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Using a time ordered diagrammatic method, we derive a set of linear integral equations that couple the N-
A to the m-d channel and satisfy two- and three-body unitarity. The resultant equations have dressed

propagators for the nucleons, and dressed form factors for the mNN vertex. The inclusion of the full m-N

amplitude in the Pl& channel leads to a dressing of both the ~NN vertex and N-N propagator without

changing the basic structure of the equations,

NUCLEAR REACTIONS Nucleon-nucleon and pion-deuteron scattering. De-
rived coupled equations for NN, ND, zd with dressed nucleons and &NN vertex.

I. INTRODUCTION

There has been a growing interest in recent
years in the 7rNN system and in particular its cou-
pling to the N-N channel. This interest has been
directed from two distinct but related problems.

(i) The analysis of N Nscatte-ring data above the
threshold for pion production. Here we need a
model that describes the pion production mechan-
ism, and preferably incorporates two- and three-
body unitarity. Such a model allows us to impose
a constraint on the imaginary part of the N-N
phase shifts from the knowledge of the reaction
cross section. ' Since most of the inelasticity at
medium energies (& 1 GeV) is due to single-pion
production, and this production is dominated by
NN-~d and NN-Nh, we need to couple the N-N
to the 7r-d and N-6 channels. Furthermore, if the
recently observed structure in polarized p-p
scattering' is due to the opening of an inelastic
channel' dominated by ~-N resonances (e.g. , the
b, ), then we should also couple the N Nto the-
N-6 channel.

(ii) The importance of real pion absorption on
pion-nucleus scattering. Here there is a strong
indication that the discrepancy between experiment
and optical potential calculations of low energy
pion-nucleus scattering is due to real pion absorp-
tion. ' In that case, the deuteron might be the ideal
system in which to study the effect of absorption,
as we can sum the multiple scattering series, ex-
actly, using the Faddeev equations.

Both of the above problems can be simultm. eous-
ly investigated if we can describe the reactions

I

(1a)

-N+N
~7r+pf ++ (1b)

using a set of coupled equations for the different
physical amplitudes that satisfies two- and three--
body unitarity.

The first attempt at such a model was due to
Afnan and Thomas' who used the Faddeev equa-
tions for the 7rNN system. To couple the 7rNN to
the N Nchann-el (i.e. , to incorporate absorption)
they introduced a ~-N bound state in the P» chan-
nel. Although the model was successful in giving
the ~-d scattering length and the s-wave pion
production cross section at low energies, it hns
two weaknesses:

(i) Only one of the nucleons could emit the pion in
intermediate states. This led to undercounting and
was compensated for by taking an unusually large
scattering length for the 7r-N interaction in the
Pl y channel ~

(ii) In all of the two-nucleon intermediate states,
only one of the nucleons was dressed. Thus the
Pauli exclusion principle had to be imposed by
proper selection of channel quantum numbers.

These two problems were first overcome by
Mizutani and Koltun' who used an explicit Ham-
iltonian with a 7rNN vertex, a ~-N and N-A inter-
action, and Feshbach projection operators to cal-
culate the contribution of real absorption to 7r-d

scattering. Their result, which was previously
derived by Thomas' using a diagrammatic method,
and later by Rinat' using nonrelativistic reduction
techniques, gives the contribution of real absorp-
tion to 7r-d scattering in terms of a matrix element
which requires the off-shell T matrix for ~-d
elastic scattering with no absorption. More re-
cently Thomas and Rinat' have shown that we can
write, using both the diagrammatic' "and reduc-
tion' techniques, a set of linear integral equations
for N-N scattering including the coupling to the
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~NN channel. The resultant equations though sim-
ila,r in form to those of Afnan and Thomas' do not
have any undercounting or problems with the Pauli
exclusion principle. At about the same time
Avishai and Mizutani' extended the results pf
Mizutani and Koltun' to get a set of linear integral
equations for both the N-N and ~-d initial states.
Finally, we would like to mention the work of
Stingl and Stelbovics" who started from a Hamil-
tonian with the only interaction being the ~NN ver-
tex, and obtained a set of linear coupled integral
equations for x-d scattering which include the ef-
fect of real pion absorption.

Here we employ the diagrammatic method used
by Thomas' "to derive a set of linear coupled
integral equations for the reactions in Eq. (1). In
particular, we show that the result of Thomas and
Rinat' can be extended to ~-d scattering with non-
separable 71 -N and N-N interactions. The result-
ant equations in the absence of the ~-N interaction
in the Pyy channel are identical to those obtained
by Avishai and Mizutani. " We find that the inclus-
ion of the n-N interaction in the P» channel leads
to a dressing of both the form factor for the ~NN

vertex and the nucleons in the N-N and ~NN propa-
gators, with no change in the basic structure of
the equations. In this way we ensure that the nu-
cleons in both the N-N and AN channels are
identical, which was not the case in the work of
Avishai and Mizutani. " By employing the dia-
grammatic method we are able to establish the
connection between the works based on Hamil-
tonians with the ~NN vertex, and the ~-N and
N-N interaction, on the one hand, and those with
a ~NN vertex only on the other hand. In this way
we show that the ~-N interaction in the Hamilton-
ian should lead to an amplitude in the P» channel
with the nucleon pole subtracted.

