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Starting from the eikonal approximation to the scattering amplitude an analytical approximation is obtained,
including Coulomb effects. The amplitude is characterized by three numbers, one of which is a radius parameter b, .
These numbers are related in a simple way to the optical potential U(r) for r = b, . The quality of the analytical
result is assessed by comparing it to the exact eikonal amplitude for a model of U which is linear in density. It
reproduces accurately the position and depth of the first minimum, the magnitude of the first secondary maximum,
and the differences of the m+ and m cross sections. It is furthermore shown that at 180 MeV the analytical
approximation reproduces semiquantitatively the magnitude and shape of the "model exact" solution of the Klein-
Gordon equation at forward angles. An application to scattering by the calcium isotopes is taken as an example to
show the sensitivity to the neutron distribution as the f7/2 shell is filled.

NUCLEAB BEACTIONS Pion elastic scattering; analytical formulas for angular
distributions.

I. INTRODUCTION

With the publication of the first high quality
pion-carbon scattering data, from CERN the
Glauber model (or equivalently the eikonai ap-
proximation) was shown to reproduce the general
features of elastic and inelastic pion-nucleus
scattering around the (3,3) resonance. ' These
calculations required as much computational ef-
fort as solving the Klein-Gordon equation, and
shortly thereafter the optical model became more
popular, especially because one could then go
beyond the static limit. 3'4 Although optical model
calculations remain the most flexible technique
for calculating elastic scattering, eikonal tech-
niques have an advantage, namely that they permit
very simple interpretations of effect such as
those due, for example, to the electromagnetic
interaction. In view of this, we return to the
eikonal framework and look for an analytical so-
lution which is both numerically accurate and more
amenable to physical interpretation.

One such approximation scheme has recently
been explored by Bethe and Johnson. ' The result
obtained there was very simple but it did not in-
clude the Coulomb effects and did not describe
accurately the magnitude of the cross section at
the position of the first secondary maximum. We
attempt in the present work to remedy both de-
ficiencies. The improvements are based on tech-
niques developed by Frahn and Venter' to deal
with situations in which there is strong absorption.

The practical value in pursuing this problem
stems from the fact that today, with the advent

of the high resolution pion spectrometers at
LAMPF and SIN, accurate new data on heavy
nuclei are becoming available in the energy region
close to the first pion-nucleon resonance. 8' One
of the primary hopes of these experiments is to
take advantage of the strong ~ -neutron inter-
action at these energies and extract information
on the neutron distribution. The calcium isotopes
are a particularly interesting case because exten-
sive theoretical calculations of nuclear structure
exist. ' ' Also, 'Ca is the heaviest N =Z nucleus
which allows the study of electromagnetic effects
without large contributions from the neutron-
proton density differences. In addition to the
question of neutron distributions and Coulomb ef-
fects, there are also interesting questions to be
resolved concerning the nature of the pion-nucleon
interaction in the nuclear medium. Although our
paper is pedagogical and no comparisons to data
are made, we shall illustrate the theory with cal-
culations on the calcium isotopes anticipating a
subsequent detailed application to this data.

Section II recalls the main results of the eikonal
formalism and discusses simple approximations
to the phase function in impact parameter space.
Frahn and Venter techniques are then used to
derive an analytical expression for the elastic
scattering amplitude. In Sec. III the analytical
results are compared to the exact eikonal theory
in a model, which is the lowest order Laplaeia, n
theory. In Sec. IV the analytical theory is com-
pared to the "model exact" solution of the Klein-
Gordon equation with the lowest order Laplacian
potential. In the conclusion, Sec. V, we consider
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the limitations to our approach and generalizations
to other channels.

