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A theory of nuclear reactions induced by pions is presented, which includes scattering and absorption on an equal
footing. The theory is consistent with a quantum field theory of mesons, but is developed in an effective Schrodinger
equation formulation, to be consistent with conventional multiple scattering methods which are here extended.
Methods of application to practical calculations are discussed.

NUC LEAR REACTIONS Theory of pion scattering and absorption in coupled
channel formulati. on.

I, INTRODUCTION

The purpose of this paper is to present a theore-
tical approach to nuclear reactions induced by
pions which treats scattering and absorption reac-
tions in a uniform way. On one hand, the theory
takes correctly into account the degrees of free-
dom introduced by the possibility of meson ex-
change processes in the nuclear system. On the
other hand, the method is developed with prac-
tical applications in mind, and therefore main-
tains some of the features of conventional mul-
tiple-scattering theory, for which approximation
methods are already developed.

The theory presented here was introduced in an
earlier paper' in the context of the pion-deuteron
problem. The formulation was then given in terms
of a modified three-body problem, and some de-
tails of calculation in terms of the Faddeev equa-
tions were given. In the present work we adapt
the same general method to the problem of a pion
interacting with a compIex nuclear target, for
which both scattering and absorption reactions
are possible. We derive coupled equations for
the scattering and absorption channels, and from
these equations, the appropriate transition ampli-
tudes. The expressions are similar to those given
in Ref. 1 for the nd system. However, for the
general nuclear case, we use multiple scattering
methods, rather than the Faddeev equations, which
are appropriate only for the three body system.

Our coupled channel formulation is based on the
use of projection operators to define channels.
This method was introduced by Feshbach' for
treating nuclear reactions with many channels, in

which, however, the assumed degrees of freedom
are those of the nucleons, and therefore finite in

number. We have extended this approach to in-
clude an indefinite number of mesons interacting
with the nucl. cons, as would be the case for a mes-

on field theory. This use of projection operators
is similar to that adopted by Okubo' many years
ago, for a discussion of the Tamm-Dancoff method
in meson theory. We give more details of the
projection method in the present paper.

The interest in a theory of meson reactions with
nuclei, that encompasses absorption as well as
scattering, is based in features of both the exper-
imental and theoretical situations. It has emerged
from a number of recent experimental studies'
of n-induced reactions at energies below 200 MeV
that pion absorption comprises a large fraction
of the total cross section, comparable to the in-
tegrated elastic or inelastic cross sections. This
alone would make it of some importance in under-
standing the role of absorption in any theory of
meson-nucleus scattering.

The theoretical interest arises as follows. The-
ories that treat scattering of fast projectiles from
nuclear targets normally separate, as much as
possible, the process of scattering on different
elements of the target from the mutual interactions
of these elements. In conventional multiple scat-
tering theory, the projectile-nucleus interaction
is handled completely independently from the
structure of the nuclear target. Once we intro-
duce the possibility of absorption of the projec-
tile —here a pion —the situation changes. Any in-
teraction which can induce nuclear absorption of
a meson will have other dynamical effects. It can
lead to meson exchange within a nucleus; that is,
to nuclear forces. It can also contribute to the
nonabsorption scattering as weQ, by absorption.
and emission of mesons. Therefore, it is not
obvious a priori that scattering and nuclear struc-
ture may be considered independently, and there-
fore to what extent one can use consistently any
of the tools of multiple scattering theory in the
present problem.

A number of different approaches have been
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taken. Dover, Hufner, and Lemmer' have de-
veloped a diagrammatic expansion method for
elastic scattering of pions from nuclear matter
which combines some features of multiple scat-
tering theory with some techniques (Green func-
tions) of field theory. The practical development
is quite close to that of conventional multiple scat-
tering theory, with additional terms to account
for the effects of pion absorption on the optical
potential. Some problems of overcounting of diag-
rams are encountered, and some approximate
methods for avoiding these problems are sug-
gested.

Several authors have considered the problem of
combining scattering and absorption on an equal
footing in a theory applied to the case of n +d.
Here one has a limited number of channels: elas-
tic scattering, md-nd; inelastic scattering (break-
up) wd-AN; and absorption, vd-NN. Because
of available techniques (e.g. , Faddeev equations)
which are special to the three-body problem, it is
possible to give a more complete treatment in this
case than for more complex targets. Thomas'
has given a method of summing diagrams to get
closed expressions for transition amplitudes in
this case, and also a calculable model' for zero-
energy nd reactions. Mizutani' has given two
derivations of coupled equations for nd reactions,
based on field theory. The first is a relativistic
method based on reduction techniques. The second
(published in Ref. 1), which is equivalent in the
nonrelativistic limit, is a coupled channel formu-
lation based on the Feshbach method, from which
the present work is also developed. The equations
derived in the nonrelativistic case are, essentially
the same as those obtained by Thomas. ' Another
derivation, based on nonrelativistic reduction
techniques, has been given by Rinat, ' who also
made approximate extensions to a theory of the
optical potential. " Further developments have
been given by a number of authors. " "

A rather different method of including absorp-
tive channels in scattering theory is through the
Low equation, "following the analogy of the Chew-
Low theory of nN scattering. This approach has
been proposed by Ingraham, "and developed furth-
er by Cammarata and Banerjee" (see also Ref.
17). The resulting nonlinear equations are not
amenable to practical solution without rather dras-
tic approximations, so that this method has not been
fully employed. Miller ' has developed a multiple
scattering approach which begins with the Low
equation, but by successive approximation passes
to a linear form of the theory. The treatment of
absorption resulting remains rather ad hoc.

The isobar-doorway model" "of m-nucleus
scattering provides yet another way of introducing

meson absorption. In the version of Ref. 20,
the effect of pion absorption on scattering reac-
tions shows up in the "spreading width" of a, ~
propagating in the nucleus. This is treated phen-
omenologically in Ref. 20, but has been further
developed theoretically by others" in terms of
diagr ammatic approximations. The methods
needed are not formally different from the ones
we shall consider in this paper. In some cases,
the simplifications inherent in the isobar-doorway
approach do eliminate some of the over counting
problems encountered in a more general theory.
This ends our brief review of other recent work
on related questions.

