
PHYSICAL REVIEW C VOLUME 22, NUMBER 4 OCTOBER 1980

Final-state interaction in inclusive electromagnetic nuclear processes

Y. Horikawa, *F. Lenz, and Nimai C. Mukhopadhyay
Swiss Institute for Nuclear Research (SIN), 5234 Villigen, Switzerland

(Received 20 March 1980)

The problem of nucleon final-state interaction in inclusive electromagnetic reactions is discussed within an optical

potential description for the outgoing nucleon. The formalism accounts for both the loss of flux in the primary one-

nucleon removal channel and the excitation of the multinucleon ones, Thereby a crucial difficulty encountered in the

distorted-wave Born-approximation treatments of inclusive processes is eliminated. The calculation has been

applied to the (e,e') reaction at the Stanford kinematics of 500 MeV incident energy and 60' scattering angle. As a

result of nucleon final-state interaction, the peak intensities are reduced by 5—10 %; about half of the (e,e') reaction

is found to correspond to multinucleon removal. In contrast to the good agreement of the calculation with the

Stanford data, severe discrepancies are obtained if applied to the recent Saclay data for incident energies around 400

MeU. The limitations of our approach are explored by considering processes at relatively low momentum transfers:

low-energy electron scattering and radiative pion capture.

NUCLEAR REACTIONS Inclusive electron scattering. Radiative pion capture.
Green's function approach. DWBA. Targets 4 &A & 58. Electron energy 100-

500 MeV, 0=60; stopped pion.

I. INTRODUCTION

At high energies exclusive nuclear reactions
such as elastic scattering or excitation of discrete
states, are described with great success by
theories which are based, in one form or the other,
on the multiple scattering formalism. We particular-
ly emphasize the success of the optical potential
approach to elastic scattering and of the related
distorted-wave impulse approximation (DWIA)
in the description of nuclear excitations. The
reason for this success is that, at high energies,
the projectile-nucleus interaction is dominated by
"quasifree" nucleon knockout, in agreement with
the basic assumptions of the multiple scattering
concept. This dominance of knockout processes
makes rearrangementprocesses or coupled channel
effeCts unimportant, and thereby leads to a rather
simple picture of the scattering process, com-
pared to low-energy scattering.

In contrast to exclusive reactions, these high-
energy concepts have not been systematically
applied to the study of inclusive reactions. Al-
though one can start from the dominance of nu-
cleon knockout, it is clear that the techniques for
describing these reactions must be different if the
final state remains unspecified. In the exclusive
reactions, nucleon knockout in the initial and final
states leads to an attenuation of the flux in the
channel considered. This is described by the imagin-
ary part of the optical potential. In an inclusive
reaction, however, these multistep processes
contribute to the observed reaction as well and,

therefore, cannot be taken into account by simply
distorting, and thereby attenuating, the incoming
and outgoing waves. For a strongly interacting
projectile, the situation is rather complicated,
since both the projectile and the knocked-out nu-
cleon may further interact with the residual nu-
cleus, giving rise to multistep processes with
excitation of complicated structures. In this work,
we study the problem of final-state interaction in
the simpler case of the (e, e') reaction, where
only the knocked-out nucleon interacts with the
residual nucleus.

For the exclusive (e, e'P) reaction, one accounts
for the proton final-state interaction by generating
the outgoing proton wave in the complex optical
potential. "However, for inclusive reaction, a
real potential (possibly momentum and/or energy
dependent) is usually employed in generating the
outgoing proton wave. ' ' From the theoretical
point of view, this is very unsatisfactory, since,
at finite energies, the single-particle potential
has to be complex due to the presence of open
channels.

In this paper, we shall show that the same theo-
retical concept applies to both the exclusive (e, e'p)
and the inclusive (e, e') reaction. In Sec. II we
develop these concepts. In Sec. III, these theo-
retical considerations will be applied to the Stan-
ford 500 MeV (e, e') data. ' For these kinematics,
one can expect the high-energy approximations
involved, such as identification of the optical po-
tential in the ground and excited states of the nu-
cleus, respectively, and neglect of correlations,
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to be valid. In the actual calculation, we do not
use the high-energy approximation to the optical
potential, but rather a phenomenological optical
potential. In this way, we are able to discuss the
influence of this specific type of final-state inter-
action at comparatively low excitation energies
as well. In Sec. IV, we show the limitation of the
approach when applied to the inclusive (e, e') re-
action with electron incident energy around 100
MeV, ' and radiative m capture, ' where the dom-
inant contribution is no longer quasifree and
where particle-hole rescattering and ground-state
correlations become important. We summarize
our conclusions in Sec. V.

II. FINAL-STATE INTERACTION IN EXCLUSIVE
AND INCLUSIVE (e,e') REACTIONS

We start our discussion by considering the ex-
clusive (e, e'N) reaction on a nucleus. The differ-
ential cross section is given by

=KG(&u —(E& -E,))d+ d&d dpi'

x k~, -,
'' t; . , 0

A,

where t, is the elementary e-N t matrix, and K
is a kinematic factor depending only on the ener-
gies of the incoming and outgoing electron; v is
the energy loss of an electron scattered into solid
angle 0, k; and k& are momenta of the incoming
and ougoing electron. IO) is the nuclear ground
state,

I P; ) an excited state of the nucleus of en-
ergy Ez and with a proton of asymptotic momentum

p& in the continuum. In the evaluation of (I) for the
(e, e'P) reaction, one normally factorimes out the
electron-nucleon cross section o,„(Ref. 9):

3 2

matrix element in (2), the (e, e'p) exclusive cross
section is given by

The structure functions are related to F, and F„
the squares of the nuclear charge and transverse
form factors in the laboratory frame, by

2
qf ~ qtlV2= ~ I'~+

2 2 F] .
q 2q

(6c)

x 6 —cy+Eg- q

A

where the sum is over the occupied single-particle
orbits of the (nuclear-ground-state) shell-model
potential and Q& is the single-particle wave func-
tion of the knocked-out nucleon generated in the
optical potential. E& and e„are the corresponding
particle and hole energies, respectively. In con-
trast to the shell-model potential, the single-
particle potential of the knocked-out nucleon con-
tains an imaginary part. This imaginary part ac-
counts for the attenuation in the final channel due
to final-state interaction of the knocked-out nu-
cleon with the residual nucleus. 'The resulting re-
duction of the exclusive (e, e'P) cross section is
important in the analysis of the experimental data
(cf. Ref. 2).

The inclusive (e, e') cross section can be obtained
by summing over all the final states compatible
with energy conservation. The resulting formula
can be written in terms of two structure functions
W, (~,q„') and W, (~,q„'):

d2
= o „[W,(&u, q ')+ 2tan'(8/2) W, (&u, q, ')] .