In Sec. II, we develop the diagrammatic method
and show how one can dress both the nucleons and
the ~NN vertex. In the process we establish
which ~-N interactions should be included in cal-
culating the ~-d multiple scattering series with
no absorption. We then derive a set of coupled
linear integral equations for the reactions in Eq.
(1a). These equations reduce to those of Thomas
and Rinat' if one drops all dressing from the ~NN

form factors and nucleon propagators, and as-
sumes separable potentials for the 7t -N and N-N
interactions. In Sec. III we derive a set of coupled
linear integral equations for ~-d elastic scattering
and absorption which have the same kernel as
those for N-A scattering. The resultant equations
are considerably simpler than those obtained by
Mizutani and Avishai after including the nonpole
P» interaction. Some concluding remarks are
presented in Sec. IV, while in the Appendix we

show how one can split the ~-N amplitude in the
P» channel into a part that leads to multiple
scattering and a part that couples to the N-N
channel.

II. NUCLEON-NUCLEON SCATTERING

Since we are interested. in nucleon-nucleon
(Ã-N) scattering above the threshold for single-
pion production, and below the energy where two-
pion production becomes important, we need a
set of equations that satisfy two- and three-body
unitarity at least. From a computational point oX

view it might be advantageous if the equations
couple all the physical amplitudes. In this way we
avoid the evaluation of off-shell three-body am-
plitudes to be used in distorted wave matrix ele-
ments. To achieve our goal we need to make two

approximations:
(i) We do not include all two-pion intermediate

states explicitly and thus lose four-body unitarity.
However, some of the effects due to multipion
intermediate states may be included through po-
tentials, and thus will not affect two- and three-
body unitarity. In spirit, the introduction of a
potential to describe more than one-pion inter-
mediate states is similar to N-N scattering below
the single-pion production threshold, where one-
pion exchange is treated as a static potential.

(ii) The number of nucleons is fixed, which im-
plies that there are no antinucleons in the inter-
mediate state. Therefore, our equations will have
no crossing symmetry. At medium energies we

should treat both the pion and nucleons. using rela-
tivistic kinematics. However, since we have ex-
cluded antinucleons we cannot use Feynman
propagators, but have to resort to a Blankenbeck-
ler-Sugar reduction of the Feynman propagators,
which maintains the unitarity cuts. This proced-
ure has been implemented for both m-d (Ref. 13)
and N K(Ref. 14) -scattering using the method of
Aaron et a/. " An alternative implementation of
the reduction which preserves clustering proper-
ties"' "has been used for calculating b, compo-
nents in the deuteron. " In either case we ean re-
tain relativistic kinematics and a three dimen-
sional equation, but we will lose a certain amount

of uniqueness because of the reduction procedure. "
The diagrammatic method we employ for deriving

our equations, due originally to Zachariasen, "
was first used by Thomas for the ~-d system. ' lt
is based on old fashioned time order field theory
which allows us to implement the approximation
(ii). It also has the advantage of not having to
specify the Hamiltonian explicitly. This means
we can always write the ~-N and N-N interactions
in terms of either a basic ~NN vertex or in terms
of two-body interactions. Finally, and most im-
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portantly, it allows us to expose lowest unitarity
cuts first. In this case we first expose the two-
body and then the three-body unitarity cuts. At a
later stage we can expose the higher unitarity
cuts. The last two advantages of this method are
shared with the covariant approach to N-particle
Green's functions developed by Taylor" and used
by Mizutani for the zNN system.

In this section we follow the notation of Thomas
and Rinat' by labeling the initial and final states
by the number of pions. Thus the class of all
diagrams with an initial and final state of two
nucleons and zero pions is represented by &Oj T~0).
All diagrams that contribute to &O~TIO) can be
divided into two classes: those with at least one
pion in every intermediate state, which we repre-
sent by &0~ T) 0)„and those that have intermediate
states of zero pions. The second class can be
written using the last (first) cut lemma" "as
&OITIO&, gc&OITIO& (&OITIO& gc &OlTIO&, ), where g,
is the two nucleon free Green's function. Basic-
ally the last (first) cut lemma, in this case, ex-
poses the last (first) intermediate state with two
free nucleons and zero pions, or the two-body
unitarity cut. This classification allows us to
write the amplitude for N-N scattering as

&OITIO&'=&oITIO&;+(&OITIO&, g. &OITIO&)' (2a)

=&Ol TIO&;+ (&OI Tl 0& g.&ol TIO&,), (2b)

where the superscript c indicates that we should
consider connected diagrams, as only these con-
tribute to N-N scattering. This equation has the
form of the two particle Lippmann-Schwinger
etluation if we take &0~T~ 0), to be the two-body po-
tential. However, we note at this stage that the
first term on the right-hand side of Etl. (2) in-
volves only connected diagrams, while the
&0~T~0), in the second term can involve disconnect-
ed diagrams. In Fig. 1 we give an example of
diagrams belonging to the second term on the
right-hand side of Eq. (2). Such diagrams, which
were ignored by Thomas and Rinat, ' give rise to
propagator dressing. Finally in Eq. (2) we do not
have any statistical factors since our nucleons at
this stage are distinguishable. Later we may per-
form the antisymmetrization on the final equations.
This procedure will simplify the dressing of the
mNN form factor.

ol

&OITIO) =&OITIO& (I —g, I"„) (4a)

(4b)

where g, the dressed N-N propagator, is given by

g=(g' ' —I ) '
~

In the absence of mass renormalization g and g,
have the same pole. Thus on-shell g/g, =1.