II. DERIVATION OF FORMULAS
and

-ikF,"„'(q)= bdb J,(qb) e'"."' I",„(b) (2.7)
Q'

up

Using the eikonal formalism, the elastic scat-
tering amplitude at momentum transfer q can be
written as

F(~)=F, (1~)+FCN(e) (2.1)

where E~, represents the point Coulomb amplitude
and

blab Jo(qb) e'"&" ' I'c„(E:b) . (2.2)FcN(q) = ik
"p

In Eq. (2.2) k denotes the center of mass momen-
tum of the incident pion, b the impact parameter,
and T'c~ the profile function. The separation
(2.1) reflects only the additive Coulomb phase, '1

but there are other Coulomb effects coming from
the distortion of the pion trajectory and from the
energy dependence of the profile function. How-
ever, near the (3,3) resonance pion scattering is

-very absorptive and these two effects reduce to
trivial shifts as derived in Ref. 5:

rcN(E: b) =1 —exP[iXC„(E:b)] (2.3a)

XN(E:b) =-
2k

«U(E:(b'+z')'") (2 4)
m OO

In Ref. 6 a useful approximation for Xc„(E:b) at
large impact parameter was derived assuming
that U(r) is approximated by an exponential in the
region of the nuclear surface near b.

Xc„(E:b) = —(2val1b)'~1U(b)/2k, (2.5)

where ao is the distance over which U(r) falls by
1/e of its value at b Wallace . has given a
prescription for improving the eikonal approxi-
mation so that it more nearly reproduces the so-
lution of the corresponding "model exact" theory,
which is the Klein-Gordon equation with the same
U.

In order to obtain our analytical approximation
we first perform an approximate integration by
parts of Eq. (2.2) to write

FcN(V) =(1+rl /2)FcN(&7) + (1 —2 i')FcN(V) (2.6)

= 1 —exp[i X~ (E —V,(b):b[1+EV,(b)/k ]}
+ix.(b) -ix, (b)], (2 3h)

where the last term also takes account of the
extension of the nuclear charge. The phase func-
tion yc„ is related to the optical potential U by
the usual integration along the average of the
incident and outgoing pion momenta: a(b1) XCN(b1)/XCN(b1)

and represent Xc„(b) as6

Xc„(b)= XcN(b1) e "1 "' '"1'.

(2.9)

(2.10)

The location of the maximum is found by solving
2

dbms
I'CN(b) =o. (2.11)

0

Using the relationship in Eq. (2.10) we easily find
the connection between b& and b to be

b=b1+ (b1) 1 [-ix (b1)] (2.12)

We shall define b& to be the point at which

~
exp[iXCN(b1)l

~
=k, (2.13)

which coincides with the definition in Ref. 6. In
this case Eq. (2.12) becomes

b = b1 +a(b1)[ ln ln 2+ 2 ln(1 +y ) —i arctan F],
(2.14)

where

Fc'N (e) = 1"
)t db[1- J,(qb)] e'"" 'I"„(b),

o

(2.8)

where 1l =ZuE/k denotes the Coulomb parameter.
Equations (2.6)-(2.8) are exact in second order
in q for not too large values of the momentum
transfer q. Only Ec'„' survives when the Coulomb
interaction is switched off. The additional term
FCN' added to I'~, represents the Coulomb scat-
tering amplitude distorted by the strong inter-
action.

The quantity I'CN(b) maps out the domain probed
in the scattering process. In the limit that
I'c„(b) is a delta function we get the usual black
disc scattering amplitude upon evaluating Eqs.
(2.6)—(2.8). For the scattering of pions near the
(3, 3) resonance the derivative of the profile func-
tion is sharply peaked (about the point b = b) hut
it is essential to take into account its finite width;
the important values of b are about 1 fm larger
than the half-density radius, and at such a large
impact parameter the nuclear density amounts
to only 10%of its central value. 6 In this region
of the nucleus, U(b) is rapidly falling and we may
characterize the phase XcN by its value XCN(b1)
at a point b~ = b, and by its rate of change at the
same point [see Eq. (2.5}]. We therefore define
a diffuseness a,

with y = Re XGN(b1)/ImXGN(b1) ' (2.15)
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A straightforward calculation gives the full width
at half maximum to be

width of I'c„=1.97 (2.16}

For finite but small values of the diffuseness a,
expansion techniques are useful for accurately
evaluating Eqs. (2.6)-(2.8). A systematic pro-
cedure was developed many years ago by Frahn
and Venter' in the case of profile functions sym-
metric around b. In order to obtain the result
we are seeking it is necessary to generalize their
results to profile functions not symmetric around
b, such as the one generated by Eq. (2.10), and to
include the Coulomb phase to lowest orders in
ZQ ~

To proceed, use is made of a Poisson-type
integral representation for the Bessel functions
J„(x) given by Eq. 7.3 (7) of Ref. 15. It expresses
Eqs. (2.7} and (2.8) in terms of the "shifted"
Fourier transforms of I'c„defined by

effects will manifest themselves through b&, a,
and Y and in the dependence of the scattering
amplitude on them.

