98
306.20

397.58
309.81
305.35
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VI. THE QUADRUPOLE MODE

We recall that the main motivation for using
the interaction in this work came from the quad-
rupole mode. As mentioned in our previous work,
a deformed oscillator variational calculation with
a delta interaction yields the result that the po-
tential energy is independent of deformation. This
further yields the Mottelson condition'

b„' Z„+2', '

where Z, is the sum (Nz+2) with Nz the number
of quanta in the z direction for a given state.

%hen the Mottelson conditions are linearized,
one gets the simple result that when a nucleon
is added to a closed shell the core deforms so that
the mass quadrupole moment of the core is equal
to the quadrupole moment of the valence nucleon.
Thus the isoscalar polarization charge, defined

'QooRE/Q»«N« is equal to unity.
In this work, where we examine the vibrations

themselves, we wish to test anothe-r result —that
a suitably weighted mean energy of the isoscalar
quadrupole state should equal &2hco.

From the results in Table II we have obtained
parametric expressions for the mean energy E,/
E, and for the quantity (E,/E, )'~'. It was shown
by Bohr and Mottelson and Suzuki, ' using dynamic
self-consistency (or what is equivalent, the use
of a separable quadrupole-quadrupole interaction),
and by Golin and Zamick, ' using zero range Skyrme
interactions and scaling arguments, that the en-
ergy of the isoscalar quadrupole state is v2 k~.
It was then shown by Lane et al. ' that the scaling
expression corresponds to (E,/E, )'~ '.

We express the results in units of 5&:

E,/E, = qS&e, (E,/E, )'i' = q'hu& .

We obtain for SPI

q = 1.496+0.028/j +0.27/j2,

q' = 1.499+ 0.051/j + 0.23/j',

and for SPII

q = 1.484 —0.137/j + 0.544/j',

q' = 1.507+ 0.089/j + 0.154/j'.

We see that with both SPI and SPII the results
for q' are close but somewhat higher than the

TABLE II. Eigenvalues with nonzero strengths of J =2+, T =0 states.

Eigenvalues
(MeV)

spr'
a(E2)
(fm4)

Eigenvalue s
(Me~

spn
a(E2)
(fm4)

42.22 3.76 S = 158.86
E '=42.22

42.22 3.76 S- 158.86
E = 42.22

35.80
25.35
18.61

0.22 S= 1 516.70
58.44 E = 25.22
1.48

28.42
20.74

31.14
30.47

S= 1 516.72
E = 24.62

40

25.80
22.39
19.86
18.42
17.24
13.31

0.94
0.40
0.02

361.8
1.25

10.10

S= 6 853.20
E = 18.30

21.85
19.37
14.94

77.57 S= 6853.19
132.76 E = 17.87
173.23

80

20.36
19.22
18.24

17.11
16.48
14.54
14.29
12.77
10.66

2.27
0.72
0.05

1.03
.2.12

1409.20
37.33
2.72

46.19

S=21 658.00
E = 14.42

17.72

16.29
15.47
11.81

178.09

9.29
662.07
686.61

S= 21 658.07
E = 14.10

a p= 0 9887/~i/ fm @~=41/~ /

S is energy weighted sum in units of MeVfm4.
E is mean energy in units of MeV.
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collective result v2h&u.

Concern for this deviation may seem like too
fine a point to the reader. However, people are
using the mean energy of the quadrupole state to
analyze the effective mass. When effects of finite
range are taken into account the collective expres-
sion for the value (8,/E, )'i'becomes V2A&u(m*/m)'i'
(see also the generalization by Kohno andAndo). '
The delta interaction used here shouId correspond
to an effective mass of one.

It is not clear why we do not get the collective
. result exactly. We will see later that results of

Golin, "using a density dependent zero range in-
teraction, are much closer to &2@m.

A striking feature with SPI is that well below
the main strength there is an L =2 state with a.
small B(E2) strength. For example, in "0 the
strongest state is at 25.35 MeV with a B(E2) value
of 58.444 fm . At 18.61 MeV there is a state with
a B(E2) strength at 1.47 fm'. At the other extreme
A =480 the main strength is at 7.94 MeV with
B(E2)=51511 fm, but there is a state at 5.99
MeV with B(E2)= 1998 fm~.