The paper is organized as follows. The defini-
tions of projection operators and of channels are
introduced and discussed in Sec. II. Coupled
equations are derived and solved formally for
transition amplitudes in Sec. III. The use of
multiple scattering expansions is also discussed
here. A more detailed discussion of the import-
ant operators which appear in the theory follows
in Sec. IV. Methods of application for practical
calculation of scattering or absorption are dis-
cussed in Sec. V.

II. PROJECTION METHOD

We are interested in nuclear reactions induced
by a pion, at energies below the threshold for
producing a second meson. The open reaction
channels may be classified as elastic scattering,
inelastic scattering —including breakup of the tar-
get —and meson absorption, in which the target
also emits nucleons or nuclear fragments. The
degrees of freedom we need to specify all the pos-
sible open channels include all the nuclear de-
grees of freedom of the target and those of the
projectile meson. These might be given, for
example, in terms of coordinates of all the nu-
cleons. In addition, we need coordinates for the
meson, for the elastic and inelastic channels, but
not for the absorption channels.

However, the dynamical picture we have of pion-
nucleus reactions requires us to introduce more
degrees of freedom than those just described for
the open reaction channels. Since we will include
pion absorption, we must consider interactions
which do not conserve the number of pions. Sim-
ilarly, the theory of the wN interaction (e.g. ,
Chew-Low theory) also includes absorption and
emission of pions as a major contribution to scat-
tering. Therefore, a complete dynamical theory
must include the full meson degrees of freedom,
for example, by a meson field. The theory will
then include not only the scattering meson, but
also virtual mesons which contribute to the inter-
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action among nucleons, as well as to the nucleon
self -energies.

The method we shall follow is to start with dy-
namical equations with the full degrees of freedom
of the meson-nucleus system, and then to reduce
the number of degrees of freedom by a projection
method. We begin by assuming a Schrodinger
equation for the pion-nucleus system

(&-a) le~", )=0, (2. 1)

where the Hamiltonian H includes the full inter-
action of the target nucleons with each other and
with the pion field, including the absorption and
emission of mesons. The state vector 4,'„repre-
sents the full scattering state for the whole sys-
tem. The initial channel, denoted by lk, 0), is
given by a free pion plane wave of momentum k
and energy ~~, and the nuclear target ground state
(of A nucleons) of energy Eo. The total energy is
E = e~+ Eo in the lab system.

We do not need a detailed description. of the full
Hamiltonian H, since it will not appear directly
in our final equations. We understand that it .

should contain the "bare" kinetic energies for the
nucleons and for the pion field, and the interac-
tions between them, which may be of the Yukawa
form

(2 2)

These are chosen to correspond to the scattering

in terms of a nucleon current and the pion field.
There may be other meson fields (e.g. „vector
mesons p, &o) interacting with the nucleons and

pions. We shall not, however, need to refer to
them explic itly.

To reduce the number of degrees of freedom,
w'e introduce vector spaces which correspond, in

the asymptotic region, to the open reaction chan-

nels discussed above. We generalize a method

introduced by Feshbach' for many channel nu-

clear reactions, to include channels with fixed
numbers of mesons. (A similar method was intro-
duced in a different context by Okubo. ') We define

orthogonal projectors P and q which operate on

the state space defined by Eq. (2.1). They satisfy
the relation, s

P+ q =1, P'=P, q'= q, P q = qP = 0. (2.2)

The P operator is chosen to project into the vector
space of interest, as follows. First we separate
this space into orthogonal parts by introducing
two new projectors P, and P„such that

reaction channels which have one pion present
asymptotically (labeled 1) and the absorption chan-
nels which have no asymptotic pions (labeled x).

First consider P, . We assign a coordinate to
each physical nucleon, r,. (i =1, . . . ,A), and one
to the pion, r, . Consider the state space (S) as-
sociated with the full Hamiltonian H of Eq. (2. 1),
and let 4 be any state vector in that space. Then
P, is defined to project onto a subspaee of S which
is given by all functions of the coordinates
r„.. . , r„. That is, the projection P,4 may be
represented by

P, (r„r„.. . , r„)= (ro, r„. . . , r„lP, 4').

(2.4)

We denote the subspace represented by functions
of the type (2. 4) as the P, space.

We want to associate the corrdinate r, , r, with
physical nucleons and a physical pion, respective-
ly. We do so as follows. Consider the functions
(2.4) for a ver large separation of all coordin-
ates, that is, r, —r&l -~ (i,j =0, 1, . . . ,2). In
this region of configuration space, the A. +1 par-
ticles are noninteraeting and move as free par-
ticles. The space corresponds to the physical
channel in which A nucleons and one pion are
asymptotically free and could be detected, in-
dividually, in the laboratory. This corresponds
to a breakup channel of the target. Hence the as-
signment of the coordinates to the physical par-
ticles is unambiguous, and completely specifies
the asymptotic region of this breakup channel.
We now define the entire P, space by continuing
the physical channel space so defined, to all values
of the coordinates r„r„.. . , r„, still associating
these coordinates with A. physical nucleons and one
pion, as in. the asymptotic region. By this con-
tinuation, the intrinsic structure of the particles
in the P, space is kept the same for all r, , as it
is for asymptotically free particles, even in re-
gions where the particles -are close enough to in-
teract. This is the kind of vector space normally
used for a Schrodinger equation for a system of
A+ 1 particles. In particular, this space includes
any asymptotic channels that can be reached by
scattering (elastic or inelastic) of a, pion from the
target nucleus (A).