In the forward direction the scattering ampli-
tude (2.2) with the approximate phase function
(2.10) reduces to

E „(0)= —. e'" '"'1 (1 —2 ig a/b)
2 I +iq

x 1[b —2ag~(1 —2qi a/b)]

+ a'g~ '(1 —2qia/b) ], (2.22)

am2 2~
o&=2m Re (b+ay) +

6
(2.23a)

where ti =I"/I' denotes the digamma function. "
The total cross section and relative real part is
obtained by switching off the Coulomb interaction,
l.e.)

G(~)
~

dbms' (5-5)t ekx p&b&1 (b)] (2.17)
ReF~(0) —,a m2

I z„(o)=-"g,(b'"} '
6

(2.23b}

Z"'( )=iuR, ' — G,(q), (2.18a,)

where b is defined in Eq. (2.14). By expanding
G(x) around x=q, the scattering amplitudes
E&'N can be expanded in a series of Bessel func-
tions. Rearrangement of this series up to second
order in the diffuseness a gives Res,,(0) a

Im E„(0) b(
(2.24)

where y ——0.5772 is Euler's constant. In first
order in the diffuseness a the expression (2.23)
corresponds to the one obtained by Bethe and
Johnson. Its relative real part yields

+CAN(q) 2 [G (o) -~0(qR-}G (q}]

where

G„(q) =-'[G(q) +G(-q)l

(2.18b)

(2.19)

and for small Y, this formula explicity shows that
the real part comes from the edge of the black
disk.

The complex zeros of the strong interaction
amplitude Ec'~„' (q) defined by' "

qR.(q) = zeros of the Bessel function J, (2.25)

—G(q~i/Zb) G(-q+i/2b)—
R, =b+b- . G() (2.20}

contain in fact the same information as the forward
amplitude because R,(q) is weakly dependent on
the momentum transfer. To order a

At this point the only specific property of I"c„(b)
used is that it is sharply peaked about b. If we
now use Eq. (2.10) we can obtain an analytic form
for G(q), defined in Eq. (2.14). Provided }t,(b)
is expanded around b it leads to

G(q) = e +'O' I'(1 —ia(q + 2q/b)), (2.21)

where I'(x) denotes the gamma (factorial) function.
Equations (2.18)-(2.21) give an analytical

expression for the scattering amplitude (2.1}in-
cluding the effect of Coulomb. For a purely strong
interaction the result is found to be of the fuzzy
black disc type. When Coulomb is included we
find the usual Bethe phase in front of G(q), but
there are also other Coulomb effects contained
in R, and Ec„'. The trajectory and energy shift

R (q) =R (0) —0.465a(aq) (2.26)

which shows that the black disk radius shrinks
with increasing angle, but the variation is only
of the order of a few percent at the position of the
first minimum. Total cross sections and position
of the first diffractive minimum determine the
same quantity ReR and do not allow the sep-
aration between the physical parameter b& and a.
On the contrary, the rate of falloff for the maxima
depends on the Inopin factor G,(q) and consequently
on the diffuseness a. Differential cross section
measurements up to the first secondary maximum
are then required to determine unambiguously
b&, a, and Y.
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III. COMPARISON OF APPROXIMATE AND EXACT
EIKONAL THEORY IN A MODEL 0.6-

c(r}=c9[P.(r}+Pp(r}]-~~1[P.(r) Pp(r)],- (3.1c)

with q, the pion charge, and p„and p~ the nuclear
densities normalized to N and Z, respectively.
The coefficients b„5, cp andc& are related to
the free pion-nucleon interaction by

f&~ = bp + b~ 't ' 7 + (co +c[ t,
' r}k cosg (3.2}

where the values of the parameters are taken from
phase shift analysis. 2~ The Laplacian form chosen
in Eq. (3.1) is to leading order in density the
result which would be obtained from the Kisslinger
model. We do not consider the Wallace correc-
tions in this section.