We now repeat the above procedure for the left-
hand side of &0~T~()) by dividing this class of dia-
grams according to their final state reducibility.

(a)

To get an amplitude that satisfies a Lippmann-
Schwinger type equation, we find it necessary to
consider the class of diagrams for N-N scattering
that excludes the processes such as those shown in
Fig. 2. This is achieved in two stages. We first
divide all diagrams belonging to &0~ T~ 0)' into two
classes:

(a) Those diagrams wh1ch when cut at the first
N-N intermediate state give rise to the right-hand
part of the diagram being disconnected. We will
call these diagrams right (or initial state) reduc-
ible. Examples of such diagrams are given in
Fig. 2 and arise from the second term on the
right-hand side of Eq. (2b). All these diagrams
are of the form &0~ T~ 0)' g, I'„where I's is to be
determined later. At this stage we note that
diagram 2(d) includes diagram 2(b), and diagram
2(c) may be excluded if we do not take two-pion
intermediate states into consideration.

(b) Those diagrams not included in (a) (which
we refer to as right irreducible), i.e., those when
cut at the first N-N intermediate state give a con-
nected right-hand part, are represented by
&OITIO&.

We now have

&OITIO&'=&OITI()& (OITIO&' g. l'

LIL

E

FIG. 1. Examples of diagrams retained in the classi-
fication of (0)T(0)~ which lead to the dressing of the NN-
propagator.

FIG. 2. Examples of right-reducible diagrams that are
subtracted from (0( T(0)' to give (0[T[0).
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This allows us to write

&olTIO& =&olTlo&+ i„g,&OITlo&

or

«ITIO) =(1 I-g'&«ITIo& (Va)

= (1 - I'~ go) (Ol T I
0)' (1 —gal'~&

&oI T IO&=(olTIo&;+(oITIo&;g(oITlo& (8a)

=&0ITlo&l+&oITlo& g&olTlo)' .
In Etl. (8) we have a two-body Lippmann-Sch-

winger type equation with the effective N-N poten-
tial given by (OITIO); snd all intermediate states
having dressed nucleon propagators. In effect
what we have shown above is that if we remove
all bubbles from all external nucleon lines then
the nucleons in all initial, final, and intermediate
states are dressed.

So far we have exposed the two-particle unitar-
ity cut, and that part of the three-particle unitar-
ity cut that is due to the dressing of the N-N
propagator. To get the rest of the three-particle
unitarity we need to expose three-particle inter-
mediate states in, (ol Tl0),. Here again we classify
the diagrams belonging to (OITIO), into two clas-
ses —those that have at least two pions in every
intermediate state (OITIO)„and the rest. To the
rest we can apply the last (first) cut lemma to get

(Sb)

&oI TI o&, =(oITI o&;+&oI TI I&.&.&IITI o), (9a)

=&OITIO}l+«ITI 1&, G.&1ITIo&, , (9b)

where Gp ls the free Green's function for the ~NN

system with the nucleons undressed. In writing
E|I. (9) we have achieved our aim of exposing
three-body intermediate states and thus including
three-body unitarity. In the process we have in-
troduced off-shell amplitudes for NN- xNN (zNN
-NN) with all intermediate states having at least
two pions, (OITI1), ((1ITIO),) and the off-shell

We observe that on-shell (OIT I 0) =(OITI 0)', i.e.,
the physical amplitude obtained from (OITIO) is
identical to that which one gets from (Ol Tl 0)' We.
now divide the class of diagrams (DITION} accord
ing to the number of pions in intermediate states:
Thus the class of all diagrams with at lease one
pion in every intermediate state we represent by
(OITI 0);, while the rest of the diagrams belonging
to (0ITI0), but not to (0I Tl 0);, have at least one
intermediate state of zero pions, and can be writ-
ten using the last (first) eut lemma as (OITI0); g,
&olTlo&=(olTlo&; g(OITIG) ((olTlo&g. (olTlo&;
=&olT lo& g &OITlo&;)»

amplitude for ~NN-NN (NN- wNN) with all in-
termediate states having at least one pion,
(1ITIO), ((OITI1),). If we don't want to include
four-body unitarity then (OITIO}» which is the
amplitude for NN-NN with at least two pions in
every intermediate state, can be replaced by a
static heavy boson exchange potential as suggest-
ed by Thomas and Rinat. ' In a similar manner if
we don't want to include the contribution of four-
body unitarity through &OITI1), then the simplest

, representation for (Ol Tl 1), is'
. 2

f:(t&=f: (10

which is represented diagrammatically in Fig. (3),
i.e., f+(t') is the form factor for N nN with the
ith nucleon absorbing the pion. Note here that f;
is not the fully dressed ~NB form factor. Thus
we cannot extract f,' from experiment. The dress-
ed ~AN form factor has a major contribution from
the Feynman diagram in Fig. 4(a)" whtch in time
ordered perturbation theory is given in Fig; 4(b),.
and has an intermediate state of one pion. We will
see how the inclusion of the P» interaction gives
a dressing of the ~NN form factor which includes
Fig. 4(b).