To define P„we proceed in a similar way:
we assign a coordinate to each nucleon,
r, (i = I, . . . ,A). There is no pion coordinate,
since there are no pions asymptotically in this
space. The operator P„projects onto a subspace
of S which is given by all functions of these coor-
dinates. An element P„4 of this subspace may be

.represented by

cf&„(r„. . . , r„)= (r„. . . , r„lP„4') . (2. 5)
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We now derive dynamical equations which cor-
respond to the degrees of freedom of interest,
using the projection operators defined in the pre-
vious section. First we project the state +,& into
the subspaces defined by P and Q:

I+,'„')=PI+.",')+ Ql~,'~). (s. 1)

Applying the same projections to Eq. (2. 1), we
may formally solve for the projection Q4 ", which
is not of interest, to obtain an effective Schro-
dinger equation for PC '", following Feshbach. '
We obtain

[E—~(z)]P I e,'„')= o, (3.2)

where R(E} is an effective Hamiltonian, given by

K(&)=PHP + PHQ(E+ —QH—Q) (QHP, (3.3)

with E'=E+iq (q-O') corresponding to the usual

We denote the subspace as the P„space.
Again, we consider the function (2. 5) for very

large separations of the coordinates, for which
the A nucleons move as free physical particles,
with positions denoted by the coordinates r, . This
corresponds to the asymptotic channel in which the
target is completely broken up into nucleons, with
no asymptotic pion. The P„space is defined by
continuing this asymptotic space to all values of
the coordinates r„.. . , r„, without changing the
intrinsic structure of the nucleons so defined.
This space includes all asymptotic channels that
can be reached by absorption of a pion by the tar-
get nucleus (A.).

The sum of the two projections, P, +P„, de-
fines the P projection and the P space. All open
reaction channels of interest to us lie in this P
space. The conjugate Q space contains only closed
channels, corresponding to the parts of the state-
space S with, e.g. , 4 nucleons and n mesons
(n& 1). Since we are interested in the reaction
channels in the P space, we shall eliminate the

Q space from our equations.
Before we make use of the projections, we note

the following features. First, we have defined
what the projectors P, and P„do, but not how they
may be constructed explicitly. However, as with
the Hamiltonian H of Eq. (2. 1}, we shall not need
explicit forms for P, and P„ in the final set of
equations. The main point has been the decom
position of the original space 8 into major parts,
so that one part (P space) contains the open reac-
tion channels for scattering and absorption. Sec-
ond, the nucleons in the P space are "dressed"
or physical in the sense that they correspond to
measurable, noninteracting particles at large
separation, which do not change their intrinsic
structure, even in the interaction region.

III. COUPLED EQUATIONS

outgoing-wave boundary conditions. This effec-
tive operator must represent all the physics im-
plied by the coupling of the open channels (in P}
to the closed channels (in Q) in which any number
of mesons may be involved.

We further decompose Eq. (3.2) by projection
with P, and P„separately, to obtain a pair of
coupled equations of the form

[&-36,(E)]le' &= I;.(&) Ie„'"&,

[E —x„(E)]I y '."&=l.,(E}
I e',"&,

where

I
y(+)) P

I

y(+))
I
y(+&) P I@(+))

(3.4a)

(s.4b)

(S.5a)
and

X,(&)=P,X(&)P„X„(Z)=P„Z(Z)P„, (3.5b)

where H„ is the internal Hamiltonian for the nu-
clear target and h,„the kinetic energy in the c.m.
frame. We denote target. states by n: H„ln)
=E„In), and plane wave pion states by the mo-
mentum k. Then we may write the amplitude for
pion scattering corresponding to Eq. (3.6) with atar-
get transition from state O to state n, as a tmatrix

(I(', n I
T'(E)

I k, o) = &k', n I v, (&) I x,"). (s. 6)

We label the t matrix by s as a reminder that only
scattering channels are included in Eq. (3.6); T'
is not the complete physical amplitude for the
scattering process.

We may rewrite Eq. (3.6) in the Lippmann-
Schwinger form

I',„(&)=P,'R(&)P„, I'„,(E) =P,X(E)P, .
The wave vectors P((" and Q(", when represented
in terms of pa.rticle coordinates, as in Eqs. (2.4)
and (2. 5), respectively, are channel wave func-
tions. As discussed in Sec. II, Q,

"includes all
the scattering channels, and P„"all the absorption
channels.

It is useful to consider fir st only the homogeneous
part of Eq. (3.4a), which we may write in the form

[E-&(E)l lx,")=o. (3.6)
The solution p,"corresponds to a reduced dynam-
ical problem in which a pion scatters from the nu-
clear target, but there is no coupling between the
scattering channel space P, and the absorption
channel space P„. (The P, space is still coupled
to the Q space, in which the multiple-meson
states appear )The.refore Eq. (3.6) is an effec-
tive Schrodinger equation in the space represent-
ed by Eq. (2.4) with a projectile pion and A nu-
cleons. This may be treated by standard methods
of nuclear scattering theory. We define an ef-
fective scattering potential between the pion and
the nuclear target (A),

V,(E)=R, (E) H„h,„, -— (3. 7)
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Ix,"&= lk, o&+G (E)V.(z) lx,"&,
with

G„(E}=(E'-H„—It,„)'.

(S.9a)

(s. 9b)

+7I 77/
+7T 7T/

/

N;

From Eq. (3.9) we obtain the usual linear equa-
tion for the t matrix, extending (3.8) to off-shell
values of E, and writing an operator relation

T'(E) = V,(E) + V,(E)G„(E)T'(E) ~ (3.10)

We now have equations in a form appropriate for
multiple scattering expansion, using the approach
of Watson and others. However, in the usual
Schrodinger treatment of multiple scattering, the
projectile-target interaction is assumed to be two

body. Our present effective interaction, given
in Eq. (3.7), has many-body interactions as well,
as we shall explain further in the following sec-
tion. We therefore write

V.(Z) =g V;(E), (3.11}

where L is a double label L=(n, v), with n specify-
ing the number of nucleons interacting simultan-
eously with the pion (n = 1,2, . . . ,A), and v label-
ing svkich nucleons are involved. For convention-

al two-body potentials, L = (1,i) with i = 1, . . . ,A.
For details, see Sec. IV.

With this decomposition of the interaction (3.11),
we expand T'(E) in a generalized Watson series,

FIG. 1. Qlustration of Eq. (3.13). Circle represents
t "'~

( j ), square represents complete t,N, last diagram
represents the direct Born amplitude (with partially
dressed nucleon).