With this choice of model the real part of the
derivative of the profile function is plotted in
Fig. 1 for m - Ca elastic scattering at 180 MeV.
Both proton and neutron density distributions have
been represented by a Fermi distribution whose
parameters were taken from electron scattering
experiments, "i.e., c„=c~ =3.51 fm, a„=a~
=0.517 fm. The solid curve is the exact eikonal
result, the short dashed curve is the approxi-
mation of Eq. (2.5), and the long dashed curve is
the approximation of Eq. (2.10). The value of
5, defined earlier as the value of 5 at which the
derivative of the profile function peaks, is seen
to occur very near the point at which j1 —I'c„~
=-,', indicated by the arrow at 5=4.75 fm in Fig.

It is seen in this figure that the approximations
agree quite well with the exact calculation except
for unimportantly small impact parameters.
Away from the (3, 3) resonance the quality of ap-
proximation (2.10) in the model being discussed
is still good, but the value of b, is smaller.

In this section we wish to demonstrate that our
analytical results are, in fact, accurate rep-
resentations of the exact eikonal theory. 'We will
not choose the most complicated interaction for
this purpose, but we will make an attempt to pick
one which has the features believed to dominate
the physics of pion scattering in the (3, 3) reso-
nance region. The Coulomb potential comes from
a uniform charge distribution with radius R, so
that for impact parameters 5 larger than R„
V,(R) reduces to the point Coulomb potential and

X, -X~, in Eq. (2.3b) vanishes. We choose the
optical potential to be of the Laplacian form'"

U(r) = - 4v [b(r) + k2c(r) + -,
'

V c(r)], (3.1a}

where

b(r) =bo[p„(r) + p~(r)] —e, b&[P„(r) —p~(r}], (3 1b)
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FIG. 1. Derivative of the profile function for n — Ca
elastic scattering at 180 MeV. The solid curve results
from the exact integration of Eq. {2.4), the dashed one
from approximation {2.5), and the long dashed one from
approximation {2.10).

In Fig. 2 we see the angular distributions for
Ca scattering for three energies around 180

MeV in the same model. The solid curves rep-
resent the result of the exact eikonal approxi-
mation, whereas the dashed ones represent our
analytical formula, Eqs. (2.18)-(2.21). The quan-
tities 5&, a, and F were obtained numerically
[see Eqs. (2.9)-(2.15)] from an exact cal-
culation of }tc„(b). The agreement between these
two curves is seen to be best at 180 MeV due to
the small ratio a/b&. The same comparisons are
made in Fig. 3 for the relative v /v+ differential
cross sections. Note that Coulomb-nuclear inter-
ference effects in the minima are small at reso-
nance" and the v /v' differences come from the
Coulomb trajectory- distortion and energy shift
effects. In our analytical approximation these
effects are all contained in the values of b&, a,
and F.

To further check the validity of the analytical
theory we shall investigate the extent to which
it reproduces changes in the exact eikonal theory
upon adding neutrons tc, the f~&2 shell of calcium.
Choosing Ca as an example, we first take the
shape of the nuclear density distribution to be the
same as for Ca except that the neutron half-
density radius c„is allowed to vary. Instead of
looking at changes in the cross sections, it is
easier and more transparent to look at changes
in the relevant parameters contained in our an-
alytical approximation.

Figure 4 shows the variations of b& at 180 MeV
as a function of 4c=c„-c~, but only differences
between values of b, are plotted. Curve (a)
represents the difference between Ca and Ca
for w', curve (b) the same for m, and curve (c) the
differences between m and w' for 'Ca. The solid
curves result from the exact eikonal theory,
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0.5

