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A model is presented which describes any hadronic form factor with one, two, or three particles off shell.
The model is based on the salient most successful features of the dual and Regge models, and its
unitarization can be achieved in a straightforward manner. Some of the effects of taking the nucleons off
shell in the mNN vertex are discussed. Finally, it is argued that this form factor together with a m + 2n. + co

dispersion-theoretical nucleon-nucleon model can explain the long standing puzzle of the triplet D-wave
phase shifts,

I

NUCLEAR REACTIONS Baryon boson form factor, nucleon nucleon scattering,
0-400 MeV NN phase shifts.

I. INTRODUCTION

There has been a great deal of progress in
recent years in understanding the nucleon-nucleon
interaction, particularly through the (m+2m+ ~)-
exchange dispersion-theoretical potential models
of the Stony Brook' and Paris' groups. However,
a curious feature has emerged, i.e., the D-wave
fits of the potential models are worse than the
I'-wave fits. In particular, the predictions for
5('D,) and 5('D,) disagree systematically with the
data. This is illustrated in Fig. 1 where we plot
the predictions of the potential models for 5('D,),
5('D, ), and 5('D, ) together with the experimental
phase shifts' ' at 25, 50, 150, 210, 325, 425, and
515 MeV. It is curious that these 'D, and 'D, phase
shift fits are worse than the P-wave fits since
from very general grounds one would have ex-
pected precisely the opposite. In fact, nucleons
in D waves "impact" at distances of 1.2 fm or
greater and the 2m-exchange dispersion-theoretical
predictions ought to be fairly good at these dis-
tances. It is at the shorter distances, charac-
terizing I'-wave interactions, where discrepancies
might be expected to arise. One could, of course,
argue that there is some remaining freedom in
the adjustment of the potentials in the central
region, e.g. , the pNN and ~NN coupling constants,
as well as the J = O'NN - mm analytically continued
amplitude, are somewhat uncertain. However,
one of us (B.J.V.) has been unable to greatly im-
prove the D-wave fits of the Stony Brook model
after some considerable trial and error variation
of these (somewhat) adjustable parameters. ' The
problem here seems to be the large magnitude
of the tensor splitting caused by one pion ex-
change (OPE). Attempts to reduce this effect
and bring 5('D,) and 5('D,) into agreement with
the data, require a mNN form factor P(q') with a

very small cutoff in disagreement with the analy-
ses of Hefs. 7 and 8.

However, a point which has been overlooked and
might be the solution to this dilemma is the full
off-shell behavior of the mNN form factor. Fur-
thermore, if a correct treatment of this vertex
function could be capable of explaining the above
puzzle, it might also have more far reaching con-
sequences for hadronic physics. For this reason
we study in Sec. II a full off-shell dual unitary
model for hadronic form factors. %e show that
the model can describe any hadronic vertex func-
tion with one, two, or three particles off-the-mass
shell by means of a factorizable analytic function
of the square of the four-momenta. For example,
callingA, 8, and C the three particles of four-
momentaI'&, I'&, and&~ in a vertex, the form
factor is given by

ABC (PA s PB & PC ) A(PA )PB(PB )PC(PC ) st

and I'"&, I'&, and &~ each contain one free pa-
rameter associated with the asymptotic behavior
in the spacelike region (P'- ~). The dual model
provides unique rules for constructing these func-
tions which exhibit poles in the timelike region
(P') 0) and have asymptotic power behavior as
P'--~. Also, unlike dual models for scattering
amplitudes, the three-point function can be uni-
tarized in a simple manner without undesirable
implications. Except for the location and widths
of the poles and the value of the free parameter,
the functions &&, I'~, and &~ above have all the .

same form. This together with the factorization
property has then an important implication, viz. ,
once a function E;(P ) (i =A, B, or C) has been
fixed in a particular vertex, it should retain its
form in a different vertex involving the same
hadron.