We now turn to the amplitude (ll TIO), which has
intermediate states of at least one pion. The dia-
grams belonging to (ll Tl 0), ean be divided into
two classes, those with at least two pions in every
intermediate state (ll Tl 0), and the rest, which can
be written as (1ITI 1},G, (llTIO}„where (1ITI1),
includes all diagrams with initial and final xNN

state. However, (ll Tl 1), is reducible in that it
includes a class of diagrams which when cut at
first (last) intermediate state leads to the right-
(left-) hand part of the diagram consisting of
three disconnected parts. Examples of such dia-
grams are presented in Fig. 5. As shown above
for (OITI0)', the right- (left-) irreducible dia-
grams are given by (1ITI1), and are related to

(11b)

In a similar manner the class of left-irreduc-

FIG. 3. The XN vertex as the lowest order approxima-
tion to &ol rlO, .



I642 I. R. AFNAN AND B. BI, ANKI, EIDER

(b)
FIG. 4. (a) Feynman diagram that contributes to the

AN form factor. (b) The equivalent time ordered dia-
gram.

ible diagrams belonging to (llTIO), is given by
(1ITlo&„where

irreducible diagrams (1ITI1), we have replaced
the free three-body Green's function with bare
nucleons G, by the free three-body propagator
with dressed nucleons G. In this way we have
guaranteed that the nucleons in the ztlVN channel
are identical to those in the N-8 channel. This
feature which is not present in the formulation of
Avishai and Mizutani" comes about by including
certain two-pion intermediate states. In the pro-
cess we have included some contribution from four-
body unitarity.

The right- (left-) irreducible diagrams for 7tNN- ~AN ean now be classified according to the num-
ber of intermediate pions and the last cut lemma
as

&1ITI0&,= (1 —r~G.)(1ITIo&,

=& '(:.&IITI0&, ,

(12a)

(12b)

&liTI1&, =&1ITI».+(1ITI».G.(1ITI1&, (»a)

=&1ITI1&,+&1ITI1&,G&1ITI1) ~ (18b)

Similarly,

&0ITII&, =&0ITI»,a.c '

We now can write Eq. (9) as

&OITlo&, =&0ITl0&, +&0ITI 1&,c&llTlo&, (15a)

=«ITIo). +«ITI1&, «IITI0&, , (15b)

where we have made use of Eq. (12b) to replace
G, by the corresponding propagator with dressed
nucleons.

Using the classification of the diagrams accord-
ing to the number of pions in every intermediate
state and the last (initial) cut lemma we can write

(1ITI0&,=&1ITIo),+(1ITI1&,G.&1ITI0&, (16a)

where G is the ~EN propagator with dressed nu-
cleons, i.e.,

(13)

The lowest order diagrams belonging to (1 jT I1),
are presented in Fig. 6. Here we observe that Fig.
6(a) and 6(b) correspond to the lowest order N-N
and n -N interaction, while Fig. 6(c) is a, "three-
body force." In the present analysis we have
dropped the contribution of Fig. 6(c), since it has
problems associated with the fact that it is dis-
connected. This diagram, which has been dis-
cussed by Stelbovics and Stingl, contributes to
further dressing of nucleon propagator and mNN

vertex. If we now replace Fig. 6(a.) and 6(b) by
theN-N and ~ %potentials -then(1ITI1), becomes
the 3-3 amplitude for a pure three-body (7tNN)

system withno absorption. However, inthis three-
body system the ~-N interaction in the P» channel
is not the full interaction since it does not include
the diagram in Fig. 7, which has the nucleon pole
in the I'» amplitude. It is important to note that
at this stage we have replaced a Hamiltonian in
which the only interaction is through the ~NN ver-

=&1ITIo&.+(1ITI1),~(IITIO), , (16b)

&0I TI1& =&0ITI1& +&0ITI», ~o&IITII&, (Iza)

=(oITI1&,+(0ITI1&,«IITI1&, (I»)

ln replacing (ll Ti 1), by the class of right- (left )

(b)

FIG. 5. Examples of right- and left-reducible dia-
grams belonging to (llTI1)~, subtraction of these results
in (i I T IT) t.

FIG. 6. Lowest order diagrams belonging to (1ITjl)t.
(a) represents the lowest order N-N. interaction, (b)
represents the lowest order g-N interaction, and (c)
contributes to the three-body force.
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FIG. 7. This type of diagram is due to the pole of the
full Pgg t matrix. In our model we exclude such dia-
grams from the class pl)T~1) t by including only the non-
pole part of the P~~ t matrix.

tex (as employed by Stelbovics and Stingl") with
one which has ~-N and X-N interactions as well
as the ~NN vertex. ' 8' ' » We now can write
(1~T~ 1), in terms of the Faddeev amplitude" for
3~3 as

(1~T~1),=—M=+(tg5qp+tqGUqqGtq), (1
Xp

where tz is the two-body 7 matrix for either the
7t-X or N-Ã subsystems, and U~& are the AGS
(Alt, Grassberger, and Sandhas) amplitudes"
which satisfy the equations

(0
i

T
i
0), = (0

i
T

i
0);+ I'„,

where

(24)

thermore, it is this disconnected part of (0~ T
~

0),
which gives rise to the propagator dressing as is
clear from Eqs. (2) and (3). This means we can
write (0~ T

~
0), as a connected part, which is the

effective N-N interaction to be used in Eq. (8),
and the disconnected part I"~ involved in dressing
the nucleons in both the N-N and ~NN propagators.
To get an explicit expression for (0~ T