0.4

cutoff angular momentum kb~. At 180 MeV,
(6/BZ ) 1n kb, = 0.61 fm exactly reproduces the
m /v' difference calculated for 4~Ca. Figure 4 con-
firms that our explicit approximations for 4b& are
in fact very good, the discrepancies being always
smaller than 0.025 fm.
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the other quantities refer to ~Ca. At 180 MeV
we have a = 0.65 fm and Rb&/Bc = 0.59. Note that
this latter quantity would be unity for a Fermi
distribution, but is much smaller in our case
which means that the sensitivity to 4c is also
reduced. Equations (3.3) also show that the con-
tribution of the neutron excess to hb& (i.e. ,
hc =0) is proportional to the diffuseness a. To
minimize this term we must have a as'small as
possible and this happens just at resonance. But
even there this contribution is about half of the
total &5& for 4c=0.3. In general, however, we
do not have a clean separation between the con-
tribution of the neutron excess and the half radius
difference.

The dashed curve in Fig. 4(c) for the v /m'

difference is obtained by subtracting the two
equations (3.3) and adding Coulomb effects. These
effects are easily estimated in first order in the
find structure coupling constant by substituting
Eq. (2.3) into Eq. (2.10). The additional Coulomb
effect &b& is

8
&b( ——2ZQ, —lnkb), (3.4)

which shows that Coulomb effects induce changes
in b& only through the variation in energy of the

FIG. 4. Dependence of the critical impact parameter
bg on the neutron half-density radius for pion scattering
at 180 MeV: (a) difference between SCa and Ca for g',
(b) the same for ~, (c) difference between z and x' for
8Ca. The solid curves are the results of the exact

eikonal calculation whereas the dashed one is the approx-
imations [(3.3)—(3.4)]. The error bars represent +20%
variation of the optical potential strength.

IV. COMPARISON TO MODEL EXACT RESULTS

We have argued that our analytical approxi-
mation is capable of accurately reproducing the
exa,ct eikonal theory in the region of the (3, 3)
resonance. Because the eikonal amplitude can in
principle be made to reproduce the "model exact"
solution of the Klein-Gordon equation for the same
U, ' our result is established as a quantitative
tool for studying pion-nucleus scattering in the
(3, 3) energy region. The remaining difficult
question is to decide which theor'y for Xc(E:b)
is the correct one for describing experimental
results.

The contributions to yc„(E:b) may be divided
into two distinct classes. The first consists of the
terms which constitute U; this class describes the
dynamics of the scattering process and has a
well-defined density expansion'4 in terms of the
underlying meson-nucleon interaction. All but
the leading term, which is linear in the density,
are difficult to calculate and are poorly under-
stood. The second class consists of the Wallace
corrections~4 which may also be arranged as an
expansion in the density. These have been care-
fully studied and can be specified in terms of
U.

It is generally assumed that the density expa, nsion
for XcN(E: b) (or U) converges, but there is no

a Priori reason why this should be true. How-

ever& as we have stressed, the important density
for scattering in the vicinity of the (3, 3) resonance
is rather low density, and here the assumption of
a rapidly convergent density expansion is plausible.
It is essential to know which properties of the
angular distribution are determined by this low

density region of the nucleus and are therefore
relatively insensitive to the addition of successively
higher order terms in the optical potential. These
properties are clearly the ones which should be
the focus of attention in any meaningful attempt
to compare theory to experimental data. We shall
try to give at least a partial answer to this ques-
tion here at the level of p terms. Since there
is no complete calculation of the dynamical p'
contributions, we shall study the sensitivity of
the theory to the first Wallace correction. This
analysis will be applied to a calculation of m-

calcium scattering at 180 MeV, as this corre-
sponds to the recent data."
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U 2bU+ 2- 1+ -- lnU
dy

(4.1)

Without the Wallace correction the approximate
theory reproduces the magnitude of the model
exact theory in the forward direction and at the
secondary maximum. The location of the first
minimum is reproduced, but the minimum is too
deep in the approximate theory. The model exact
and, .eikonal theories will differ substantially only
away from resonance. ' The addition of the
Wallace correction improves the reproduction
through the first minimum, but the height of the