Substitution of (3.14a) into (3.4b) leads to

I y„"&= G„(z)r,„lx,"'&,

with

(S.15a)

G„(z)= [E'-x„-r„,(z)G, (z)r,„(z}]-'. (s. 15b)

Finally, substituting (3.15a) back into (3.14a)
leads to a formal expression for Q,

"' in terms of
x"1

Given a solution y,
"' of the homogeneous equa-

tion (3.6), we can express the solution to the
coupled equations (3.4) for the full scattered wave

P,'" in the form

I y,'"'&= lx,'&+ G, (z)r,„(z)ly„"'&, (3.14a)

where

G (E)=[E'-X,(E)j '=G„(E)+G (E)T (E)G (E) .
(3.14b)

T'(E) =Z t'(E)+ Z t'(E)G„(z)t'(E)
L L+L

+ ~ ~ ~

where
(S. 12a)

I ~,'"&= [1+G,(E)«z)]lx,'"&,

in which we have defined the operator

(3.16a)

t I)=V'(E)+ V'(E)G (E)t'(E) (S. 12b)

The t matrices of Eq. (3.12b) describe a reduced
scattering problem in which the pion interacts only
with a fixed set of target nucleons, specified by
L =(n, v). For the conventional case of two-body
interactions, L=(1,i), and t~(E)=t, (E) in the t.
matrix for nN scattering with the ith nucleon.
However, this scattering refers to the reduced
problem (3.6), from which all coupling to the P„
space has been eliminated. That means that even
the process in which a pion is absorbed and then

emitted from a single nucleon, as in the usual
Born terms for mN scattering, are not included
in t~ in Eq. (3.12). Therefore, if one wishes to
use the free mN scattering amplitude in the mul-

tiple scattering expansion, it is necessary first
to subtract the direct Born amplitude (see»g. 1):

t ""(E)= t,~(E) —t(direct Born) ~ (3.13)

In the direct Born amplitude, the intermediate
nucleon is partially dressed. For further details,
see Appendix A of Ref. 1.

&(E)= r,„(E)G„(E)r„,(E), (3. 16b)

U(E) =K(E) —H~ —h,„. (3.17b)

A brief calculation yields

(k', n IT(E) Ik, 0&= (k', n
I
T (E) Ik, o&

+ g'&(k', ~) IIc(z)
I x,"(k,o)&,

(3.18}
where x~"(k, 0) is the solution of the homogeneous
equation (3.6), given in Eq. (3.Qa), correspond-
ing to the initial plane wave, while x

' ' is the (ad-
joint) solution to (3.6) or to

(x,' '(k', .) I
= (k', ~ I

+ (x,' '(k', .) I v.(z)G.(z),
(3.19)

which includes all the effects of coupling the ab-
sorption to the scattering channels.

The full t matrix for scattering may be obtained
by considering (see Appendix)

(k', n I T(E)
I k, 0& = (k', n

I U, (E)P I
4'z &, (3.17a.)

where
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corresponding to the final plane wave. For all
these expressions, E is the energy of the initial
pion wave plus target ground state energy.

Equation (3. 18) is the principal result for scat-
tering reactions. To calculate the amplitude, we
need the scattering waves y,

"' and }i,' ' (which are
multichannel waves in the P, space) and the cor-
responding t matrix T'(E). In addition, we need
the effective operator If(E), Eq. (3.16b), which
gives the contribution to the scattering from coup-
ling to the absorption channels. (We further dis-
cuss these operators in the next section. ) Simi-
lar expressions have been given by Thomas, ' and
more recently by Rinat. '" This result is also
similar in form to that given by Feshbach, Ker-
man, and Lemmer ' in their "doorway-state"
theory of nuclear reactions, which was based,
as is the present work, on the Feshbach projection
method. '

For pion absorption, let us consider a specific
reaction channel labeled by (n, P, . . . ), where
n, P, . . . are the nuclear fragments in the par-
ticular asymptotic channel:

a+A-n+ p+. . . .

The fragments n, p, . . . might be p, n, d, 'He,
etc. , and the residual nuclear target. We define
the channel Hamiltonian

H(n, p, . . . ) =(If.+I.)+(a, +a,)+ ~ ~ ~,

(3.2o)

where H is the internal Hamiltonian for frag-
ment n, and h is its kinetic energy, - etc. The
transition amplitude to this channel may be ob-
tained from the expression [see also Eq. (3.17)
and Appendix]

&k. , ks, . . . IT (E) li, o) = &k. , Is, . . . IU„(z)P l~,".'),
(3.21a)

where

and

G (E)=[z'-a(n, P, . . . )]-'. (3.23c)

The amplitude (3.22) is evaluated at the total ener-
gy of the initial wave.

We note that the wave P
' ' in the absorption chan-

nel scatters through an interaction V„(E) which in-
cludes the coupling of the absorption and scatter-
ing channels. This is explicit in the second term
of Eq. (3.23b). In contrast, the scattering waves

in the P, space do not reflect coupling to the
P space. One consequence of this is that V (E)
will always be a, non-Hermitian operator, since
E is necessarily above the threshold for produc-
tion of pions: n + P +. - m +A. . The non-Her-
mitian property is required by the unitarity of the
theory, and therefore must be treated with some
care in making approximations. This is discussed
further in the following section.

Equation (3.22) is our principal result for the
absorption amplitude. The form is similar to that
given in Ref. 1 for md-NN. The expression has
the form of a distorted wave amplitude, but is in
fact considerably more complicated. Both "dis-
torted waves" in the present case are multichan-
nel waves: X,

"' has all inelastic scattering waves
in the P, space, and P' ' has components in all
inelastic and rearrangement channels which are
reached from the n+ P+ channel. The ef-
fective vertex function I',,(E) can be decomposed
into many-body components, as in the decomposi-
tion of V,(E) in Eq. (3.11). This is also dis-
cussed in Sec. DIt'.