~

0); and I'„
we need to introduce particle labels. We will re-
fer to the two nucleons as particles 1 and 2 while
the pion is referred to as particle 3. We then let
the indices i, j, . . . run over the two nucleons,
while X, p. , v, . . . run ov.er all three particles. Fur-
thermore we depart from the usual notation by
having A=i label the interaction of the pion with
the ith nucleon and X = 3 refer to the N-N interac-
tion. We now can write (0~ T

~

0), as a connected
plus a disconnected part, i.e. ,

U =G 'oq + 6),„t„GU„„ (20a)

=G '5 + U „Gt„5„ (20b)

+ O'Gt)„GU~„Gt G 0. 23

The disconnected part of (0~ T
~

0), comes from
the second term on the right-hand side of Eq. (23)
and corresponds to the diagrams in Fig. 8. Fur-

FIG. 8. These diagrams make up the disconnected
part of (0(T~0)t. They give rise to. propagator dressing.

V

where 6~„—= 1 —5~ . In Eqs. (19) and (20) G is the
free propagator for the mNN system with dressed
nucleons.

Using the results of Eq. (19) in Eqs. (16) and

(17) we get

(1~ T
~

0), = (1+MG)f, (21a)

(0~ T
~

r&, =f:(I+GM). (21b)

Substituting Eqs. (10) and (21) in Eq. (15) we get
for (0~ T

~

0), from Eq. (9) to be

&0~ T ~0&, =&0~ T
~

o&.+f;(G+GMG)f, , (22)

where the connected part of (0~ T
~

0), is the effec-
tive N-N interaction [see Eq. (8)]. To get an ex-
plicit expression for (0~ T

~

0); in the present model
we make use of Eq. (19) to write (0~ T

~
0), as

(o~T(o&, (o~o'~o), +f:lotto g =~,o)f,

ancl

, ~ G+Gt,.G, &

&=1
(25)

(0~ T
~

0);=(0( T~ 0);+ P 5, ,f,'(i)Gf,(j)

+ o'&Gt~G Oi

o' i Gt,-G Oi+,' s Gt,GU„Gt,G
Xp,

(26)

The v-N interaction t, in Eqs. (25) and (26) is
restricted by isospin and angular momentum con-
servation to the P» channel. Furthermore, it is
the nonpole part of the amplitude that is included
in t,-.

The above expression for the effective N-N in-
teraction (Or T

~

0); can be further simplified, and
in particular the mNN form factor fc(i) can be re-
placed by the corresponding dressed form factor,
f(i) given by

f(i) =f.(i)+ t; Gf, (i) .

Here again the only contribution from t, is the
nonpole part of the v-N interaction in the P»
channel. In the Appendix we give a precise pro-
cedure, first suggested by Mizutani and Koltun, '
for' d ivid ing the P

y y amp litude into its po le and
nonpole part. Furthermore, this procedure leads
to a dressing of both the zNN form factor and nu-
cleon propagator that is identical to the results
of Eqs. (5), (13), and (27).

Using Eq. (20) for the AGS amplitudes in Eq.
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(26) and the definition of the dressed vNN form
factor, Eq. (27), allows us to rewrite (Ol T

l
0); as

(olTlo&;

Vss-(Ol T
l
0),+ g 5; jf (t)Gf(j) .

i j
(29)

V»+ '
~ 5;xGtxG 5xg+ U~AGtgG 5g J j,ij Xp,

(28)

where

If we assume (0
l
T

l
0&, to be the contribution of

heavy boson exchange' to the N-N potential then
V» is the one boson exchange potential with
dressed form factor for the AN vertex and the
threshold for pion production built into the po-
tential. In other words V» becomes complex
above the pion production threshold to account for
the opening of an inelastic channel. The rest of
the contribution to the effective N-N interaction
(OlTl0); comes from the diagrams in Fig. 9 and
their iterates. We now can write the Lippmann-
Schwinger equation for N-N scattering as

IW

(Ol Tl0&=T„s= I',„+ Q Q f'(t)f;.«,G(6~.+U,„Gf„G)f.;f(i) (I+gT „)if Xy,
(30)

Although (Ol Tl 0); gives us an effective N Nin--
teraction that includes the effect of pion produc-
tion and the final result satisfies two- and three-
body unitarity, the evaluation of such a potential is
by no means simple. This is mainly due to the
fact that we need the fully off-shell ~NN ampli-
tudes U~ . To overcome this problem we elimin-
ate the U,, in Eq. (30) by formally solving the
AGS equations. We then can recast Eq. (30)
into a set of coupled integral equations for the
physical amplitudes for N-N elastic scattering
and pion production. To get the coupling to
the pion production channel we need to examine
the amplitude for AN-NN, (1 lT l6&. Employ-
ing our classification scheme according to the
number of pions in every intermediate state and
the last cut lemma we have

IlTl0&=&ilTl0&, +&ilTl 0&&,&olTlO& (31a

=(1l T[ 0),(1+gT„„). (3lb)

Before we proceed any further we need to write
(1l TlO), in terms of the dressed vNN form fac-
tor. We have that

&ilTlo&= gf(z)

+ txG 5xp+UAQGt. G 5QI j 0

with
(34)

~'~= &+&T~~ ~ (35)

To get the physical amplitude for N4-NN or md

-NN we need to take the left-hand residue of
(1

l

T
l
0) at the appropriate resonance or bound

state pole. To achieve this we have to write the
two-body T matrix as

+ g t,G(5,„+U,„Gf,G)6.,f(j). (33)
jig

We note here that the disconnected part of (1
l
T

l
0),

is nothing but the dressed mNN form factor. Equa-
tion (31) can now be written in terms of the dress-
ed zNN form factor as

f (E) = ~~&&~~ tt(E)E —~„
(36)

1+ g t +Q 1 GGU „Gt„G) Q f (j ) .~~

(32)

Using the AGS equations we can simply rewrite
thi-s as

h, N
=~VWhhh

I
I

I

FIG. 9. The effective N Npotential (0( T(0) t co-nsists
of a one boson exchange part together with these dia-
grams and their iterates.