We begin by showing in Fig. 5 a comparison
between the eikonal r - Ca elastic scattering and
the model exact computer calculation using the
program I'M. ' Only the analytical eikonal the-
ory is shown, as this compares favorably to the
exact eikonal result [see Figs. 2(b) and 3(b)].
The long dashed curve is the model exact solution
using the Laplacian potential defined in Eqs.
(3.1a)-(3.1c). The dot-dashed curve is the an-
alytical result with, and the short dashed curve
the result without, the first Wallace correction. '
In the former case, we modified (2.9) by U by

secondary maximum is now overestimated by
about 50/g. Figure 6 shows a comparison between
the m /w' differences. Again, the long dashed
curve is the model exact solution. The results
are obtained using a Coulomb energy shift of
Za/b& in the input parameters. The short dashed
curve is the result with no Wallace correction,
and the large discrepancies are related to the
fact that the depth of the minimum is not correctly
reproduced without the Wallace correction. Note
that at resonance the second term in Eq. (4.1) is
real and will consequently generate m*/w dif-
ferences by interfering with the Coulomb potential.
The dot-dashed curve includes the first Wallace
correction, and there is now good agreement with
the exact result throughout the forward direction.

The results in Figs. 5 and 6 show that the
eikonal theory is a semiquantitative description
of the model exact theory. However, the Wallace
correction has a non-negligible effect on the extent
of agreement, and we are led to ask which of the
three quantities 5&, a, and F are most accurately
calculated.

We shall investigate this question by looking at
the sensitivity of the angular distribution to the
addition of neutrons in the f, &2 shell. Our model
of the density distribution in Ca is the same as
that discussed in Sec. III. We determine the pa-
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ergy. The legend is the same as for Fig. 5.
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rameters b&, a, and F by fitting our analytical
results to the position and depth of the first min-
imum and the magnitude of the secondary maxi-
mum, taking a to be purely real. The results of
this are shown in Table I. The density parameters
for the Woods-Saxon shape are c„=3.81, c~= 3.51,
a =0.517, which give a root mean square radius
difference between neutrons and protons of 0.2
fm, corresponding approximately to the same
quantity in the theory of Ref. 27. The magnitude of

b& agrees with the exact calculation extremely
well, whether or not the Wallace correction is
included. The maximum discrepancy in b& is less
than 3%. However, the ratio y' and diffuseness
a are sensitive to whether or not the Wallace
correction is included. Because 7 is accurately
calculated when the Wallace correction is added,
the depth of the first minimum is probably not
very sensitive to p3 and higher order terms. How-

ever, a is not accurately calculated at order p
and the addition of yet higher order effects are
probably required for a complete understanding
of this parameter.

We conclude from the above comparison that
the analysis of experimental data at 180 MeV
should be most concerned with the b& and P pa-
rameters, and that there is some hope of under-
standing the systematics at the level of corrections
of orders p and p . One of the interesting ques-
tions is to understand how b& varies for fixed Z
as a function of ¹ In such an analysis we are
concerned with differences between theoretical
and experimental quantities, as some systematic
uncertainties tend to cancel when viewed in this
way. We therefore shown in Fig. 7 the differences
of the b, values in the three different calculations
of Table I. It is seen that the differences in the

b& values for n scattering agree very well, to
within 15%. There is a somewhat better agreement
for w'. The Wallace correction does not affect
this comparison at 190 MeV, but at somewhat
lower or higher energies this correction is needed.
To understand the m /m' differences the Wallace
correction is required at 180 MeV because of
Coulomb effects.

It is natural to ask how sensitive the calculation
is to the parameters of the optical potential. We
thus recalculated the 4b&'s with the optical po-
tential renormalized by +20%. We found a maxi-

mum variation of 0.01 fm, corresponding to a
change in angle of about 0.1', which is approxi-
mately the accuracy of the present data. '9 The
actual variation is shown by the vertical errors
shown in Fig. 4.

V. CONCLUSIONS AND OUTLOOK

In this work we have studied the elastic scat-
tering of pions by nuclei in an energy domain
close to the first pion-nucleon resonance. Starting
from the eikonal approximation we derived in Sec.
II an analytical approximation for the scattering
amplitude of the "fuzzy black disc" type. In con-
trast to Ref. 28 our approximation is valid for
small momentum transfer only. The scattering
amplitude is characterized by three numbers, one
of which is a radius parameter b&. All three num-
bers are related to the optical potential by simple
but accurate formulas.