(2)

where m is the nucleon mass; o,~ is given, ne-
glecting off-shell effects, in terms of the Mott
cross section a„and the electric and magnetic
form factors G~ and G„of the nucleon:

1 - G 6

In the nonrelativistic impulse approximation to F„
the spin-dependent term vanishes up to the order
(q'/m') if we neglect the spin-orbit coupling.
Therefore, F, is given by the Coulomb response
function

Z(N) 2

Rele(te, q)= $ (f
' ' OeIle(tee-(Ee-E )

=1

0 Pe "'e g e""0) (7)
2'ljg ) (a) —H

+ 2 tan'- " G~', 8 I q„2I
2 4m'

28=—(r„T,(q„') 2t+an'
2 T,(q„') (4)

where 8 is the electron scattering angle, q
' being

the square of the four-momentum transfer. In
the single-particle approximation to the nuclear

Re(~, e) = g (0 (I)
~

e". "'~ 0;(e))(*
t=&

x 5 (8+Q; —/~-
251 ~&

(6)

I

We now discuss the evaluation of the response
function. The single'-particle approximation to
the wave functions in (7) leads to the DWIA:
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This approximation to the response function has
been used in several calculations for the inclu-
sive (e, e') reaction. ' ' From the theoretical point
of view, this approximation is very problematic,
since the single-particle potential at positive nu-
cleon energies is necessarily complex due to the
presence of open channels. As in the case of the
exclusive (e, e p) reaction, an ima. ginary part in
the single-particle potential leads to a loss of flux
in the one-nucleon channel (1p-lh channel). In a
large nucleus, the intensity of the outgoing nucleon
wave function is strongly damped in the interior
and, therefore, only nucleons in the surface con-
tribute to the cross section. Thus, only Z' ' pro-
tons contribute to the quasielastic reaction instead
of all the protons, i.e. , this single-particle ap-
proximation violates the nonenergy weighted sum
rule. To avoid this serious difficulty, the calcu-
lations mentioned above' ' simply use a phenomen-
ological real potential. Although this procedure
yields at least qualitative agreement with experi-
ment, the theoretical problem remains as to why
to use in the exclusive reaction a complex poten-
tial, but to disregard its imaginary part in the in-
clusive ones. To trace the origin of this problem,
we treat this final-state interaction perturbatively,
and apply the high-energy approximation to the

optical potential.
In the high-energy approximation, the matrix

element in (8) reads

=(y,', '(i.)
l

e"-" y, (i)) =(p,
l

e"*
l
y,.(i))

+ &pt l u(i)G.(i)e"*'
l

0;(i))+

where t;&(&u) is the N-N t matrix. Diagramma-
tically, Eq. (9a) is represented by

M,. — + + ~ ~ ~ ~
(9c)

I;&=(p; p&l t; ~G.(i)e"*'
l
0;(i)4,(i)) (1oa)

(10b)

In this approximation to the final-state interac-
tion, the cross section is given by

g3p jQO 2Q ~ Pf

2

+ 2 Re d'p+10M, . '5 &u—

The final-state interaction process (second dia. -
gram) reduces the plane wave impulse approxi-
mation result because of the imaginary part of u,
i.e. , due to the imaginary part of the N-N t ma-
trix. Since the latter arises from the intermediate
on-shell N-N states in the N-N interaction, the
reduction of the 1p-1h excitation cross section is
due to the true (on-shell) excitation of the 2p-2h
states. Thus, if we want to include the final state
interaction in the 1p-1h channel, we have to ac-
count for the true 2p-2h excitations simultan-
eously. In the perturbative approach, this re-
quires an incoherent addition of the following ma-
trix element to M,. :

=ltd. +M '+ ~ ~ ~

i i (9a)

(9b)

I

with G, =l/(&u -T+ia). In the single scattering ap-
proximation to u(i), we have

u(i) = Q(Qq(j) lt, q((u)
l
p)(j)),

We now evaluate the correction (d'o/dQd&u)& due to
final-state interaction and find, using g(~ —p&'/2m)
= (2i~)-'(G', Gg,

(12a.)

(12b)

where we have used in the last step the unitarity
relation for the N-N t matrix:

1 1
& —T; —T, + sE'~ ~ ~

(12c)

I

Combining (12a) and (12b) we finally have for
(d 0'/diQd(d)&

d'o 't' 1
dnd(u)$2i7r ~'

l

G,u(i)G, ]-e"*'
l

&f&,) . (12d)

It is now straightforward to show that the modi-
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fication of the cross section due to the final-state
interaction does not change the sum rule. We
have

(9c) and (10b) by

M, =~ (14a)

1„„„') =-, &P,-je "'*G,u(i)G, e"'iy,.&,

(13)

where the contour of integration is along the two
rims of the unitary cut along the real axis. This
contour can be deformed to infinity, which gives
no contribution to the integral. Apart from pos-
sible bound state contributions of t;~, correspond-
ing to the (e, e'd) reaction, the final-state inter-
action effects do not change the sum rule.

We can now generalize the above result by
avoiding the perturbative treatment of the final-
state interaction. We replace the diagrams in

(e,', '()~ =&p, ~II(),
and the Green's function in (14b)

G(i) = G.( i)~~(i),

with the Mdller operator

Q(i) = 1+u(i)G(i) .

(14c)

(14d)

(14e)

We now repeat, with these definitions, the calcu-
lations (11) and (12), and find immediately

M, (14b)

where the double bar represents the effect of the
distortion; i.e. , the final state in (14a) is written
as

do',. = dP& M, 5 - + dp,. dp& M, .

1=
ggpf(&)~ e *'II (')[Go(i) Go(i-)]~(i)e' "'

~

0;&+(4; ~e
' '*'G (i)[u'(i) -u(i)]G(i)e'~' '

~
yg&}

=,',,&e;~ ""'[G'()-G()]""' y, &

disc($; ~e "*'G(i)e ~ ")
~

P,.&, (15)

where we have used the definitions (14d) and (14e)
to combine in (15) the contributions from the 1p-
1h and the 2p-2h channels. Equation (15) is more
general than our deviation, using explicitly the
high-energy approximation, indicates. Equation
(15) can be derived directly from Eq. (7) by writ-
ing the response function as the discontinuity of
the many-body Green's function, and then approx-
imating the latter by a single-particle optical
Green's function. We have chosen the above pro-
cedure to display the common basis in the theor-
ies of exclusive and inclusive reactions. In this
high-energy approximation, the final-state inter-
action effects in both the exclusive and inclusive
reactions are determined by the same optical
potential. In the exclusive (e, e'p) reaction, the
experiment selects the process (14a) only, and,
therefore, the effect of the imaginary part of the
optical potential is to attenuate the intensity of the
outgoing proton wave. This loss of flux out of the
one-nucleon c-hannel represents the excitation of
multinucleon channels. In the inclusive reaction,
the latter also contributes to the cross section.
A comparison of the inclusive cross section, ob-
tained by (15), with that obtained in the DWIA
treatment of the one-nucleon knockout (14a), gives
the strength going into more complicated channels

I

than the one-nucleon one.
One final remark concerning the distortion ef-

fects in processes (14a) and (14b) is in order. In
the high-energy approximation to the optical po-
tential, one implicitly classifies the processes
according to the complexity of the nuclear states
excited. Introduction of a final-state distortion
in (14b) would be due to coupling to the 3p-3h
channels. 'This leads to a consistent theory for
the inclusive reaction, only if the same 3p-3h
states appear as final state also. In our restricted
formalism, distorted wave functions or Green's
functions appear only in the 1p-1h subspace. We
emphasize that this is precisely what is assumed
in the first-order optical potential approximation
to the high-energy projectile nucleus scattering. .