T = 5„+U Gt G5„,. jQ
Sy,

(38)

where s~ and P, are the position and form factor
associated with the pole, while t~(E) is the rest
of the T matrix, which has no poles in the physical
energy plane. Using this result and the definition
of Jii in Eq. (19) we get

Q ('.+U.«. G'). ' f(j")sl& &s

=-(~,
l
GT,.lx.&, (37)

where '"(l
l

means taking the left-hand residue in
channel X, and
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Here X„ is the plane wave for the two nucleon sys-
tem which we have so far suppressed. We now
make use of Eq. (38) to extend the definition of
T» to all two-body channels A, for which there is
no physical amplitude. With the help of Eq. (38)
we can write Eq. (30) as

(44)

T~=EC?~+~t GT~ (46)

IIsing Eq. (41) in Eq. (43) and multiplying from
the left by (I-8t G) we get

T„»=V»»(1 +gT»»)+ Q'f'(i)5, „Gt~GT~». (39) or

T),~= 5)t) j 1+gT~g + 5), f GT ~. 46

U =G-'8+8 tGU,

which has a formal solution of the form

U= (I -8t G) '8G ',
where I is the unit matrix,

[a]„.=5,„and [t ],„=6,.t, .
We now can write Eq. (38) as

T»= (I + UGt G)l'8»,

(40)

(41)

(42)

(43)

where T„and E are column matrices defined by

Although Eqs. (38) a.nd (39) form a set of coupled
integral equations for the elastic N-N and pion
production amplitudes, their solution is compli-
cated by the presence of U,„, the three-body amp-
litude for the AN system. This problem is easily
overcome by solving Eq. (20) for U~, and substi-
tuting in Eq. (38). This is most simply achieved
by writing Eq. (20) in matrix form as

Equations (39) and (46) are a set of linear coup-
led integral equations for T»„(the elastic N-N
amplitude) and T» (production amplitude). The
input to the equations are the dressed AN form
factor and the ~-N and N-N amplitudes. These
equations reduce to those of Thomas and Rinat, '
if we (i) assume the two-body m Nand -N-N inter-
actions are separable, (ii) exclude the nonpole
part of the m-N interaction in the Pyy channel, and

(iii) ignore all propagator and form factor dress-
ing. On comparing our results with those of
Avishai and Mizutani" we find our equations re-
duce to theirs in the absence of the nonpole P»
amplitude and the dressing of the nucleons in the
mNN propagator. It is important to note that in
our present formulation the nucleons in the AN
channel are identical to those in the N-N channel,
which is not the case in the work of Avishai and
Mizutani. "

III. PION-DEUTERON SCATTERING

We now turn to the ~-d system and apply the same procedure and approximations as was the case for
N-N scattering. Here we consider the class of right- (left-) irreducible diagrams for»NN-mNN, (1 ~T ~1&.

These diagrams can be split into two classes —those with at least one pion in every intermediate state
(1

~

T
~

1)„and the rest, to which we can apply the last (first) cut iemma to expose the two-body unitarity
cut. This gives

&1[TP& =&I
[
T P&, + &I

/

T
/

0&i«0[T [» (47a)

=(1i T [1),+(1
f
Ti 0)g(0i T f1), , (47b)

where we have made use of the fact that g(0~ T
~

1)=g,(0~ T
~

1). As in Sec. II we take (1
~

T
~
1), to be the

3- 3 amplitude for the AN system, while for (1~ T
~

0), and (1~ T
~

0) we use the results of Eqs. (33) and

(34). This allows us to write Eq. (47) as

(1
~

T
~

1& =M+ f+ Q Q (5„„t„+t„GU~„Gt„)GK;„f(i) (g+ gT»»g) f'+ Q Q f '(j )5),G(5, t„+t GU,„Gt )
)tv pv

(48)

To get the physical m-d elastic and rearrangement
amplitudes we need to take right and left residues
at the appropriate poles. Thus

"(1
~

T
~

1)""=—(Q „~ G T~„G
(

(f)„), (49)

&) =U} + &~v+U~vG~vG &iv & a+f7"~~a
tv

x ' j$~ 5 +GtGU (50)

where Introducing a matrix notation for T~„= [T]~„and
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T=~ G «+E g T~++gtQT (53}

the definitions of Eqs. (42) and (44) we can write
Eq. (50) as

T = U+ (I+ UGtG)F(g + gT»»g)E"'(I+ GtGU) (51a)

= U+ (I + UGtG)FgT» (51b)

= U+ T» g F' (I + GtGU), (51c)

where T» is given in Eq. (43). Using Eq. (41) we
can write Eq. (51.b) as

T=(I stG) '»G-~+[I+(I stC) -'stC]F g T„' .
(52)