We may write the amplitude for ~ production
by taking the adjoint of Eq. (3.22). For a two-
body collision n+P-v+A~ we may write

(k, n l T, ,(z) li. , k,)= Q,'-'(k, n) l 1,„(z) l
q"'(k. , k,)),

with

V„(Z) =Z, (z)+r„,(E)G,(z)r,„(E) H(-n, p, . . . ),
(3.23b)

U„(E)=36(E) —H(n, p, . . . ) . (3.21b) (3.24)

With some manipulation, the amplitude may be
put in the form

0., ks, . I T (E) li, o&

) ll „,(z) lx,"(k, o)& (3.22)

We have defined a wave function g' ' for the final
state fragments 1, which satisfies the scattering
equation

(q'-'(k. , k„. . . ) l

=(k. , k8, . . . l + (g' '(k. , k„.. . )l v„'(z)G„(E),

(3.23a)

(3.26a)

T~(E; n, P. . . ) =Q„g (E)I"„,(E)Q,(E),

(3.26b)

(3.25c)T„.,(Z; n, P) = Q, (Z)r, (Z)Q. ,(Z) .
We have introduced the Mgller operators for the

where the residual target A* is in the state n.
Finally, we may write transition operators, cor-

responding to the amplitudes (3.18), (3.22), and
(3.24), respectively, as follows:

T(E) = T (E) + Q (E)I' „(E)G„(E)I'„(E)Q (E),
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waves gI

n, (z) =1+G„(z)T (Z),

n, (z) =1+T (E)C„(z),
and for the waves g'":

(z) = I +g„(z)v„(z)
t0, (E) =1+V„(E)g„(z),

(3.28a}

(3.28b)

fined, and coincides with the total Hamiltonian.
The operator H, is then continued to all points of
P, space, along with the particle coordinates.

The nuclear interaction VN(E) may be defined as
the part of +(E) which does not involve the pion
varia, bles (r»k} at all. We may decompose V„(E)
into parts of different rank m, involving n-nucleon
interactions, as follows:

where v,(z) =g v'„(z), (4. 3)

g„(z)= [E"-a(n, p, . . . ) —v„(z)]-'. (3.26c)

IV. EFFECTIVE OPERATORS

We give a brief discussion of some of the ef-
fective operators which appear in Sec. III, and
which must be specified in order to calculate the
scattering amplitude of Eq. (3.18) and the ab-
sorption amplitude of Eq. (3.22). The particular
forms of these operators depend on the details
of the assumed underlying dynamics [e.g. , the
pion-nucleon coupling, etc. , in Eq. (2. 1)], but
there are general features common to any dynam-
1cs,

We consider first the effective Hamiltonian
K,(E) that gives the interaction in the pion plus
A. -nucleon space (P, ), and which is defined in Eq.
(3.5b). In Eq. (3.7) we have decomposed X,(E)
into parts involving the target nucleus, the pion-
nucleus interaction, and the c,m. kinetic energy.
We now separate the target Hamiltonian HA into
the kinetic energy of the nucleons and the mutual
interaction of the nucleons. We write

R, =H, + V~(E)+ V,(E), (4., 1)

(4. 2)

where H, is the total kinetic energy of pion plus
nucleons, V~(E) is the nuclear interaction, and
V,(E), is, as before, the pion-nucleus interaction.
We discuss these in order.

The kinetic energy operator H, is given by the
sum of the operators for A. free physical nucleons
plus one pion, that is,

A

Ho= ' + k'+m' ' ',
i=&

where p,. is the momentum operator for the ith
nucleon with mass M (treated nonrelativistically
here), and k is the momentum operator of the
pion (of mass m). This form follows from the
method of constructing the P, projection operator
given in Sec. II. We have defined the particle
coordinates r„r&, . . . , r„and therefore the con-
jugate momenta k, p„. . . , p„, for physical par-
ticles, by starting in the asymptotic region of
configuration space in which all A. + 1 particles
are well separated [see Eq. (2.4} and the follow-
ing discussion]. In this region, H, is well de-

where L = (n, v) is a double label, as in Eq. (3.11),
n specifying the number of interacting nucleons
(n=2, 3, . . . ,A), and vlabeling the specific nu-
cleons. This is illustrated in Fig. 2. Some spec-
ific examples are shown in Fig. 3, where the in-
teraction is mediated by the exchange of one or
more more mesons (n, p, a&, . . . ). This clearly
involves coupling of the P, space to the Q space
as in Eq. (3.3). We note that the e-body inter-
action may be connected, as in (a) and (b), or
disconnected, as in (c). The occurrence of ener-
gy-dependent, many-body, and even disconnect-
ed interactions among the target nucleons is of
formal interest, but is not likely to affect prac-
tical calculation of scattering. In most multiple
scattering approximations, the purely nuclear in-
teractions are treated in terms of target states
and energies, e.g. , the closure approximation for
high energy projectiles. An exception is for a
two-body target in the Faddeev approach, in which
the NN interaction is treated in greater detail.
(See also Ref. 1.)

The pion-nucleus interaction V,(E), which was
defined in Eq. (3.7), may also be decomposed in-
to parts of different nucleon rank,

v, (z)=g v~(E), (4.4)

with L = (n, v), n = 1,2, . . . , A, as in Eq. (3.11);
the projectile pion always interacts. This is il-
lustrated in Fig. 4; some specific examples are
shown in Fig. 5. Again, the interaction diagrams
may be connected, as in (a) and (b), disconnected,
as in (c).

In a similar way, the channel coupling interac-
tions I"„,(E) [and I', (E)] of Eq. (3.4) may be de-

FIG. 2. Bepresentation of Vz(E) of Eq, (4.3). Solid
lines are nucleons, dashed line is pion, circle is n-nu-
cleon interaction.
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A-Z(

j
k

I

A-4(

7T% ~7T 7T+ ~7Tr
P&

I

A-2

7T~ 7T

(b) (c)

FIG. 3. Examples of V&. (a) L= (2, ij); (b) L =(3,ijk);
(c) a disconnected diagram with L = (4, ijkl) .. Wavy lines
are exchanged mesons (7I., p, co . ..).

composed by nucleon rank:

r„,(z) =g r~, (z), (4. 5)

with I.= (n, v), n= 1,2, . . . ,A. This is illustrated
in Fig. 6, and some simple examples are shown
in Fig. 7.