We conclude this section by writing down the
explicit expresSion for the inclusive (e, e') cross
section, used in the present calculation. 'The

basic quantity for the calculation is the response
function obtained in the approximation (15)

ft) (,)(~~I)

i

d'xd'x'e '~ '* " '

x disc[iG(x', x, ~ —
~

a,
~

)P„(x)P„*(x')],
(16)
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where G is the single-particle Green's function
and the sum is over proton (neutron) occupied or-
bits. The cross section is given by

[o,„R„(&d,q)+ o„R,(&d, q)], (17)

where o,~&„& is proton (neutron) single-particle
cross section (3). This factorization formula is
equivalent to the nonrelativistic one with impulse
charge current"' ' in the &luasifree region (&d-q'/
2m), provided that the transverse convection cur-
rent term is dropped and the spin correlation ef-
fect is neglected in the response function. The
convection current contribution to the cross sec-
tion is given near the quasifree peak

=T, q„' 2tan'-+

x R (&d = w„~,q„~)
= 0.025 T,(q ')R((u= &d„~,q„~), (17a)

for an incident electron energy of 500 MeV and a
scattering angle of 60', the Stanford kinematics. '
Thus the convection current contributes only a
few percent throughout the energy region of our
interest and is safely neglected for these kine-
matics. 'The contribution from the spin-orbit cur-
rent vanishes up to O(q'/m') for the L-S closed
shell nuclei, if the spin-dependent final state in-
teraction is neglected. Therefore, we expect this
factorization approximation to be valid for quan-
titative comparison with experimental data at the
Stanford kinematics. ' In this approximation, the
only dynamical quantity involved is the Coulomb
response function, and this considerably simpli-
fies the numerical calculation.

(d. = 4) —f. (18)

where e; is the separation energy corresponding
to the orbit i. The separation energies are taken
from the (e, e'p) experiments, when available, or
extrapolated from the latter. 'The ground-state
parameters E;, b,. are given in Table I.

The single-particle Green's function G(i) is de-
fined in the usual way:

q2 p
2

G(i) = ~ — — ' —V (i) u(i)—
2Am 2 p.

TABLE I. Harmonic oscillator parameters b and the
binding energies of the single-particle neutron (n) and
proton (p) orbits used in this work. The parameter b is
related to that used in the shell-model analysis bsM by
b =bsM &A/(A —1), A being the target mass number.

Nucleus Orbit b (fm)

Binding energy of single-
particle orbit (Me V)

n p

culation of the response function in the single-par-
ticle approximation (16). For the description of
the ground-state single-particle wave function Q,-,
harmonic oscillator (HO) wave functions have been
used. The oscillator parameters b,. are obtained
either from electron scattering, or, for the me-
dium-heavy nuclei, from the Ho expansion of the
Hartree-Fock wave functions of Ref. 13. With the
exception of 'Li, the small variations of the os-
cillator parameters, corresponding to different
shells, leads to very small modifications of the
quasielastic cross section. 'The single-particle
Green's function has to be calculated at the ener-

III. QUASIFREE ELECTRON SCATTERING AT HIGH
ENERGY

In this section, we apply the formalism outlined
above to the 500 MeV (e, e') data' at 60'. For
these data, the energy of the outgoing nucleon in
the quasielastic peak is about 100 to 150 MeV.
These data have been used in the past to extract,
within a nuclear matter framework, the Fermi
momentum. "' Our aim is first to study to what
extent these data can be interpreted using the ex-
isting information on the nuclear ground state
from elastic electron scattering, 'and on the final-
state interaction from nucleon-nucleus scattering.
Second, we shall discuss in detail the influence
of the final-state interaction on the inclusive cross
section, particularly the role of the optical po-
tential, and calculate the cross section corres-
ponding to multinucleon removal.

We now specify the input necessary for the cal-

4He-

12'

~4Mg

4'Ca

5 Ni

Os

Os

Op

Os

Op

Os

Op

Od

Os

Op

OG

ls

Os

Op

Od

ls
Of

1.64

2.11
2.34

1.69

l.88

l.97

2.03

21.0 20.0

26.0 25.0
5.7 4.7

40.9 38.0
20.2 17.5

52.0 47.0
25.0 20.0
19.0 14.0

63.3 56.0
48.8 41.5
22.2 14.9
18.5 11.2

71.2 62.0
54.2 45.0
30.2 21.0
23.9 14.7
18.5 9.3
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describing the relative motion of the knocked-out
nucleon and the residual nucleus at the energy in
the CM system

Q'
&=(d (19b)

For knocked-out protons, V,(i) is the Coulomb
potential corresponding to a uniform charge dis-
tribution

ge2 3 $ y 2

V (i)= r~R

0
Ol

X
—QQ co

JD
E
I

C)

Ze2 x~Rr (19c)

with the equivalent uniform radius R. p, is the nu-
cleon —(A —1) residual nucleus reduced mass:

A —1
tB; (19d)

300 200 100 0
ELECTRON ENERGY LOSS(MeV'j

u(i) =u[co; -q'/(2Am)] is the energy-dependent op-
tical potential.

'The actual calculations of the Green's function
is performed in an angular momentum basis and
in coordinate space, neglecting L-S splitting:

&~'
~

G(i)
~

~& = z I',".(~')l, (~', ~)I',.(~) . (20)

In the calculation of the radial Green's function

g, (r, r'), we have assumed that the optical poten-
tial is local and, therefore, expressible in terms
of the regular and irregular wave functions. (Its
explicit formulas are given in the Appendix. ) Al-
though the assumption of locality is not neccessary
in our approach, very little is known about the de-
tails of the nonlocality of the optical potential.
Even with this simplifying locality assumption,
the numerical evaluation of the response function
is rather tedious. For the response function of
"Ca, for instance, about one hundred radial
Green's functions are needed to calculate one point
of the response function.

We have chosen the parametrization of Engel-
brecht and Fiedeldey" for the local equivalent,
energy-dependent optical potential. It consists of
a central real part, a volume and a surface ab-
sorption terms. The last term has practically no

influence at the nucleon energies relevant to this
section. The potential is fitted to the nucleon-nu-
cleus scattering data up to about 200 MeV, and
connects smoothly to the ground-state shell-model
potential.

We now discuss the use of this optical potential
to calculate the quasielastic electron scattering
cross section. As an example, we compare, in
Fig. 1, our calculation with the "Ca data. For
the nuclei Mg, Ca, and Ni, the calculation sys-

FIG. 1. Inclusive electron scattering cross section
(in mb/sr MeV) for the incident electron energy of 500
MeV and a scattering angle of 60', for Ca, plotted
against the nuclear energy loss (in MeV). Experimental
points are from Whitney et al. (Ref. 6). Theoretical
calculations use a dipole fit (solid line) and a three-pole
fit (dotted line) for the nucleon form factors (Hefs. 16
and 17). Nucleon-nucleus final-state interaction is
taken into account by the phenomenological complex
optical potential, which does not, however, satisfy the
dispersion relation (21). Notice that the predicted
cross section exceeds the experimental value slightly
at the peak.

tematically overshoots the experimentally ob-
served cross section. To trace the origin of this
failure, we have calculated the energy integral
over the response function for fixed momentum
transfer of q equal to 450 MeV/c, which roughly
corresponds to the momentum transfer at the
quasielastic peak of the Stanford experiment. We
have actually found a violation of the sum rule by
about 5 to 10/0. The cause of this failure is the
following: In the above discussion of the sum rule
in the high-energy approximation to the optical
potential, we explicitly used the fact that the opti-
cal potential has singularities only on the real
axis, thus satisfying an once-subtracted disper-
sion relation:

tu
" Imu(v')

Reu(~) = Reu(0)+ —P ~

7f Jo (&d' —&d)(d'
dM' . (21)

In contrast to the theoretical optical potential, our
phenomenological optical potential does not satisfy
the dispersion relation (21). It is interesting to
note that quasielastic electron scattering is' ap-
parently sensitive to the analytic structure of the
optical potential.