The physical motivation of this model and the
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400 MeV, roughly a 25%%uo effect. Although a satis-
factory resolution of the triplet-D-wave phase
shifts puzzle should await a complete one-boson-
exchange calculation, we present qualitative argu-
ments indicating that the fully off-shell behavior
of the vertex functions may prove to be an essen-
tial new ingredient.
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II. DUAL UNITARY MODEL FOR HADRONIC FORM
FACTORS

The incorporation of hadronic form factors into
the calculations of one-particle-exchange poten-
tials has evidenced the need for sound, physically
motivated models for three-point functions. Hope-
fully, a successful model should provide general
rules for constructing a vertex function describing
any arbitrary types of particles and should also
provide general prescriptions for unitarization
and off-shell behavior with the least possible num-
ber of free parameters. A major step in this
direction was taken some time ago' with the sug-
gestion that the mNN form factor could be written,
in analogy with the dual Veneziano model, as a
ratio of two gamma functions, i.e.,

I [I —n'(q' —p „')]
(q) ~~y ( ")]

FIG. 1. Theoretical predictions of the Stony Brook
and Paris NN potentials for 6( D(), &( D2), and &(D3)
together with some experimental values. The dotted
curve is the OPE prediction using geometric unitariza-
tion [b( pz)=B'( D&)1 and a form factor at each vNN ver-
tex, F(I,M, q ), with p3

——p = 2 (see text).

general rules for constructing and unitarizing the
analytic functions E,(P ) are presented in Sec. II.
In Sec. III we discuss, as an application of the
model, the one-pion exchange contributi()n to NN

scattering. The purpose of this is to study the
effects of a fully off-shell treatment of the mNN

form factor in a simple and unambiguous workable
example. Previous treatments of this problem
have taken into account only the off-shell behavior
of the pion leg without introducing any off-shell
nucleon structure in the vertex function. Our main
results are the following. When only the pion is
allowed to go off-the-mass shell in the mNN ver-
tex, the predictions of our model are essentially
identical to those of previous treatments. This
is simply a reflection of the fact that E„»(P„')
in the dual model is not very different from a
monopole-like form factor for moderate values
of I'„'.. However, the use of our model for the
fully off-shell vertex function E„»(P,', P„',P„')
uncovers new and dramatic effects in the NN

phase shifts, e.g. , 5('D, ) changes by =9' at

where C is an overall normalization constant,
a™0.8 GeV ' is the universal slope of Hegge
trajectories, P is a free parameter, and E,»(q')
is defined with the pion pole removed. More
recently, ' a general prescription has been given
to unitarize Eq. (1) as well as to generalize it to
other meson-baryon vertices.

The attractive features of this model are that
it incorporates the salient most successful re-
sults of the dual and Hegge models, e.g. , mass
spectrum and asymptotic behavior; it can be
easily generalized to describe any hadronic ver-
tex; and the unitarization prescription is rea-
sonably simple. Furthermore, some control can
be exercised on the free parameter by using in-
dependent theoretical information; e.g. , the con-
stituent interchange quark model" (CIM) might
be used as a guideline in the asymptotic spacelike
region to bound P.

In this paper we wish to discuss the generaliza-
tion of the above model to an arbitrary vertex with
all three particles off-the-mass shell, indicate
the unitarization prescription, and illustrate some
of the effects that result in the mNN form factor
when the nucleons are off shell.

Calling p„P„and P, the incoming four-mo-
menta of the three particles in a vertex, kinematic
considerations show that the form factor
E=E(p,',p, ',p, '). The model can then be specified



162 R. A. BRY A1V, C. A. DOMINGUEZ, AND B. J. Ver%EST

by the following assumptions:

(i) Analyticity for Rep„' & 0, Rep, ' & 0, and

Rej,' & 0.
(ii) F(P,', p, ',P,') to satisfy a triple dispersion

relation.
(iii) Regge behavi or, i.e.,

»m F(p,')P.', P, ')-(P )
"

0& [argp, '] & n .
(iv) Linear Regge trajectories, i.e.,

n(p, ') = s, + o '(p, ' —M;,') (i = 1, 2, 8),

(2)

where s; is the spin of the particle with four-mo-
mentumP; and mass M;, .

(v) Veneziano-type mass spectrum, i.e.,

F(P,',P,', P, ') is a, meromorphic function with

poles at

p =M; „'=M;,'+n) n' (n=0, 1, 2. . .). (4)

In the narrow-width approximation [e.g. , Eq. (1)J,
these poles are located on the real axis and be-
come shifted to the second Hiemann sheet in the
unitarized version of the model. Assumptions (i)
and (ii) hardly need justification. Assumption (iii)
is supported by the Regge model of a two-body
scattering amplitude where M(s, t) t!'~ as-
~&~

-~ and 0& ~argt( & v. Besides, there are other
models, e.g. , the CIM, in which form factors
exhibit asymptotic power behavior. Assumption
(iv) is well sustained by Regge fits to high energy
data" and also it holds, together with (v), in a
simple dual-resonance model. " The mass spec-
trum Eq. (4) predicts daughter masses in very
good agreement with experiment both in the meson
sector, e.g. , p'(1250), p" (1600), K" (1498), etc. ,
as well as in the baryon sector, e.g. , N(1470),
N(1780), 6(1690), 2'(1660), etc. On the other
hand, the existence of daughters is not a peculiari-
ty of dual models but is also expected from a wide
class of models, e.g. , in the constituent-quark
model these daughters correspond to radial ex-
citations of the ground state particles. " It should
be added that except for the possibility that all
three particles might be off shell, the above as-
sumptions are already incorporated into Eq. (1).