The appearance of disconnected terms in the ef-
fective interactions V~(E), V,(z), and I'„,(E)
[r,„(E)]as illustrated in Figs. 3(c), 5(c), and 7(c)
follows from the projection method we have used
to define channels. It is connected to the fact that
these interactions are energy dependent and non-
Hermitian. For V„(E) in particular, these formal
peculiarities have long been known in dealing with
diagrammatic methods for many-body bound sys-
tems, as for spectra of complex nuclei. One tech-
nique which has been introduced to eliminate both
the energy dependence and the disconnected terms
is the method of folded diagrams, introduced by
Brandow" and further developed by others. ' This
method is presumably directly applicable to V„(z),
which represents the excited spectrum of the tar-
get. The same technique has also been applied to
WÃ scattering, "and presumably could be extended
to remove the E dependence and disconnected parts
from V, (E) and I'„,(E) as well. A different method
which removes these problems by transformation
to an orthogonal basis in which the effective in-
teractions are Hermitian was proposed long ago
by Okubo. ' This has been used by Gari and
Hyuga" for removing disconnected terms in the
calculation of mesonic exchange currents, which
is a closely related problem to ours. Therefore,
the disconnected parts appear to present no for-
mal difficulty in our approach, and presumably

(b) (c)

FIG. 5. Examples of V~: (a) L= (l, i), given by meson
exchange between 7r and ¹„(b)L = (2, ij), given by meson
exchange between nucleons N&, N&, with crossed pion
lines; (c) a disconnected diagram with L = (3,ijk).

can be removed by one of these methods. As al-
ready mentioned, some of these features are lost
in common approximations in multiple scattering
theory.

A somewhat different problem arises in con-
nection with the effective interaction V„(E), de-
fined in Eq. (3.23), that gives the dynamics of
the target in the absorption (P„) channel. This in-
teraction includes coupling to the open scattering
channels, through the term

r„,(z)G, (z)r,„(E) (4. 8)

in Eq. (3.23b). Because of the channel coupling,
the nonhermiticity of V„(E) is essential, reflecting
the loss of flux back into the scattering channels
(as in any optical potential). Similarly, the ener-
gy dependence cannot be removed simply by trans-
formation to an orthogonal basis, but is connected
to the essential nonhermiticity (see Ref. 2), and
is required to maintain the unitarity of the theory.

This property introduces a difficulty, which is
illustrated in Fig. 8. The pion that propagates
between particles i and j in Fig. 8(a) may be on-
energy-shell or off-energy-shell, since there is
always sufficient total energy for an on-shell pion
to propagate. One cannot replace 8(a) by a, real
(Hermitian) and static one-pion exchange (OPE)
potential of finite range, since the on-shell pion
can propagate indefinite distance. The contribu-
tion of this term will not only be long range but
complex and energy dependent as well. This same
behavior will also occur in the nucleon self ener-
gy terms, as shown in Fig. 8(b).

In Ref. 1 we were able to avoid the explicit ener-

7r-
n{

/7T

( )

A-n

FIG. 4. Representation of V~ of Eq. (4.4); lines as in
Fig. 2; circle represents interaction of pion with g nu-
cleons.

FIG. 6. Representation of the absorption operator
I ~(E), Eq. (4.5) ~



22 COUPLED CHANNEL THEORY OF PION-NUCLEUS REACTIONS I66S

A-2

I

k

A-3(

(a)
'

(b) (c)

FJG. 7. Examples of I Qf(E): (a) L = (l, i), given by a
one-nucleon absorption vertex; (b) L = (2, ij), given by
absorption by an exchanged meson; (c) a disconnected
diagram with L = (3,ijk).

gy dependence and nonhermiticity of V„(E) ap-
proximately by working at threshold, where the
channel coupling is weak and V„ is real. For
higher energy and for stronger coupling, these
non-Hermitianproperties shouM be kept explicitly.

V. APPLICATIONS

The main results of Sec. III are the expressions
(3.18) for the scattering amplitude and (3.22) for
the absorption amplitude. We now show how these
formulas might be evaluated, using standard meth-
ods of multiple-scattering theory. We separately
discuss the treatment of elastic scattering, inelas-
tic scattering, and specific absorption transi-
tions.

A. Elastic scattering

The elastic scattering amplitude is given in Eq.
(3.18) as the sum of two terms:

&k'
I T., Ik& = &k'

I T:, lk)+ &x,
' '(k') lf~ I x,'"(k)&,

(5.1)

where we suppress the target (ground) state label,
and the energy variable. The first term is given
by Eq. (3.8), which is obtained in turn from a sol-
ution of the uncoupled effective Schrodinger Eq.
(3.6). Here one may use standard techniques for
solving the elastic scattering problem approxi-
mately, for example, based on a multiple scat-
tering expansion of the amplitude, as in Eq.

(3.12}, or the optical potential. However, unlike
the usual case of the Watson expansion the ef-
fective scattering interaction V,(E) is not simply
a two-body interaction (pion-nucleon), but also
contains pion-many nucleon contributions as well,
as already noted in connection with Eq. (3.11).
Similarly, the t matrices on which a multiple
scattering expansion are based, include many-
body contributions, as in Eq. (3.12}and Fig. 5(b).

To calculate the second term of (5. 1) we need
the solutions X',"of Eqs. (3.6} or (3.19},as well
as the operator K(E}, which was defined in Eq.
(3.16b). The scattering solutions are quite com-
plicated, since they contain all the nuclear chan-
nels excited by the pion through the interaction
V,(E). There is no reason to assume that the
elastic channel will dominate here, since absorp-
tion can occur as easily after an inelastic col-
lision as before. Therefore one cannot approxi-
mate p,

"' by elastic waves, i.e. , solutions of the
optical wave equation used to calculate &k'

I

T~ Ik),
unless inelastic scattering is very weak. Since
a complete inelastic coupled channel solution is
usually impractical, a suitable approximation
might be based on selecting the dominant inelastic
channels, as follows. We write y,

'" in terms of
the Mgller operators (3.26) acting on plane wave
states:

I x,'"(k))= fl, lk, 0),

&x,
' '(k')

I
= &k', o I fl, .

(5.2a)

The strongly excited channels are denoted by n.
These might include, say, the elastic wave (n=0)
and the one-nucleon knockout channels (n= 1), and
perhaps more. Then the wave x'" of (5.2a) could
be approximated by a (finite) series of terms

Ix'"(k)= g fl(~) lk, o&, (5.2b)

with Q(n) the distortion in the appropriate chan-
nel n, and similarly for 0,. (This is still a for-
midable problem for continuum channels. } Anoth-
er possible approximation would be the fixed scat-
terer assumption, in which p,' are given for every
position of each target nucleon: x-'„(r„. . . , r„),

(a) (b)

FIG. 8. Examples of contributions to the effective in-
teraction in Eq. (4.6), generated by the emission and
reabsorption of one pion. The pion can be on-energy-
shell, making the contribution of Eq. (4.6) complex and

energy dependent.