In order to restore the analytic properties of the



l686 Y. HORIKAWA, F. LENZ, AND NIMAI C. MUKHOPADHYAY

optical potential, the momentum dependence of u
and the true energy dependence have to be sep-
arated. For this, we use the results of Ref. 14.
In Ref. 14 this separation has been carried out

by assuming the imaginary part W(&) to be purely
energy dependent. Using the dispersion relation
(21), the corresponding energy-dependent piece
of the optical potential V, (~) is calculated and the
remainder is then assumed to be purely momen-
tum dependent, i.e. ,

u(~, P') = V, (~)+ V.(P )+ iW(~) . (22a, )

f„(r)= 1+ exp (22c)

the parameters R and a in Eq. (22c) are chosen
such that Eq. (22b) reproduces the numerical re-
sults of Ref. 14 for U„within a few MeV.

Using the standard procedure, the Green's func-
tion corresponding to the optical potential (22a)
can be written in terms of the Green's function
corresponding to a local potential and a "Percy
factor""

g, (r', r) = [1+n f„(r')] "'g,'-(r', r)
x [1+tx f (r)] ~ ~ (23a)

when g,'" is the Green's function corresponding
to the equivalent local potential (see 22a)

u(~) = V,(&)+ V,(2 p, cu)+ i W(~) . (23b)

In transforming the nonlocal potential (22) to an
equivalent local potential, the radial dependence
is modified in the surface. We have neglected
these surface modifications, since they are taken
into account partly by the phenomenological fit
of Ref. (14). Apart from this last approximation
to the surface terms, the resulting response func-
tion must, by construction, satisfy the sum rule;
we actually find the sum rule in the calculation to
be fulfilled within typically & percent for all the
nuclei considered.

In the previous analyses of quasielastic electron
scattering, the problem of the analytic structure
of the optical potential did not occur. This is a
consequence of neglecting the absorptive piece
of the optical potential. In such calculations, con-
sistency with (21) requires the real potential to
have no true energy dependence. In our model,
the phenomenologically observed energy depen-

We have approximated the momentum-dependent
term (22) V, by a linear dependence

V,(p') = V,'f„(r)+ —,, [p'f„(r)+f„(r)p'], (22b)
n 1

with V,'= -28 MeV, 5 = 0.1, and f„being defined
as follows:

dence is attributed, with similar weight, to an
intrinsic momentum dependence and to an energy
dependence arising from the dissipative effects
of the coupling to excited states.

We present in Fig. 2 a comparison of our cal-
culations with the (e, e') data, for nuclei between
'He and "Ni. In general, both the peak position
and the peak value of the cross sections agree
reasonably well with experiment. The peak posi-
tion is sensitive to the value of the real part of
the optical potential at the energy for which the
asymptotic kinetic energy of the knocked-out nu-
cleon is about 120 MeV. To obtain qualitatively
the right peak position, the weakened attraction
of the optical potential, as compared to the ground-
state potential, is crucial [Reu(&u= 120 MeV)
= -20 MeV]. Apart from the momentum distribu-
tion of the ground state, the peak value is influ-
enced by the momentum dependence of the optical
potential, represented by the parameter n of Eq.
(22b) and (23a), and by the corresponding value
of the imaginary part of u(~).

A quantiative comparison between our calcula-
tions and the data indicates a shift of 2.5 MeV in
the calculated peak positions towards lower ener-
gies. At such a level of accuracy, clearly a num-
ber of small effects play a role; kinematic correc-
tions, such as relativistic corrections to the pro-
ton, or Coulomb distortion effects on the electron,
are important. At the Stanford kinematics, and
for the medium-heavy nuclei, the corresponding
shifts in the peak position are of the order of
4 MeV, but of different sign. Therefore, the small
discrepancy in the peak position most likely has
a dynamical origin. Within our formalism, the
largest uncertainty arises from the poorly known
momentum dependence of the optical potential.
To explain the discrepancy in such terms, a
stronger momentum dependence for proton ener-
gies below the quasielastic peak would be needed.
Another possibility to account for the shift would
be to weaken further the attraction in the final
state by about 5-10 MeV; however, this would
be in conflict with the fits to nucleon-nucleus
scattering.

For the medium-weight nuclei, our calculated
peak intensities agree reasonably well with the
experimental values. For the light nuclei, we
systematically underestimate the peak intensity
by about 5-10/o. The uncertainty in the e Nform-
factor is typically 3% for the proton, and about
10/o for the neutron. ""This implies an uncer-
tainty of about 8% in the (e, e') cross sections
(Fig. 1). The remaining discrepancy may be at-
tributed to our crude treatment of the nonlocality
in the real part of the optical potential, which is
more serious in the li jht systems. Uncertainties
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FIG. 2. Same as Fig. 1, for targets He, SLi, C, 1Vlg, Ca, and 5 Ni. Data are from Ref. 6. Theoretical calcula-
tions now and hereafter take into account corrections due to the lack of proper analytic behavior of the phenomenologi-
cal nucleon-nucleus optical potential. In this and the following figures, three-pole fit of the nucleon form factor is
used, the exception being Li, where the dipole fit is also shown, by the dotted line.
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in the imaginary part are not important here.
The threshold behavior, i.e. , the cross sections

at small energy transfer, are correctly repro-
duced by using realistic values of the separation
energies. For the very light nuclei it is impor-
tant, because of the large momentum transfer, to
take into account the recoil energy [cf. Eq. (19a)],
which, for 'He, is of order of 30 MeV. At the
very-high-energy losses, our calculations, which
do not include pion production, clearly fail to re-
produce the data. We emphasize that, as com-
pared to the nuclear matter calculations of Refs. 11
and 12, both finite size and final-state interaction
effects reduce the discrepancy in the transitional
region between quasielastic scattering and quasi-
free pion production. At an energy loss of 250
MeV, the pion production cross section in "C is
about 0.8 x 10 ' mb/sr MeV, (Ref. 11) the quasi-
elastic contribution calculated by us is 0.75 x 10 ',
these add up to about half of the experimentally
observed cross section. For "Ca, the corres-
ponding numbers at &=260 MeV are 0&. ..,&=0.3
mb/sr MeV (Ref. 11), v. ..=0.2 mb/sr MeV, the
sum of which is 60% of the observed value.

We now discuss the influence of the absorptive
effects in the (e, e') reaction. In Fig. 8, we com-
pare the full calculation (cf. Fig. 2) with one in
which the imaginary part of the optical potential
is turned off. The major effect of the imaginary
part is to reduce the cross section around the
peak by 5-10%, and to shift some of the strength
towards the high-energy loss side. 'The integrated
strength is clearly different in two cases. In con-
trast to the complex optical potential, the real
"pseudopotential" takes care only of the dissipa-
tive effects arising from the coupling to more com-

P, =
~ [2y2 —1+ (1+ 2y)e 2'],3

(24a)

where

(24b)

A is the equivalent uniform radius; A, is the nucleon
mean free path, related to the optical potential by

2m
Imn,

p
(24c)

P being the nucleon momentum. At the quasifree
peak, the estimate (24a) gives, with y = 0.8,

P, = 0.59, (24d)

for ' Ca. This explains the reduction found in our
DWBA calculation.

'This semiquantitative argument shows immed-
iately that, for a large nucleus, only the nucleon
at the surface contribute to the 1p-1h excitation.
Assuming y» 1, we obtain

3 3A.P ~ —=—
4g 4R

(25)

Therefore, the energy integrated 1p-1h excitation
cross section is proportional to

plex channels, and thereby violates the sum rule.
Although the overall effect of the absorptive cor-

rections is rather small, this does not imply that
the contributions from more complicated channels
are small. As the comparison with the DWIA cal-
culation in Fig. 8 shows, about 40% of the inclusive
(e, e') reaction in "Ca are due to multinucleon re-
movals. This reduction of the 1p-1h excitation
cross section can be understood qualitatively by
calculating the probability for the knocked nucleon
to escape from the nucleus without an additional
interaction. Assuming a uniform matter distribu-
tion, this probability is given by

3A. 3 A.