The simplest choice for F(P,', P,',P,') may then
be written as

F(p, ,p, ,p, ') =g] [1.(p,. s, )

r [1—n'(p, ' -M, ') J

rp, -s, —o'(p, '-M')j '

(5)

where the normalization constant g is defined at

the point px =M i p2' = M2', and p, ' =M3', and
satellites have been ignored on account of their
nonleading contribution. It is important to point
out that the factorization of the form factor into
the product of three simple forms of the type Eq.
(1) is not merely dictated by simplicity. In fact,
drawing a close analogy with the Veneziano four-
point function one would have expected a priori
the following expression to be the most general
one:

1
X rg, —s,. —1-nj ' (7)

Equation (7) shows that F(P,', P,', P,') is a mero-
morphic function with a finite or infinite number
of poles according to whether js; —s; is an integer
or noninteger number, respectively. These poles
are located on the real axis as may be seen by
taking the imaginary part of Eq. (7): i.e.,

3
1ImF(p, p, ', p, ') =gm', ...0(p -p;, )), ) —,I"(p, —s, )

t= 1

(-)" 5(M; ...' P)-
n! I'(P; —s, —1 n)-

(8)
The unitarization of the form factor can be
achieved by the substitution

( n P )
(M 2 P2)2+F 2M 2 (9)

and by introducing in Eq. (8) the appropriate
threshold behavior. The widths I'„ in Eq. (9) are
expected a Pro&& to be functions of the daughter
masses and should be fixed by experimental data
or else by independent theoretical considerations.
For instance, for vector mesons (p, ~, Q) it is
known" that I"„=I',M„, where M„ is given by Eq.
(4), while nucleon data" seem to indicate that I'„
are mass independent. The threshold behavior

11';,r [1 —n'(P, '-M, ')J
(pl )P2 )P3 ) g ( ) F[ Q& )(p 2 M 2)J

(6)

However, it may be verified that there is no value
of A. in Eq. (6) that will restore the single-pole
approximation. Clearly, Eq. (5) does have this
desirable property for P; = s;+ 1.

The analytic structure of the form factor, Eq.
(5), can be best exhibited by series expanding the
gamma functions; i.e. ,

3

F(P,',P,', P.') = g .0. —,F(P; —s;)
t= 1



22 MODEL FOR OFF-SHELL FORM FACTORS AND APPLICATION. . . l63

of F(P,', P,', P,') may be determined by considering
the first daughter particle as a resonance in the
respective two- or three-body channel. For ex-
ample, the p', m', and N' may be viewed as re-
sonances in the two-pion, three-pion, and pion-
nucleon system. From a knowledge of the thres-
hold behavior of the corresponding four- or five-
point function one can thus infer the threshold be-

haviorr

of the form factor for each separate leg.
We shall not pursue this matter any further here
since the narrow-width approximation will suffice
for the purposes of the present paper. "

In order to illustrate some of the effects of off-
shell extrapolations, let us consider the mNN form
factor with the pion and one nucleon on-the-mass
shell, i.e., E(p,', I', V, '). In this case, Eq. (5)
becomes

r(y --', )r [I - n'(p, '-m')]
Q qP& CV1

where M is the nucleon mass and we have set
P, =y(y~ —',). For y=-', Eq. (10) becomes the single
nucleon-pole approximation, i.e., +„»=g. Fig-
ure 2 shows some of the effects to be expected
from Eq. (10) (with g=1, for simplicity). The
broken line corresponds to y= —,', the solid line is
for y =-'„and the dot-bar line corresponds to
y=+. Although any value of y~ —,

' is a priori
possible (y is a free parameter of the model) the
CIM" favors" y = —,'. Furthermore, half integer
values of y reduce Eq. (10) to very simple forms,

e.g., if y=-'„Eq. (10) becomes a monopole, i.e.,

F 2 2 2 1
TENN(pl tM & i 7l & Y 2) I w el ~ 2 ~~2)

LPy

Unitarization of the form factor will cause a slight
further reduction of +,» near the origin and will
smooth out its behavior near the first nucleonic
pole located at P,'=M, '= 2.13 GeV'.