(a) (b)

FIG. 9. (a) Bepresentation of the operator K(F) defined
in Eq. (3.16b). (b) Examples of contributions to the box
in (a).
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at which the matrix element of K(z) is calculated,
the entire expression subsequently averaged over
the target ground state density. This method is
equivalent to keeping all channels and ignoring the
differences in excitation energies, i.e. , assuming
closure on nuclear states. This might work best
for high energy pions.

The operator E(Z) can be symbolized by Fig.
9(a), where the box indicates all interactions
among the nucleons between the first absorption
and last emission of the pion. Examples of sim-
ple processes in the box are shown in (b) and (c):
they include both processes usually assigned to
the static nuclear interactions, and also retarded
(i.e. , nonstatic) interactions involving propaga-
tion of pions (or other mesons). It is not clear
what approximations will suffice here, or whether
closure approximations will work for the box.
(In the case of the vd scattering length, closure
was not an accurate approximation. See Ref. 1.)

Clearly the second term of Eq. (5.1) is more
complicated to calculate than the first term. For
the latter, one needs a conventional method of
dealing with multiple scattering for the ela, stic
channel; for example, an optical potential. For
the second term, one needs information on mul-
.tiple scattering in inelastic channels as well, and
in addition, a theory of the absorption mechan-
ism. A natural question is: How important is the
second term in elastic scattering& It is clear that
if the total absorption is weak, the absorption-
emission term should be small, but the converse
need not 'also be true. There are circumstances
for which the second term in Eq. (5. 1) could be

'small, even though the total absorption cross sec-
tion is large. In such a case, the amplitude T„
must be a good approximation to T„. This can
happen, for example, if there are many inelastic
channels open, strongly coupled to the elastic
channel, as is the case at high energy. The total
reaction cross section is then dominated by geo-
metric considerations, tending to the 'black-
sphere" limit for strong coupling. 'The elastic
amplitude reflects this behavior, through unitar-
ity (or the optical theorem). Now for T.~, all
nonelastic channels are inelastic, while for T„,
the absorption channels are also included. In the
high energy, strong-coupling limit, however, the
effect of the nonelastic channels on the elastic
amplitude should be similar for T„and 7.'„.
Then, even with a substantial cross section for
absorption, the second term of Eq. (5, 1) will be
small. Examples of this kind of behavior have
been presented" in terms of models of pion
absorption at high energy.

The subject of the effects of unitarity on the
elastic channel is more appropriately discussed

in terms of an optical potential in which case it
has been called the reactive content of the optical
potential. "" We reserve an extended discussion
of the theory of the optical potential for pion elas-
tic scattering for a future publication. For the
present, it is useful to point out that one may al-
ways reformulate the calculation of elastic scat-
tering, in terms of such a potential, 'U(E), for
which

T.,(z) = u(z) + ~(z)g, (z)r., (z) . (5.3)

We define g, (z) to be the propagator for the pion
with the target restricted to its ground state,
which we obtain by taking the ground state expec-
tation value of G„(E), Eq. (3.9b):

g.(z) = «.(E)). (5.4)

Now suppose the amplitude T,~(z) is also calculat-
ed from an optical potential U(E), based on a, mul-
tiple scattering solution of (3.8-3. 10) in the elas-
tic channel, with

T'„(z)= U(z)+ U(z)g, (z)T'.,(z) . (5. 5a)

~(z) = ~(z)+ s(z),
s(z) = x(z)[1+g.(z)x(z)]-',

where

x(z) = (n, (z)fc(z)n, (E))

(5.8)

is the target ground state expectation of the second
term of Eq. (3.25a), giving an operator in the
elastic channel. Similarly,

g.(z) = (G,(z)), (5. 7)

where G, (z) is defined in Eq. (3.14b). This gives
us a formal expression for the optical potential,
in terms of the quantities calculated in our ap-
proach. We postpone a more complete discussion
of the calculation and use of optical potentials for
a future publication.

B. Inelastic scattering

The amplitude for inelastic scattering to a
specific final state n is given by Eq. (3.18), which
we rewrite in the form

This optical potential can be written as the target
ground state expectation value U(z) = (R ~(z)),
where 8 obeys the integral equation

A~(z) = V,(z)+ V, (E)G„(E)(1 A)R~(E), -(5.5b)

and where A projects onto the target ground state.
One can find an expression for 'U(E), for which
Eq. (5.3) is formally equivalent to (3.1), by ma-
nipulation of the equations of Sec. III and Eqs.
(5.3) and (5.5). The result may be written in the
form
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The amplitude for pion absorption leading to a
specific final channel denoted by (n, P, . . . ) is
given by Eq. (3.22), which we rewrite in slightly
condensed notation,

&~, I3 . . I
T .. Ik, 0&= &g.', ', ll'„,(E,) I x,").

(5.9}

The wave p,
"' is the solution of the uncoupled scat-

tering Eqs. (3.6) and (3.9a), which we have al-
ready discussed in Eq. (5.2), in connection with
the elastic amplitude (5.1). The absorption opera-
tor I",(E) couples the one-pion and no-pion chan-
nels. As discussed in Sec. IV, the effective oper-
ator I'„,(E) can be decomposed into operators for
one, two, or more nucleons. The one-body oper-
ator [see Fig. 7(a)j is conventionally taken to be
of a simple form, e.g. ,

AI Jd'(j "'(i)a(k),
)=1

(5.10)

where a(k) absorbs a pion of momentum k, and
j"'(k) is a nonrelativistic vertex function, for the
ith nucleon. For example, for the static model,
j(i'(k) cc P&' ~ kr("E(k) in terms of the nucleon spin
P" and isospin r„"' operators (for a pion of charge
(t(), and a form factor (cutoff function) E(k). More
complicated processes, involving, e.g. , rho-
meson exchange, are illustrated in Fig. 7(b).