We call these low lying states quadrupole
"pigmy" resonances, in analogy with similar
states which. were obtained in calculations (whether
they are seen or not, experimentally, is another
matter) for isovector dipole modes.

When we change from SPI to SPII, the lowest
state acquires even more strength, so it is no
longer appropriate to call it a pigmy resonance.
In fact we now get several states of comparable
strength. For example, in "0we have a state
at 28.42 MeV with B(E2) of 31.14 fm' and a state
at 20.74 MeV with B(E2)= 30.47 fm'.

In "Ca the states at 21.85, 19.37, and 14.94
MeV have B(E2) values of 77.57, 132.76, and
173.23 fm, respectively.

These results do not seem to correspond to
experiment. The mean energy of the quadrupole
resonance is quite reasonabIe, but the strong
fragmentation of strength is evidently not there.

We here note that the use of a density dependent
interaction can eliminate this strong fragmen-
tation, as is evident from Golin's thesis' at
Rutgers for "0using a zero range Skyrme inter-
action"

V=-t, 5(r,. —r, )+t,6(r,. r, )5(r, ——r,). .

The parameters t, and I;, were chosen to give the
correct binding energy and radius of "0. Golin
obtained three states with nonzero strengths; they
were at 31.20, 24.93, and 18.00 with strengths
being 0.09, 2.14, and 106.78, respectively. She
found a mean energy of 18.1458, and (E,/E, )'i'
as 18.2454 MeV, so p' =1.4197 (mean energy
= qI+, g = 1.41197).

Almost all the strength lies in one state at 18
MeV. We note that Golin used v=0.31 fm ' whereas
we are using v =0.39 fm '. This leads to some
confusion, which can be avoided by stating the
results in units of 5&. Golin's strongest state
is at 1.4 S~. For SPI our strongest state is at
1.55 A~ and the pigmy state is at 1.14 Ace. For
SPI we have 2 states of nearly equal strength at
1.75 A~ and 1.27 A~.

Despite the fact that density dependence wipes
out the pigmy resonance, it might not be imprudent
for the experimentalist to look for low lying frag-
ments anyway. The density dependent interactions
currently in use are really still very phenomeno-
logical; it would be useful to put them to severe
experimental tests.

VII. THE MONOPOLE MODE

For the eight nuclei A =4, . . .480, the lowest
monopole state collapses with SPI and SI'II for the
monopole condition strengths. Even the weaker
quadrupole condition strengths lead to a collapse
in all but theA =4 nuclei. In fact we found that the
monopole mode comes to zero at strengths 4.1,
5.3, and 6.3% weaker than the respective quadrupole
strengths forA =16, 40, and 80 nuclei, respec-
tively.

The use of a density dependent interaction will
raise the monopole energy to a high energy. For
example, with all Skyrme interactions" the en-
ergy comes out to be greater than 2h~." We
refer the reader to interesting work by Kirson"
(and similar, unpublished comments by Yoshida'4).

VIII. THE OCTOPOLE MODE

In Table III we give the results of the eigen-
values and B(E3), , values for the 3 states. We
do this for SPI for 5 nuclei and for SPII for 3
nuclei. We list only the states which have finite
B(E3) values, i.e., the states with f.= 3 and S
=0. For SPI the results are complex. For A =4
the first 3 state is at a very high energy 71.76
MeV. This is due to the fact that there is no AN
= 1 component. In startling contrast, for A=16 the
lowest state has collapsed. This nucleus offers
a nice example of Towner's remark" that the en-
ergy weighted sum rule (EWSR) is violated when
there is a, zero eigenvalue (see Appendix C). The
Lane expression of EWSR yields a value 27058.59
MeVfm', but our calculation gives 21414.347
MeV fm'. The lowest state comes at 1.9 MeV in
'Ca, is at 2.054 MeV for A =80, and is at 1.95

MeV for A =140. We should also mention that for
collapsed state and zero energy states we obtained
rather strong transition strengths.