P, R(q, ~)d~=Z ~ —= ——Z' ',
4R 4 yo

(26)
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with R =rg'~'. In such a situation, quasielastic
electron scattering is dominated by multinucleon
removal (~Z) .

We now give a quantitative argument why the
appreciable multinueleon removal has a, rather
small effect on the inclusive (e, e') cross section.
Neglecting the energy dependence of the imaginary
part, the response function can be written as a
folding of the polarization propagator for a real
final-state interaction w„with the Lorentzian
modulation due to the absorption

FIG. 3. Same as Fig. 2: Ca. Solid curve uses a
complex phenomenological nucleon-nucleus optical
potential, while the dash-dot curve is obtained with a
real one. Dashed curve shows the DWBA prediction.

+ 0O 1
R(q, cu) ~ Im . d&u', . m, (q, &u') .

2im „co'—cu -i Imu

(27)
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In this form, it is obvious that the effect of the
absorption is determined by the energy variations
of the I,orentzian and the polarizon propagator wo.

To make this explicit, we evaluate R(q, &u) by us-
ing, for wo in (27), the noninteracting Fermi-gas
approximation (q& 2k&):

~,(q, (u) ~
e hy

dk 1
(k+ q)' k'

2m 2m

(28)

I

At the quasi-elastic peak (q'= 2m&v), we obtain,
for the modification due to absorption [R,(q, &u)

= Imm, (q, &u)]:

R(q, &u)
1

4 I Imul
R.(q, ~) v K2 I'~/2

where

(29a)

(29b)

is the full width at the half-maximum of the
Fermi-gas response function. In this model, the
smearing of a sharp response [5(&u -q'/2m)] is
due to two causes: (1) the momentum uncertainty
due to Fermi motion, the corresponding distri-
bution of which is characterized by I'~/2, and (2)
the uncertainty due to the lifetime of the excited
particle-hole states, given by Imu. For "Ca and

the Stanford kinematics (k&= 250 MeV/c, q= 450
MeV/c), we find, with Eqs. (29), a 9% reduction
of the peak intensity due to absorption, which
agrees with our full calculation. Thus, for these
kinematics, the peak intensity is primarily de-
termined by the momentum distribution in the
ground state. For larger-energy transfer, the
optical potential ean be calculated from N-N

scattering:
-2m Im u = 4v p Imf=po„,p (29c)

where f and o„, are the N Nforward a-mplitude

and total cross section, respectively, at the en-
ergy ~=p'/2m. The reduction of the quasielastic
peak (29a) is now given by

R(q, &u) 4

( ~) 3~3 tot f (29d)

Using the asymptotic value o„,= 40 mb and k&

=1.35 fm ', we find a 30% reduction. For high
enough energies, Ã-N scattering is strongly in-
elastic, and the reduction calculated with (29d)
is then partly due to pion production in the final-
state interaction of the knocked-out nucleon.

It is interesting to observe that a 30%%uo reduction
of the quasielastic peak is inconsistent with the
data at Stanford kinematics. Assuming that our
ground-state momentum distribution is reasonable,
this clearly shows that the optical potential at

0
20

I

E

I
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FIG. 4. Same as Fig. 2. Solid curve uses the stan-
dard final-state interaction potential for 4oCa, the
dashed curve has the imaginary part of the optical po-
tential tonics as large as the standard one at each en-
ergy. The Percy factor in the second case is reduced
by a factor of 4, compared to the standard case.

e = 130 MeV cannot simply be calculated from
free N-N scattering (g„",+ o,~„=35 mb at +=130
MeV). This is in qualitative agreement with both
phenomenological analyses and theoretical calcu-
lations of the optical potential. We stress that
the quasielastic (e, e ) reaction is an independent
test of the imaginary part of the optical potential.
In contrast to proton-nucleus scattering, which is
a surface reaction, the (e, e') reaction probes the
nuclear interior as well, and is thus, sensitive
to the optical potential at nuclear matter densities.

Quantitatively, the value of the imaginary part
of the optical potential, used in our calculation, is
in disagreement with those derived from mi-
croscopic nuclear matter calculations. " 'The

predicted value of the imaginary part, for nuclear
matter density and energies around 100-150 MeV,
is about 15-20 MeV, while in the parametriza-
tion" used here, the corresponding values are
about 10 MeV. Such smaller values are also ob-
tained in a fit to recent data. " Our results for
the inclusive (e,e') data are not consistent with
the "large" theoretical values of the imaginary
part of the optical potential, unless the nonlocality
in the real part is drastically changed. In Fig.
4, we show the results for the (e, e') cross sec-
tion on "Ca with the standard choice of the optical
potential and a potential with twice the imaginary
part. In order to preserve the sum rule, the
Percy factor o.'[Eq. (23)] has been reduced at the
same time by a factor of 4. 'There is no signifi-
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cant difference in the two fits to the data. How-
ever, the last choice for the optical potential
would not only be in disagreement with nueleon-
nueleus scattering data, but also with the predic-
tion of a much larger nonlocality in the nuclear
matter calculations. "

'The results of our calculation show that, using
the available information on the nuclear ground
state and the phenomenological optical potential,
the Stanford inclusive data can be described ad-
equately. This indicates strongly that, apart
from nucleon self-energy insertions, there are no
other important medium corrections for .these
kinematics. 'The dominance of the self-energy
insertions is a familiar high-energy concept. It
is tested, for instance, in the inelastic nucleon-
nucleus scattering, where it allows us to take
the optical potentials for the ground and excited
states to be the same.

One obvious example of a medium eorreetion,
neglected above, is the 1p-1h rescattering, which
is known to be important for low-energy proces-
ses. We now discuss it in some detail. Qualita-
tively we expect that, with increasing energy and
momentum transfer, the corresponding 1p-1h form
factors suppress these contributions, while the
2p-2h excitations by final state interaction are
less hindered by the threshold factors, and hence
will finally dominate. To make these arguments
more quantitative, we now calculate, in a sche-
matic way, the influence of particle-hole rescat-
tering on the response function for the Stanford
kinematics. In nuclear matter, the effect of the
particle-hole interaction u, (q) is given, in the
ring approximation, by

(30)

where Imm, (q, e) is the free Fermi-gas response
function. " We use Eq. (30), but with the finite-
nucleus polarization propagator calculated above.
In the region of the quasielastic peak, the finite
nucleus and the nuclear matter response func-
tions are not too different. Therefore, this pre-
scription should be reasonable. In Pig. 5, the
response functions, obtained with and without par-
ticle-hole rescatterings, are compared. For
u, (q), we have used a zero-range Migdal para-
metrization with the empirical values of the pa-
rameters quoted in Ref. 22. 'The main effect of
the particle-hole interaction is to shift the quasi-
elastic peak towards larger energy losses. The
peak intensity, however, is unaffected. The shift
in the peak is directly related to the repulsive
nature of the particle-hole interaction. Its value
of 20 MeV cannot be taken seriously at all, since
the Migdal parameters used are appropriate only

—-"NO P. H.