The final channel wave functions g„'z are given

by solutions of the effective wave equation (3.23a)

&k I T, lk) = &k' IT.'.Ik& + &x( '(k', n} II~(E} x,"(k,0}&

(5.8)

As for elastic scattering, the first term &k I T~OIk&

may be handled by conventional multiple scatter-
ing methods, with the modifications mentioned
following Eq. (5.1}. For many cases in which the
final channels may be directly coupled to the elas-
tic channel by a one-step ~N scattering process,
some form of distorted-wave impulse approxima-
tion (DWIA) may be appropriate (for example:
charge exchange, giant resonance excitation).
The second term in Eq. (5. 8) would be handled
in a manner analogous to the second term of Eq.
(5.1), except that the final wave x( '(k', n) has a
pion scattering from the excited state n of the
final target.

It is interesting to ask whether the second term
of Eq. (5. 8) may play a more important role in
inelastic scattering, than the analogous term does
in the elastic case. This may well be the case
whenever &k I T„lk& is small (as a direct reaction),
for example, for double charge exchange to analog
states.

C. Absorption transitions

(+)
eff xj. inel &

where the wave operator Q,"of (5.2a) is written
as a product of inelastic and elastic (optical) wave
operators:

(5.11)

~(+) ~(+) . +(+)
ine l el

where

n.", ' =1+G„(E)~T.', (E),

(5.12a}

(5. 12b)

0,'„',= 1+G„(E)(1—&)R ~(E), (5.12c}

where Ta, A, and R~ are defined in Eq. (5.5).
Then 0,",' k, O is the optically distorted incoming
wave.

For the final state (n, P. . . ) a distorted-wave
approach might work in two cases: first for an
exclusive reaction to a particular final state for
which the nuclear structure favors the direct tran-
sition. For example, in 'Li(w, 2n)'He, , it might
be safe to ignore channel coupling through the
outgoing neutrons of the ground and excited states
of He. The final distortion is still a three-body
problem with two neutrons and the residual 4He

target. The second case might be for an inclusive

in the no-pion channel. This is in general a very
complicated problem involving highly excited
channels of the final nucleus, with various num-
bers of particles in the continuum. For example,
for the reaction (m, p), the final channel state P~(

'

involves a, proton (of energy E~ ~ m, ) scattering
from a nuclear target, which would be in an ex-
cited state. The wave g~(

' may strongly couple
to other final channels [(w, 2N), (v, 3N)] by inte-
raction of the proton with target nucleons. In ad-
dition, V„(E}is energy dependent and non-Hermit-
ian, as discussed in Sec. IV.

The amplitude (5.9) expresses the absorption
amplitude in a generalized distorted wave form,
but, as we have noted, there may be considerable
coupling of channels in both the entrance Bnd exit
channels. Are there circumstances for which one
may use something like conventional distorted-
wave Born approximation (DWBA), in which the
initial and final waves are simply optically dis-
torted by single channel potentials~ For the initial
channel that does not seem likely, since for most
absorption reactions that have been examined,
nonelastic scattering of the incoming pion seems
to play a role, as discussed in connection with

Eq. (5.2). Even for pions absorbed at rest, vir-
tual scattering is important. It may be useful to
try to include the initial-state scattering together
with the absorption operator (if only one or two
nucleons are involved). Then one can define a. new

effective absorption operator
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reaction, like (w, 2N), where only the two (fast}
nucleons are observed, and a range final states is
reached. Since the details of the final channel
are summed over, optical distortion of the out-
going waves may be an adequate description.

VI. CONCLUSION

We have given a theoretical method of treating
nuclear reactions induced by pions, which includes
scattering and absorption on an equal footing.
The theory is consistent with the meson degrees
of freedom of the nuclear system itself, and
therefore with quantum field theory. However,
we have developed the formulation to be consistent
with the conventional Schrodinger treatment of
nuclei, and with multiple scattering theory. The
idea has been to see how to generalize existing
multiple scattering approaches to include absorp-
tion in a consistent way. We have discussed the
form that such extensions might take, and have
explored some details of the effective operators
in our approach. There is considerable work re-
quired to flesh out a complete theory for calcula-
tion. This remains true because, although there
has been considerable progress in recent years
in our ability to handle the multiple scattering as-
pects of pion reactions, we do not have more than
a rudimentary theory of absorption, particularly
for energetic mesons. The one exception here is
for the case of nd reactions, in which there has
been progress both in the scattering and absorp-
tion sides of the problem (see Refs. 6-13). We
have provided a consistent framework on which
such a theory for complex nuclear targets might
be built.

In a future publication, we intend to apply the
present methods to the theory of the optical poten-
tial for pion-nucleus scattering.

This work was supported in part by the U. S.
Department of Energy under Contract No. EY-76-
S-02-2171.

APPENDIX

where the limit g -0' is taken on the entire ma-
trix element, and where 0„'"' is defined, in terms
of wave packets, in Ref. 20, with the usual limit

Now writing

(a -E,) = (a E,)(p+ q),- (A2)

and using Eq. (3.6) we find

&k', n
I r(E ) lk, o& = »m &k', n I (&{E ) —E )Z I

e„'"')
q~P

= &k', n
I
(30(E.) -If.—&,.)~ I

~'„").
(A3)

The last line gives Eq. (3.17); Eq. (3.21) may be
obtained by a similar argument.

Alternatively, one may derive Eq. (3.18) direct-
ly from Eq. (3.16) by forming the amplitude
(k, n I Q,"'). This can be reexpressed as a matrix
element of G„, by use of Eqs. (3.9), (3.10),
(3.14b), and (3.16a). The residue at the pole of
G„may be expressed as in Eq. (3.18).

The expressions for the scattering amplitude
(3.17) and for the absorption amplitude (3.21)
may be obtained from the formal theory of scatter-
ing for a system of many channels, following the
discussion of Goldberger and Watson" (see also
Ref. 31). We begin with a formal expression based
on the exact Eq. (2. 1) for the inelastic a,mplitude
(on-shell)

&k',

nlrb(E,

) Ik, 0) =lim &k', n IH —E&I+&"'),

(Al }
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