Multiplying from the left by (I 0t G) w-e get

' and define the physical amplitudes as

xur= & Q~ IG Tur I&»&

(61)

equations for the reactions in Eqs. (1a) and(lb)
are identical. Although we have included the non-
pole part of the P» channel, the kernel of the in-
tegral equation is connected and the equations
can be used for practical calculations. "

We now assume separable g-N and N-N inter-
actions for the subsystem, i.e.,

(60)

or

T„„=fq„G'+ +6~dr(j) g»
+ ~)a tv GTI~ . (54)

where gNis a plane wave for the two nucleons,
and is an eigenstate of g. We can then write Eqs.
(39) and (46) for EN scattering and pion produc-
tion as

T» = Q» F'(I+ G t g U) . (55)

We now have to get an equation for T„' which
completes the coupling between the elastic and
absorptio~ amplitudes. From Eq. (43) we have
that

»»»» ( g»»)»d Vd»
ZN~ V'~ X~ Nf

X~ »=Z~ » (I+gX»»)+Z~ d 7'd Xd»
g

+g
Zhb, 4 hN~

(62a)

(62b)

Substituting for T»»g from Eq. (39), which in ma-
trix form is given by

TNN
——VNN QN+ F' GtGTN, (56)

into Eq. (55), and making use of Eq. (51c), we
get

Xd»=Zd»(1+gX»»)+ g Zd~ &~ Xd, &», (62c)f

where (i,j) run over the hvo nucleons, 4& labels
the appropriate m-N channel, and Z & are given
by

TN =F'+F'GtGT+ VNN g TN, (57) Z»d=Z &f(t)IGIed& (63a)

TNP= 5fy-
' j+ ' j 5f„Gt„GT

Z»d. = 2 6(d &I(» IG le~ &f
(63b)

(63c)

In Eqs. (54) and (58) we have a set of coupled
linear integral equations for pd elastic scattering
and pion absorption. Here again our results re-
duce to those of Avishai and Mizutani if we ex-
clude the nonpole P» interaction and drop the
dressing in the mNN propagator.

We can combine the results of Eqs. (45), (52),
(56}, and (57) into a single 4 && 4 matrix equation
of the form

TNN TN

(1+
G «g 0 GtG TN T

(59)
This demonstrates that the kernels of the integral

(63d)

Similarly Eqs. (54) and (58), for p-d scattering
and absorption, reduce to

dd Q dd 6 ~d d+ d»g»d

X~ d
—Zd d (1+ TdXdd)+ Q Zd '~ 7'~ X~

i ~ f

+Z~ N gXNq

X»d —Z»d (1+~d Xdd)+ Q Z»~ 7'd, Xd, d
f

(64a)

(64b)

NN ~ Nd (64c)
Although Eqs. (63) and (64) are similar in form

to the equations of Afnan and Thomas, ' they have
the advantage that both nucleons can emit the
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pion, Bnd the nucleons in the intermediate state
are identical and satisfy the Pauli exculsion
principle. Thus there are no undercounting pro-
blems. They differ from the equations of Thomas
and Rinat in the following ways:

(i) They include v-d scattering as well as N N-
scattering.

(ii) We do not have to assume separability of the
two-body interactions in the m-N and N-N channels.

(iii) We have dressed the xNN form factor and
nucleons in the N-N and wNN propagators. The
latter will allow us to extract the form factor for
the mNN vertex from experimental analyses of
other systems. "

(iv) We have incorporated the full w Ninter--
action in the P„channel, which is of importance
in m-d elastic scattering. "

A comparison of our results with those of Avi-
shai and Mizutani» shows that in the absence of
the nonpole &» interaction, the two sets of equ-
ation are identical, even though the derivations
are quite different. However, in our case the
inclusion of the nonpole P» gives rise to dressing
of the nucleons in both the NN and wNN propaga-
tor s and the form factor for the zNN vertex, without
a change in the basic structure of the equations
other than the inclusion of the nonpole P» as
another z-N channel. 'This considerably simplifies
the equations that include the full P» as compared
to those of Avishai a,nd Mizutani. "

IV. CONCLUSION

In the present investigation we have shown that
we can write a set of coupled linear integral
equations for the physical amplitudes correspond-
ing to the reactions in Eg. (1). These equations,
similar in form to the Faddeev equations, include
two- and three-body unitarity. 'The input to these
equations are the dressed form factor for the gNN

vertex, and the m-N and N-N interactions in the
form of potentials; or two-body amplitudes. If
we determine the gNN vertex from n-P and P-P
data, "then the only uncertainty in the input is
the off-shell behavior of the m-N and N-N ampli-
tudes. If needed, we can include the effect of
multipion intermediate states by introducing po-
tentials. Thus to include the effect of (p, &c, . . .)
mesons in N Nscattering one -can replace (0

~

T ~0),
by R potential that describes the exchange of these
mesons. One can also introduce p exchange due to
the diagrams in Fig. 10 which might be important
in pion production. If one considers the p as a
two- ion state term then Fig. 10(a) will be part of
(1

~

T 0)„which at the present time we have taken
to be the xNN vertex, while Fig. 10(b) comes as
a three-body force in the analysis of (1

~

T
j 1), in

Eq. (18).

(b)
FIG. 10. If we assume that the meson is a two-pion

system, then the contribution of p exchange to (1(T
~
0) 2

and (1~T (1)&
is given by (a) and (b), respectively.