In order to apply our results, the optical po-
tential must have a local representation. Thus,
the familiar Kisslinger and Laplacian models for
pion-nucleus scattering can be encompassed
within the framework of this approach. (To apply
the results to the Kisslinger theory a transfor-
mation must be made. } As an example, we con-
sidered pion scattering by the calcium isotopes
using a first order Laplacian theory, but a wide
class of currently popular theories have a form
suitable for study within the context of this
approach (see, for example, Ref. 20). The eikonal
theory does not usefully apply to nonlocal po-
tentials, although in the resonance region at least
some of the effects of the finite range of the pion-
nucleon form factor can be accommodated by a
local interaction. ~ The severity of the limitation
to local potentials has not been carefully explored
and deserves further study.

One goal of medium energy pion physics is to
develop the possibility of using the pion as a probe
of nuclear structure. The variation of the pa-
rameter b& throughout an isotopic multiplet reflects
the changes in density as a result of adding valence
neutrons. We have carefully examined the adequacy
of the analytical theory to describe the behavior
of b& in a model and we found that it reproduces
b|( Ca, m'") —

b& ( Ca, m') to an accuracy of less
than 15%. We conclude that the analytical theory

TABLE I. Comparison of model exact problem to eikonal theory for ~' Ca at 180 MeV.

Model exact
With Wallace
No Wallace

4.78
4.82
4.75

0.640
0.492
0.627

-0.388
-0.592
+0.106.

4.96
5.02
5.10

0.666
0.491
0.612

-0.757
-0.795
-0.089
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FIG. 7. Comparison of b~ differences in model exact
and eikonal theories for pion scattering at 180 MeV: (a)
difference between 8Ca and Ca for 7t', (b) the same for
&, (c) difference between r and &' for 8Ca. The solid
curves correspond to the Laplacian potential using PIRE,
the dashed ones to our analytical approximation (2.18)
without Wallace correction, the dot-dashed curve with
the first Wallace correction.

is sufficiently accurate to draw quantitative con-
clusions from an application to experimental data.

Recently the use of pions to study the neutron
halo was critized in Ref. 31. There it was found
that the density distributions and parameters which
determine the pion-nucleon amplitude in the optical
potential were so strongly correlated that a unique
characterization of the neutron distribution could
not be obtained. However, in Ref. 31 different
pion-nucleon scattering amplitudes were used in

Ca and Ca. The relationship we have found
between ~b, and the parameters of the density
distribution[see, e.g. Eq. (3.3)] follow because
we assumed that the same U applies for scat-
tering from Ca and Ca. There is no evidence
that U should be chosen differently in these cases.

Two categories of corrections to the lowest
order picture which we have studied here deserve

mention. One is charge symmetry breaking ef-
fects at the pion-nucleon level and the other is
terms in the optical potential which are quadratic
(or higher order) in the nuclear density. Using
the measurements of m'-d total cross sections
to estimate the charge symmetry breaking ef-
fects would result in an increase in ~b& for m /m'

differences, as shown in Ref. 5. Very little is
known about the higher order contributions to
the optical potential. The variation of ~b& is most
sensitive to the corrections to the isovector and
isotensor pieces of the interaction, which are
probed in charge exchange reactions. In any case,
our approach is sufficiently flexible to permit
the study of these effects as models are developed.

Our techniques could easily be extended to pion
inelastic scattering to low lying excited states.
This problem is interesting in the sense that the
transition profile function will be peaked at dif-
ferent values of the impact parameter depending
on the pion charge. Consequently m' and ~ will
probe the neutron and proton transition densities
at impact parameters a few tenths of a fermi
apart. This could maks other effects such as
Pauli blocking which were advocated to explain
the 3 data on the calcium isotopes. ' Another
application of our formalism concerns the single
and double charge exchange to the analog states. "
The results derived in the present paper would
lead to more accurate angular distributions than
the analytical results given in Ref. 32. More data
especially on the calcium and tin isotopes are
promised" at resonance where our analytical ap-
proximations work very well for elastic scat-
tering. Any detailed analysis should then take
into account all the channels, which our formula-
tion can do easily.
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