The results for SPII were mentioned previously.
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TABLE III. Eigenvalues with nonzero strength for J =3, T =0 states (using octopole condi-
tion).

Eigenvalue s
(MeV)

SPI
B(E3)
(fm')

Eigenvalue s
(MeV)

SPII
B(E3)
(fm')

71.76 18.66 S = 1 338.75
E = 71.76

71.76 18.66 S= 1 338.75
E =71.76

54.47
44.27
33.24

collapse

20.75 S= 21414.35
418.51 E = 11.83

52.81

46.30
41.12

collapse

430.62 S= 21 646.36
41.55 E = 16.85

40

42.48
38.41
32.86
31.91
29.69
25.89
24.16
14.24
8.25
1.9

20.92
201.74

3 342.77
422.61
358.43

8.53
358.90
138.64
171.67

29 886.80

S=211671.66
E = 6.g6

34 44
32.72
28.25
9.38

collapse

3195.12
1080.50
255.66
547.42

S = 157744.77
E =7.56

' S is energy weighted sum in units of MeVfme.
E is mean energy in units of MeV.

The lowest state for all closed shell nuclei with
A &4 collapses to zero energy. This means that
with our multipole interaction the nuclei are un-
stable with respect to octopole deformations.

For SPII the octopole condition consistently leads
to a collapse. One would, of course, be interested
in finding which strengths take the octopole mode
to zero value. Interestingly enough, we found
that the lowest octopole mode comes to zero en-
ergy at a strength which is within 0.5% of the
quadrupole condition value. The strengths as
determined from the multipole condition differ
for different multipoles. Excluding the L =0 case
they seem to converge towards each other for
large A. . This suggests that the lowest octopole
state comes to zero exactly as A goes to infinity.

IX. THE OCTOPOLE MODE WITH A ZERO RANGE
SKYRME INTERACTION

Since we obtain a collapse or near collapse with
the delta interaction plus octopole condition, we
now repeat the calculations using a zero range
Skyrme interaction with parameters chosen to give
the correct binding energy and radius. The Skyrme
interactions lead to saturation. We can therefore
test if saturation is the key element for removing
the collapse, as it was in the case of the mono-
pole mode.

The calculations were performed for A =16, 40,

and 80. We list the parameters, the value of
A~, and the energy of the lowest 3 state in TDA
and RPA, in Table IV.

Note that even with this saturating interaction
we get a collapse in 'Ca, and "Zr. The results
here are a bit tricky. Had we just looked at "0
we might have concluded that the zero range
Skyrme interaction gave reasonable results. Only
by systematically exploring heavier nuclei are we
able to see that this interaction also leads to dif-
ficulties.

By examining the calculations of Blaizot and

Gogny, "who calculated the octopole states for
more general Skyrme interactions, we are led
to the conclusion that by introducing repulsive
finite range terms one raises the energy of the
lowest 3 state. We can characterize the various
Skyrme interactions by the effective mass. A
zero range Skyrme corresponds to m*/m =1. The
above authors considered SKIII with m*/m =0.76
and SKIV with m*/m =0.41.

In "0 they obtain the lowest 3 state at 6.77
MeV for SKIII and 8.90 MeV for SKIV. In Ca
corresponding values are 2.76 and 3.48 MeV.

'Their results, together with ours, show that as
m*/m increases the lowest 3 state comes down.
This may be connected in part with the fact that
as m~/m increases the single-particle-single-
hole splitting decreases. However, this is not
the whole story. We recall that a collective for-
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TABLE IV. Lowest octopole mode state with zero range Skyrme interaction.

tp

(MeVfms}
ts

(Me V fm6}
Sco

(MeV} SPI SPII

E, (TDA}
&Me~

E, (HPA}
(MeV}

SI I SPII

16
40
80

1085.132
1107.294
1121.384

20 196.307
19563.724
19070.514

13.353
10.608
8.916

9.854
0.934

-1.784

9.686
4.922
2.884

8.313
collapse
collapse

8.144
collapse
collapse

mula for the isoscalar quadrupole state yields a
result E,,= &28+/v'm*/m Th.is energy also de-
creases as m*/m increases, hut not in the same
way as the single particle splittings decrease.