Furthermore, we have shown how one can re-
late the m-N and N-N interaction, involved in
calculating the pure three-body mNN amplitude,
with the more fundamental Hamiltonian involving
the wNN vertex only. Finally by dressing the
nucleons in both the N-N a.nd AN channel we have
guaranteed that a.ll. nucleons are identical.

These equations are presently being used to
study the foll.owing:

(i) The importance of pion production in N-N
scattering, and in particular the determination
of the imaginary part of the N-N phase shifts

'

above the production threshold;
(ii) the effect of real absorption on pion-deute-

ron and possibily pion-nucleus scattering; and
(iii) the role of p-exchange in pion production

and m-d elastic scattering.
Finally, since we have not specified the form

of the two- and three-body Green's functions, we
can include relativistic kinematics for both the
pion and nucleons by proper choice of the pro-
pagator.
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APPENDIX

In this appendix we show how we can divide the
m-N amplitude in the P» channel into a pole part
and a nonpole part. The result was previously
obtained by Mizutani and Koltun'. using Feshbach
projection operators. We would like to rederive
this decomposition of the P» amplitude using our
diagrammatic method in order to establish the con-
nection with our results in Sec. II.

For the m-N system we restrict all states to
just one nucleon and label the state by the number
of pions. Thus the amplitude for m-N scattering
is (1 ~t jl). We now use the classification scheme
used previously to expose the zero-pion intermed-



1648 I. R. AFNAN AND B. BLANKLEIDER 22

iate state, i.e.,
&I(t(i&=&i t(1),+(1(t(0),go(0(t fl), (A1)

where we have used go in Sec. II to label the sin-
gle nucleon free propagator. Since the m-N am-
plitude will be used in a calculation which involves
two nucleons we can think in terms of the other
nucleon being a spectator at all times in our dis-
cussion of g-N scattering. In that case, g, is the
free two nucleon propagator. In Eq. (Al), (1 ft (0),
is the amplitude for mÃ N with at least one pion
in every intermediate state, while (0 It (1) is the
full amplitude for N- iN. This latter amplitude
can be written using our classification scheme

X&=&0 ft fl), +&of'lo) g, &olt(1) (A2)

where we have exposed the lowest unitarity cut.
We now can write Eq. (Al) as

&I lt l»=(I It(», +f~', (A3)

where the dressed propagator g a.nd the dressed
form factor f are given by

g=g. +g. «(t fo&g. ,

f=&i(t fo), .
(A4)

(A5)

Before we proceed to derive explicit expressions
for f and g let us analyze the first term on the
right-hand side of Eq. (A3), i.e., (1 ft 1),. This
is the amplitude for mN-mN with at least one pion
in every intermediate state, and can be written as

&I t II&. =&lit(I&.+&lit(». G &I(t(», . (A8)

In this way we have exposed the one-pion inter-
mediate state. Here again we can think of G as
the mNN free Green's function with one nucleon
spectator a.t all times. Since we are not interested
in exposing two-pion intermediate states, we will
replace (1 ft (1), in Eq. (A6) by a static potential
(e.g., that due to a p exchange). Thus for the
present investigation, (1 ft I 1), can be considered
as an amplitude obtained by solving a two-body
equation for a potential.

We now turn to the form factor f. This we can
write using the classification scheme as

o&, = (I I' I o&. + &I It li&, G &I I' lo&, , (Av)

where we have exposed the one-pion intermediate
state. The amplitude (1 ft (0)2 is identical to that
defined in Eq. (9) which we referred to as the

undressed form factor fo. We thus can write the
dressed form factor a.s

(A9)

Using this result in Eq. (A4) and iterating the
equation once, we get an integral equation for the
dressed nucleon propagator which is

g =g +g &o It fo), g . (A10)

The interaction that gives the dressing is (0 ft fo)„
which can be written as

&o(t lo), = &o lt lo&. + &o lt (I), G&i lt Io&,

=&Oft(0&. +fo' Gfo+ fo'« 'Gf. .
(A11)

In writing the second line of Eq. (All) we have
made use of Eq. (A5), and the definition of f, and
t ~. In Eq. (All) the amplitude (0 ft (0)„which
corresponds to diagrams with at least two pions
inevery intermediate state, will be ignored in the
present investigation. In this approximation Eq.
(All) takes the form

(0(t(0), -=I'~=f;Gf, + f; Gt" Gf,
and the dressed nucleon propagator becomes

g=g, g, l'„g=(g,- r„)- .

(A12)

We thus see that the m-N & matrix in the P»
channel is the sum of two terms [Eq. (A3)]. The
first term can be represented by a. t matrix that
comes from a. potential and has no pole at the
nucleon mass, i.e., t =&7 ft(7&,. The second
term has the nucleon pole in the dressed propaga, -
tor g, and the residue at this pole is the dressed
form factor f. It is the sum of these two terms
(i.e., (1 ft fl)) that should fit the experimental m N-
data as was originally pointed out by Mizutani
and Koltun. '

f + tÃPGf (A8)

where t"~=—(1 t (1),. We observe here that only
the P„amplitude contributes to the form factor
dressing, and in fact, it is not the full &yy ampli-
tude, but the part that can be described by poten-
tial scattering (t ").

Finally we need to get an equation for the dressed
propagator g, which requires exposing the zero-
pion states in (Ojt fo), i.e.,

&Oltlo&=«it(0), +«Itl» g. &0(t(0)
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