'RPA'

—0. 4,

ON '0,

td

—0.2

for processes close to the Fermi surface, and
not for processes involving momentum transfer
as large as 450 MeV/c. From our analysis, we
expect that the repulsion at these momentum and
energy transfer should be at least a factor of 4
smaller. The equality in the peak intensity is due
to the fact that the particle-hole force used has
no imaginary part. This, together with the fact
that the real part of the polarization propagator
vanishes close to the quasielastic peak, leaves
the peak intensity unchanged to lowest order in
the particle-hole interaction.

Prom a comparison of our calculations to the
data, we can get a qualitative bound on a possible
imaginary part in the particle-hole force. Allow-
ing for a 5% change in the peak intensity we find

(31)

(Eo= 0.7, in the parametrization". ) The particle-
hole rescattering just di, scussed is one of the pos-
sible medium corrections, in addition to the self-
energy insertions. 'The smallness of the correc-
tion in the quasielastic peak is not specific for
this particular process. It can be expected on
the basis that the knocked-off nucleon can propa-
gate on the energy shell in the quasielastic peak,
as is indicated by the purely imaginary polariza-
tion propagator. In such a situation, no interac-
tion is required to balance energy and momentum
of the nucleon. Away from the quasielastic peak,
the nucleon can propagate only over a finite dis-
tance d without additional interaction. Prom the
uncertainty principle, we get

(32a)

300 200 100

ELECTRON ENERGY LOSS(Mevj

FIG. 5. Response function for the Stanford kinematics
(Ref. 6) for Ca without particle-hole (p-h) rescattering
(dash-dot line) and with p-h the rescattering (BPA) cor-
rection (solid line). The plotted response function has
a normalization (I/r) Jo" R(E)dE=Z, Z being the num-
ber of target protons.
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with

I = q/m, AE = (d —q'/2m . (32b)

With increasing ~E, the medium has to supply
more and more momentum to the nucleon. Once
d becomes comparable to the internucleon dis-
tance (d-1.5 fm, &E-70 MeV, for the Stanford
kinematics), away from the Iluasielastic peak,
detailed off-shell properties of the optical poten-
tial can be expected to be important. Finally, if
d becomes comparable to the dynamical correla-
tion length (d-0.5 fm, AE -200 MeV), the single-
particle description must fail.

15
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SURFACE ABSORPTION
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Surface Absorption, but without
THOGONALITY CORRECTION

IV. LOW-ENERGY (e,e') SCATTERING
AND RADIATIVE vr CAPTURE

Here we apply our formalism for inclusive re-
actions to kinematical situations where both ener-
gy and momentum transfer are not large anymore
on the nuclear scale. In this regime, medium
corrections other than the final-state interaction,
described by the optical potential, are expected
to be important as well. By comparing our cal-
culations with the experimental data, we want to
explore the importance of these corrections.

In Fig. 6, the data of Ref. 7 are compared with
our calculations. The typical momentum transfer
here is about 90 MeV/c. The calculation, without

surface absorption in the phenomenological optical
potential, shows a very strong peak at an excita-
tion energy of about 22 MeV, corresponding to a
d-state single-particle resonance. The structure
seen around 40 MeV is also due to a d-state reso-
nance, but with the nucleon removed from the s
shell. The occurrence of these sharp resonances

is a consequence of our single-particle descrip-
tion of the nucleus, and has been noted in similar
calculations before. ' The volume absorption at
the corresponding particle energies of about 5
MeV is not strong enough to damp these peaks.

As Fig. 6 shows, the surface absorption term in
the phenomenological optical potential, which is
unimportant in the high-energy data, changes
drastically the structure of the cross section at
low excitation energies. Although a reasonable
damping of the single-particle resonance is
achieved, the physical interpretation of the under-

. lying damping mechanism is much less transpar-
ent than that for the volume absorption. The co-
herent particle-hole rescattering, described within
the framework of the random-phase approxima-
tion (RPA), is completely ignored in our calcula-
tion. It is known that this rescattering mechanism
strongly influences the low-energy loss side of the
nuclear response function. With increasing en-
ergy transfer to the nucleus, the response shows
less structure, and is reasonably well represented
by our calculation. The data even indicate a struc-
ture around 40 MeV, related to the threshold for
the removal of s-shell nucleons. As Fig. 6 shows,
the surface absorption damps the l =2 resonance
completely, without disturbing the threshold ef-
fects. Additional damping may be expected here
due to the s-shell hole width, not included in our
calculation. In the light- and medium-weight nu-
clei considered above, the small statistical weight
of the deeply bound nucleon makes the broadening
of the response function due to the hole width less
important than that due to the particle width.

Although the shape of the experimental spectrum
at high excitation energies seems to be described
well by our single-particle model, there are
basic theoretical difficulties which may make this
agreement less compelling. As an example of
these difficulties, we mention the lack of ortho-
gonality in the wave functions implied by the ener-
gy dependence of the optical potential. To estimate
this effect, we subtract from the single-particle
propagator its components in the occupied states,
l.e.)

I

40
I I I

20 25 30 35 45

NUCL. EXC. ENERGy ( Hey )

FIG. 6. C. Inclusive electron scattering by C for
the incident electron energy of 102.5 MeV and a scatter-
ing angle of 60; solid line, without surface absorption
in the final-state interaction potential, dash-dot line,
with it. The curve with the dashed line contains sur-
face absorption, but is without the nonorthogonality
correction. Notice the strong damping of the single-
particle resonance in the second case. The experi-
mental data are from Ricco et al. (Ref. 7).

(33)

where & and P run over the occupied states. This,
by construction, has the property to make the
cross section vanish for q - 0 at finite energy
transfer. Because of the high momentum trans-
fers involved in the Stanford experiment, ' the re-
sultant corrections are unimportant (~1%) over
the entire energy loss spectrum. However, for
the low-energy data, the kinetic energy of the out-
going nucleon is comparable to the potential ener-
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xF „R(E„,m, E„), - (34)

with g'/4w = 14.28, and (1/v)(o.'Zm, )'F „ is the
pionic density at the origin. E =0.70 (Ref. 2~)
corrects for the finite size of the nuclear charge
distribution.

In Fig. 7, we compare our calculations with the
experimentally observed inclusive gamma spec-
trum. The figure shows the effects of the surface
absorption term in the phenomenological optical
potential and the overlap correction [Eq. (33)]. We
first note that neither of these corrections has
significant effect on the integrated radiative
branching ratio, which is found to be

r,"s /r,"s'= (3.32+ 0.15) x10-', (35)

where the uncertainty reflects the modifications
due to these corrections. Its experimental value,
for transitions to the excited state of He, is'

r,", /r;(exp) = (4.11+0.55) x 10 '. (38)

gy. Therefore, the difference between the poten-
tials for ground state and final state, respectively,
leads to an appreciable orthogonality defect, as
seen in Fig. 6. These effects are particularly im-
portant when the absorptive surface potential is
included. In contrast to the volume term of the
optical potential, the surface absorption makes
the optical potential appreciably different from the
ground-state potential even near the threshold.

f

Summarizing the above discussion, we emphasize
that, for low excitation energies, our description
of the nuclear excited states is too poor to repro-
duce the detailed structure of the response func-
tion. On the high-energy side, the calculations
agree quite well with the data. Unfortunately, the
electron scattering data do not go far enough in
excitation energy. It is, therefore, not clear
whether the 10-20 /o underestimate of the strength
in the tail around 40 MeV indicates a failure of our
single-particle description. In radiative pion cap-
ture reactions (w &-y+X), this kinematical region
of high-energy loss and comparatively low mo-
mentum transfer is covered. Below we apply our
formalism to the w — Li- y+X reaction. We have
chosen this nucleus, because the 1S radiative cap-
ture process in this target has been separated
from the 2I' capture by the recent coincidence ex-
periment. ' From our point of view, the 18 capture
process is preferable, because here we avoid the
theoretical uncertainties of the momentum-depen-
dent terms in the capture Hamiltonian, "and uncer-
tainties in the pionic wave function resulting from
the strong p-wave pion-nucleus optical potential.
The differential capture rate is given by'

dl'," &g E m, —E„
~2

n
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FIG. 7. Inclusive photon spectrum from the radiative
capture of pions in the 1S atomic state of Li. Experi-
mental data are from the Lausanne-Munich-Zurich
collaboration (Ref. 8). Theoretical calculation shows
three cases. (1) Solid line: with nonoverlap correction.
(2) Dashed line: without nonoverlap correction. (3)
Dash-dot line: with nonoverlap correction, but without
the surface term in the optical potential.