It would be nice to be able to develop an an-
alytical formula for the dependence of the lowest
3 state on effective mass, but we have up to now
not been able to do so.

X. SUMMARY AND CONCLUSIONS

In this and previous work we have made a careful
study of the application of a delta interaction to
study the vibrational states of closed shell nuclei
and the E2 effective charges of closed shell plus
one nuclei. Bather than adopting an empirical ap-
proach we chose the strength of the delta inter-
action by the multipole condition. Part of our
motivation was to see if we could realize some
of the results of Bohr and Mottelson' with an ex-
plicit two body interaction. We are also interested
in comparing our results with the Skyrme inter-
action. Which of the many results obtained with
such an interaction depend upon the fact that one
has achieved saturation? One cannot obtain sat-
uration with the delta interaction that is used here.

In the previous work we found that the isoscalar
E2 polarization charge varied from about 0.5 for
mass to about I as the mass numbers. went to
infinity. Thus only asymptotically did it agree
with the Bohr and Mottelson result.

Since a delta interaction has no velocity depen-
dence it should bear some similarity to the zero
range Skyrme interaction (i.e. , where t, =t, =o).
There are some similarities and some differences.

The fact that the mean energy of the quadrupole
state [or more precisely (E,/E, )'~'] comes close
to v2h(a with a delta interaction whose strength
is chosen by the quadrupole condition shows the
similarity with Skyrme as well as with the results
of Bohr and Mottelson. However, we found a
fragmentation of the B(E2) strength not present
with a Skyrme interaction.

Also, for reasons which are not. yet understood,
the zero range Skyrme interaction seems to yield
a very large E2 isoscalar polarization charge

( &.7 in 'Ca). This is much larger than the value
of unity obtained with the Mottelson conditions, or
the value of 0.9 obtained with the delta interaction.

As expected, with a delta interaction the mono-
pole mode undergoes a collapse. This occurs with
.a strength even less than the quadrupole condition.
With a saturating Skyrme interaction the mono-
pole mode comes at a high energy (&2k+).

However, for other modes we have shown in
some sense that saturation is not crucial. When
we apply the multipole condition we find that every
matrix element in the RPA Hamiltonian is pro-
portional to I& so that the eigenvectors are in-
dependent of 5& and the eigenenergies are pro-
portional to k~. The isoscalar effective charge
is independent of S~ in this model.

We found that somewhere between the quadrupole
condition and the octopole condition there was a
collapse of the octopole mode to zero energy.
Apparently these two conditions approach each
other for large A, so we expect that the collapse
will be more sharply defined at large A. That this
should occur asymptotically was noted by Bohr
and Mottelson, and this stimulated our investi-
gation.

We find that the octopole state has collapsed or
is near collapse (this depends somewhat on how
one chooses the single particle energies, i.e.,
SPI or SPII, and which condition one chooses,
quadrupole or octopole) for all nuclei with A ~ 16.
We found the same result with a zero range Skyrme
interaction for 4'Ca and "Zr (but, surprisingly,
not for "0).

It would therefore appear that the use of an ef-
fective mass less than unity is crucial to ob-
taining the octopole mode, and possibly higher
negative parity multipoles, at the right energy.
This point is relevant not only for 3 vibrations
but also for states built out of these vibrations.
For example, Feshbach and Iachello' described
the first excited 0' state in O at 6.05 MeV in
terms of four 3 vibrations. How does the energy
of the 6.05 MeV state depend on effective mass?

This point then becomes important in the con-
text of recent work of Brown, Dehesa, and Speth. '
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They argue that although the empirical single par-
ticle energies near the Fermi surface are con-
sistent with an effective mass of unity, in doing
calculations of collective states one should use
bare single particle energies corresponding to an
effective mass less than one, i.e., about 0.7.