20

Not shown in the Fig. 7 is the contribution of a
discrete transition to the response function. This
corresponds to a single-particle state with the con--

figuration (Op, Os '), and carries 25% of the inte-
grated strength. As in the case of the low-energy
electron scattering in "G, the two peaks corre-
spond to d-wave single-particle resonances, with
the proton removed either from the p or the s
shell. Again, the detailed structure of the spec-
trum at low excitation energies is sensitively in-
fluenced by the surface absorption term. Here,
we must doubt even more the damping mechanism
provided by the phenomenological surface term,
due to rather low level density in 'He at the corre-
sponding excitation energies. Glearly, a micro-
scopic description of the spreading of the strength
due to the residual interaction is required. The
treatment of the residual interaction within a
shell-model bound state calculation" for "0 indi-
cates that a spreading of the strength within, ty-
pically, 5-10 MeV is to be expected. However,
the corresponding strength, which is concentrated
in our model in the single-particle resonances,
should not be altered appreciably by the residual
interaction. To add resonance contributions to the
quasifree process, as done in the Bef. 26, certainly
contains double counting. Our qualitative agree-
ment in the branching ratio with the experimental
value suggests that the overestimate in the Bef. 26
is at least partly due to this double counting.

At high-energy transfers to the nucleus, the
radiative capture displays the limitations of our
approach away from the quasifree region (quasi-
elastic electron scattering data for this regime
are lacking). First, we note that the experimen-
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tal data fall off more gradually, with increasing
energy transfer, than predicted. Second, the
large overlap corrections indicate important two-
nucleon mechanism, apparently not taken into
account in an appropriate manner by the pheno-
menological optical potential. Finally, it must
be kept in mind that, with increasing energy
transfer to the nucleus (i.e., large momentum
transfer to the nucleon), the ha, rmonic oscillator
ground-state wave function may not provide
enough high Fourier components. Note that, at
60 MeV, the initial s-nucleon momentum re-
quired is 280 + 80 MeV/c, if final-state interac-
tion is neglected.

We conclude this section with a brief discussion
of the recent Saclay data. ' In this experiment,
the (e,e') inclusive cross section has been mea-
sured for several incident electron energies
ranging from 280 to 520 MeV at 60' and 130 . In
Fig. 8, we compare our prediction with the data
for 480 and 400 MeV incident energies. As for
the Stanford data, our prediction agrees quite
well with the 480 MeV data. For lower energies,
the experimental cross sections are systemati-
cally lower. The ratio in the peak intensity be-

tween theory and experiment is O.S8, 1.08, 1.21,
and 1.18, at the incident energies of 480, 440, 401,
and 360 MeV, respectively. Also at the lower
energies, we systematically overestimate the
cross sections at the quasielastic peak. How-
ever, as this peak overlaps with single-particle
resonances in our model, such a quantitative com-
parison does not make sense. Discrepancies in
the quasielastic peak up to 30% are impossible
for us to understand in terms of final-state inter-
action, which, as discussed above, gives rise to
typically 10% corrections. An increase in the
imaginary part of the optical potential by a factor
of 3 to 4 would be necessary to accommodate the
observed inclusive cross section at 400 MeV ob-
tained at Saclay. The energy dependence of the
discrepancy is equally disturbing. Obviously, the
reduction of the peak intensity must decrease with
decreasing nucleon energy and, therefore, indi-
cates a corresponding weakening of the imaginary
part of the optical potential. The experiment,
however, would suggest the opposite trend. On the
other hand, we cannot see any other medium cor-
rections which would lead to a strong energy de-
pendence in the cross section between 500 and 400
MeV incident electron energy, but would restore
the qualitative agreement for the 102 MeV data
discussed above. Comparison of the Stanford
data and the Saclay data at 400 MeV for the same
energy losses suggests a 30% variation of the
response function beyond our prediction in a
range of momentum transfers of 100 MeV/c.
Thus, the Stanford and Saclay data, taken to-
gether, would suggest a strong dependence of the
response function in both energy and momentum,
far beyond our model.

200 l50 100. 50
ELECTRON ENERGY LOSS ( Vl

—15

200 150 100 50

ELECTRON ENERGY LOSS (MeV)

FIG. 8. Inclusive electron scattering by '2C at 60'
with incident electron energies of 480 MeV (a)
and 401 MeV {b). Theoretical predictions are repre-
sented by the solid line. Experimental data are from
the Saclay group (Ref. 27).

V. CONCLUSION

We have discussed in the present paper the prob-
lem of finaI-state interaction in inclusive electro-
magnetic processes in which the final nuclear
states are not observed. In contrast to the ex-
clusive (e, e'P) reaction, the inclusive (e, e') re-
action cannot be described within a DWBA forma-
lism. The DWBA treatment accounts only for the
attenuation of the flux in a given channel, as is
appropriate for the (e, e'P) process. It, however,
cannot account for the corresponding excitation of
other channels, and is therefore, not appropriate
for inclusive processes. We have shown here that
their proper description is provided by the
Green's function formalism. Like DWBA, it is a
single-particle theory. But, unlike DWBA, it ac-
counts for both the loss of flux out of the primary
channel and the corresponding gain in the secon-
dary (multiparticle removal) ones. We have
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shown, in the high-energy approximation for the
optical potential, that the loss of flux in the 1p-1h
channel is compensated, as far as the sum rule
is concerned, by the excitation of the 2p-2h
states. In the actual analysis, we have used phe-
nomenological optical potentials. In this case,
certain analytic properties of the energy depen-
dence of the optical potential have to be imposed
to guarantee the sum rule. It is interesting to see
that the (e, e') data considered are actually sensi-

. tive to such general analytic properties of the op-
ti cal potential.

We have centered our discussion of the final-
state interaction around the Stanford data. The
main effect of the final-state interaction is to
broaden the nuclear response function. The final-
state interaction reduces the peak intensities for
medium-heavy nuclei by typically 5-10%. Despite
the comparatively small size of the effect, almost
half of the cross sections goes to channels more
complex than the primary one-particle one-hole
ones. The comparison of our calculations with the
Stanford data shows that the nuclear response func-
tion in the corresponding kinematic region can be
described within a single-particle model, in
which the known properties of the nuclear ground
state and the final-state interaction are used as
inputs.

In order to find evidence for deviations from the
single-particle model, we have extended our cal-
culations of the nuclear response function to pro-
cesses at lower four-momentum tran fers. The
gross features of these can be understood within
our model. However, the detailed structure at
very-low-energy transfer is not reproduced cor-
rectly. The single-particle model introduces
resonance structures, the strength of which can
only be distributed by considering the residual in-
teractions. At comparatively high-energy and

small momentum transfers, a regime covered by
the radiative m capture, for instance, our model
response function falls faster than what is experi-
mentally observed.