As a bonus, we discovered some very interesting
properties of the delta interaction when used in
conjunction with oscillator single particle states.
Many of the eigenfunctions had vanishing particle-
hole matrix elements; i.e., the corresponding
eigenvalues coincided with the single-particle-
single-hole splittings. 'These states had vanishing
B(EI )'s to the ground state. We were able to ex-

plain this in terms of the structure of the par-
ticle-hole matrix elements of a delta interaction

in L-S coupling.
In summary, we feel that we have shed some

light on several problems. At the same time we

have clearly indicated that there are some re-
maining problems which we, and we hope others,

will attempt to resolve.
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C. Bennett, and B. Castel.

APPENDIX A

Particle-particle and particle-hole matrix elements for the interaction

v=-(:(1+«p')n(r, —r, ), p'=( ' ')
2

in jj and LS coupling are as follows'.

jj couPting.

([j,j,]~ V[j,j,] r) = ——6t[1+x(-1) ][(2j,+1)(2j,+1)(2j,+1)(2j,+1)]'i'
2

T ~ J(( l
' ' J&

x y ] T jl j2 j3 j4
l l l l

h2 2 L h 2i- 2 1
JQ ))I ~ ~

~ ( 1)gh+j4[( 1)|h+)h+J+T(1)l)+'j3]'jl jh
1 l l

2 g Q2 2 0&

([j j '] V[j j '] )=—Q[(2j, +1)(2j„+l)(2j +1)(2gh +1)]'~'6

J~ P ~ Jw
X ( 1)~hq'4z'~ jp).

l l l l
~2 -2 0 &2 -P 0.

x[(1+x)(1 2n, ,)+x( 1)~., »&" 2g, ,( 1))»)h, ~]

+ ( 1)lh&+)h& jPj jh)

Q2 2

fl ~ J
(1 —2x~, ,)

l-1, g 2 -1~

LS coupling.

&[l l ]"'V[1.1.1'"&=-Gdt[(21 +1)(2l,+1)(2l.+1)(2l.+1)]"'[1- (-1) ][1—(-1) '
].o o o(o o of

([l l ']~ V[l l~ '] ) =G(R[(2l, +1)(2l„+l)(2l, +1)(21~+1)]')'h

where

lnx(-1)'h). 'hh ' P) h 'h (1 —4&q,&r, +2x&~ —2x&r,),.0 0 0. .0 0 0.
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e.„,(r)a„, (~)a„„(~)a„,(~)~'u~=1 &[h-'.]'Io"Io&

APPENDIX B

For the RPA equations we use the convention of
Goswami and Pal." The unperturbed hole-parti-
cle state is denoted by ~k&:

I

is&=[h-'p] „,,

also to clarify the notation

i+&=[h 'p]'u ~,
~nt&=(-s)"' '"-'[p-'h]" .

The BPA equation is given as

A g x k

APPENDIX C

The energy weighted sum rule is given as

s'~= „s, ~o» o '.
For E=O we have the following results:

2S'
gT=O, L=o ~ &~2&EN t

$7=0, L= 1
EW

8 =' ='= 1.(2L+l-g&r'~ ')I'
87t'm

where the matrix elements are

~„,=&~ I~I~ &+(.,—.„)~„„
~„.=&a~ v~~ &.

The operator Q~ which creates the excited state

~Pzr& when it acts on the ground state ~gg is

qt g [& Qt ( y)z N+T Nr +-]-

=&,&,Q[x,'&[h 'p] )0 'i 0)

where

+ ( i)~+ &+&[h-'p]~r JO~&/p&]

Then the electric multipole transition matrix ele-
ment (for a J=O, T =0 ground state) is

Note that the energy weighted sum rule is not

satisfied for the cases where the lowest eigen-
value comes out at zero energy. In RPA the
closure relation can be written as

Z " [~l-xl]-
p I

where J is the unit matrix and the summation is
over positive energy solutions only. For each
zero energy eigenvalue the completeness is des-
troyed and this then affects the sum rule. So the

energy weighted sum rule cannot be satisfied
whenever e igenvalues have contributions from

zero energy.
A more quantitative discussion of eigenvalues

at zero energy and their effects on the energy
weighted sum rules has recently been carried out

by Lane and Martorell.
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