Finally, we have compared our calculations
with the recent Saclay (e, e') data for "C. On the
basis of our analysis, the Stanford 500 MeV data
and the 480 MeV Saclay data are incompatible with
the Saclay data at lower incident electron ener-
gies. To explain both sets of data, a strong mo-
mentum and energy dependence of the response
function would be required, far beyond any single-
particle model.
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APPENDIX

Note that

(p (v, p, r) =()j,(pr),
X', (v, p, r) „=„h,( pr),

f, (v, p) =-~[X',(v, p, r), y, (v, p, r)],1

P I

(A3)

8' being the Wronskian; j, and h. , are the Riccati-
Bessel and Riccati-Hankel functions, respectively.
The physical outgoing solution (t) tj is related to (P,
by

~t( p )
4'2»P r
J,(v, p)

and g, can also be written

(p', (v, p, r&) X', (v, p, r))
p

(A4)

(A5)

Taking into account the nonorthogonality correc-
tions [E(l. (33)] the particle Green's functiong~ is
given by

g, (~) =g, (~) P,g, (~)P, ,

l=- h

(A6a)

(Aeb)

Explicit forms of the nuclear polarization opera-
tor, )) (q, (2)), used in our numerical calculation for
closed shell nuclei, is given below:

The radial Green's function for the optical po-
tential v (z) is given by(, )

(p, (v(z), p, r&)X', (v(z), p, r)) (A1 )
pf, (v(z), p)

p = (2ij.z)' ', Im(2)j, z)' '~ 0,
where (t) „Xt„and f, are the regular, irregular,
and Jost functions of the radial Schrodinger equa-
tion:

d' l (l + 1)
dy y

-v(r, z)+p' u =0.

q(q, tr) = P f rdr'(21 d()(2)„l)r( j„()r(j, ql)rC (l q)„(„r0, ) '())0j;0)jq,j„),—
lg lg, g~
'h 'h

j,(qr)j, (qr')R, , (r)R, ~ (r ') —,g, (r, r', (u —e„),h~h h h q
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where and 8' are Clebsch-Gordan and Racah co-
efficients, R,„&„(r) is the nuclear single-particle
radial wave function, and a„ is the binding energy
of the occupied orbits. For nonclosed shell nuclei,

such as 'I i and "¹i,the result must be corrected
to take properly into account the occupation num-
ber for the last orbit.

*Permanent address: Physics Laboratory, Juntendo
University, Narashino-Fujisaki, Chiba, Japan.

~K. Nakamura and N. Izutsu, Nucl. Phys. A259, 301
(1975);K. Nakamura, S. Haramatsu, P. Kamae,
H. Muramatsu, N. Izutsu, and Y. Watase, ibid. A268,
381 (1976).

J. Mougey, M. Bernheim, A. Bussiere, A. Gillebert,
Phan Xuan Ho, M. Priou, D. Royer, I. Sick, and G. J.
Wagner, Nucl. Phys. A262, 461 (1976).

T.de Forest, Jr., Nucl. Phys. A132, 305 (1969).
4T. W. Donnelly, Nucl. Phys. A150, 393 (1970).
~Y. Kawazoe, G. Takeda, and H. Matsuzaki, Prog.

Theor. Phys. 54, 1394 {1975).
R. R. Whitney, I. Sick, F. R. Ficenec, R. D. Kephart,
and W. P. Trower, Phys. Rev. C 9, 2230 (1974); J. S.
McCarthy, I. Sick, R. R. Whitney, and M. R. Yearian,
ibid. C 13, 712 (1976).

G. Ricco, H. S. Kaplan, R. M. Hutcheon, and R. Mal-
vano, Nucl. Phys. A114, 685 (1968).

D. Renker, W. Dahme, W. Hering, H. Panke, C. Zup-
ancic, C. Alder, B. Gabioud, C. Joseph, J. F. Loude,
¹ Morel, J. P. Perroud, A. Perrenoud, M. T. Tran,
E. Winkelmann, G. Strassner, and P. Truol, Phys.
Rev. Lett. 41, 1279 (1978); P. Truol, private communi-
cations.

A. E. L. Dieperink and T. de Forest, Jr., Annu. Rev.
Nucl. Sci. 25, 1 (1975); A. E. L. Dieperink, T. de For-
est, Jr., I. Sick, and R. A. Brandenberg, Phys. Lett.
63B, 261 (1976); S. Boffi, C. Giusti, F. D. Pacati,
and S. Faullani, Nucl. Phys. A319, 461 (1979).

~ K. M. McVoy and L. Van Hove, Phys. Bev. 125, 1034
(1961).
E. J. Moniz, Phys. Bev. 184, 1154 {1969).

~2F. A. Brieva and A. Dellafiore, Nucl. Phys. A292, 445
(1977).

' J. W. Negele and D. Vautherin, Phys. Rev. C 5, 1472
(1972); 11, 1031 (1975);J. W. Negele and G. Rinker,
ibid. 15, 1499 (1977).
C. A. Engelbrecht and H. Fiedeldey, Ann. Phys. (N.Y.)

42, 262 (1967); H. Fiedeldey and C. A. Engelbrecht,
Nucl. Phys. A128, 673 (1969).
F. G. Percy, in Direct Reactions and Nuclear Reac-
tion Mechanisms, edited by E. Clementel and C. Villi
(Gordon and Breach, New York, 1963), p. 125.
T. Janssens, R. Hofstadter, E. B. Hughes, and M. B.
Yearian, Phys. Rev. 142, 922 (1966).
See, for example, J. W. Friar and J. W. Negele, in

A.dvances in Nuclear Physics, edited by M. Baranger
and E. Vogt (Plenum, New York, 1975), Vol. 8, Sec.
1.3.1.
J. P. Jeukenne, A. Lejeune, and C. Mahaux, inLec-
tu~e Notes in Physics, No. 55, edited by S. Boffi and
G. Passatore (Springer, Berlin, 1976), p. 68; A. Le-
jeune, private communications.
A. Nadagen, P. Sehwandt, P. P. Singh, A. D. Backer,
P. T. Debevec, W. W. Jacobs, M. D. Kaitchuk, and
J. T. Meek, Indiana report, 1979.
J. P. Jeukenne, A. Lejeune, and C. Mahaux, Phys.
Rep. C25, 83 (1976);J. P. Jeukenne, A. Lejeune, and
C. Mahaux, Phys. Rev. C 16,. 80 (1977).
A. L. Fetter and J. D. Walecka, Quantum-&heovy of
Many-Particle Systems (McGraw-Hill, New York,
1971), p. 191.

22S.-O. Hackman, A. D. Jackson, and J. Speth, Phys.
Lett. 56B, 209 (1975).

23J. D. Vergados and H. W. Baer, Phys. Lett. 41B, 560
{1972).
P. Singer, N. C. Mukhopadhyay, and R. D. Amado,
Phys. Rev. Lett. 42, 162 (1979).
W. Maguire and C. Werntz, Nucl. Phys. A205, 211
(1975).

6J. D. Vergados, Phys. Rev. C 12, 78 (1975).
VJ. Mougey, M. Bernheim, D. Royer, D. Tarnowski,
S. Turck, P. D. Zimmermann, J. M. Finn, S. Frullani,
D. B. Isabelle, G. P. Capitani, E. De Sanctis, and
I. Sick, Phys. Rev. Lett. 41, 1645 (1978); I. Sick, pri-
vate communications.