Strong off-shell variations of &,» have been
advocated by Nutt and Shakin" and challenged re-
cently by Epstein. " At this point it should be
stressed that the pole model discussed here may
be viewed as an approximation to a dispersion.
integral. Testimonies indicating that this is in
fact an excellent approximation" include pre-
dictions for the electromagnetic form factors of
the pion, nucleon, 6(1236), the axial-vector form
factor of the nucleon, the mNN form factor itself,
and the kaon-baryon vertex.

III. APPI.ICATION TO NUCLEON-NUCLEON
SCATTERING

In this section we discuss some of the effects
of our Eq. (5), for the case of the mNN vertex,
on nucleon-nucleon scattering. Figure 3 defines
the standard kinematics with P, in Eq. (5) replaced
by q, the pion four-momentum.

To this end we have calculated' =0, 1, 2, . . . 5
NN phase shifts using the OPE potential together
with the Blankenbecler-Sugar (BbS) equation. We
show in Fig. 4 the critical triplet-D-wave phase
shifts over the range 0-400 MeV. The solid curve
is the result obtained with the fully off-shell mNN

form factor F(P,', P,', q') as given by Eq. (5) with

P, =P, -=y =-, and P, —= P =2. In this case Eq. (5) re
duces to the following simple form:

1 —n'(q' —g.') 1 —n'(P '-M')
1

1-o.'(p, '-~') ' (12)

I I I

-0.6 -0.2
0

0.2 0.6

p,
'

(GeV ')
I.O I.4 I.8

PIG. 2. The ~NN form factor Eq. 0.0) with only one
nucleon off shell. The broken line corresponds to p= z
(single-nucleon-pole approximation), the solid curve is
for p= ~, and the dot-bar line is for y=&~. The shaded
line corresponds to the integration range in the Blanken-
becler-Sugar equation for &~~=400 MeV (see Sec. III). FIG. 3. The mNN vertex.
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FIG. 4. OPE predictions for the triplet-D-wave phase
shifts. Dotted curve is the cutoff OPE prediction using
geometric unitarization 6( D&) =B( Dz) with a form fac-
tor E(M, M, q ). Dashed curve corresponds to the
Blankenbecler-Sugar OPE prediction using the same
form factor. Solid curve is the Blankenbecler-Sugar

. OPE prediction using a fully off-shell form factor
E(P(,P2, q ).2 2 2

1
E(M yM p q ) 1 p( 2 2)

Finally, we show the Born approximation curves
of Fig. 1 to provide physical insight as well as to
allow an easy comparison between the information
contained in Figs. 1 and 4.

One can see from Fig. 4 that the effect of the
fully off-shell form factor is to lower the phase
shift in the case of each triplet D wave. In fact,
our calculations show that our form factor lowers
the phase shifts of every partial wave. In the
case of the uncoupled states, the reason for this
behavior can be understood as follows: First of
all, our version of OPE includes a form factor
E(M', M', q') which is used together with geometric
unitarization to obtain the prediction shown in
Fig. 4 (dotted line). Next, the Blankenbecler-Sugar

where we have defined the form factor without the
coupling constant for simplicity. It should be
noted that y= —,

' and P = 2 —3 are to be expected from
the power counting rules of the CIM." The dashed
curve in Fig. 4 is the result when only the pion
is allowed to go off shell and P =2, in which case
Eq. (5) reduces to

iteration, with the same form factor E(M', M', q'),
raises the phase shift over the pure geometrically
unitarized Born phase shift because the second
Born term (which dominates the T-matrix Born
series) is always positive at these (sufficiently)
low energies. Finally, replacing the form factor
of this potential by the fully off-shell form
E(P,', P,', q') results in a smaller second-Born
contribution to the T matrix, and hence in a lower
phase shift (the first-Born term is of course un-
affected). The second-Born term is lowered be-
cause for most of the range of integration over
intermediate-state nucleons in the Blankenbecler-
Sugar equation the mNN form factor is less than
unity. The actual integration range for T„„=400
MeV is indicated by the shaded line at the top of
Fig. 2, which shows that the upper limit in the
timelike region (P' & 0) is well below the position
of the first pole (P'= 2.13 GeV). This justifies the
use of the zero-width approximation for the form
factor; the effects of unitarizing Eq. (5) are ex-
pected to be minimal in this region of momentum
transfer.

In the case of the 'D, phase shift, the analysis
is more complicated due to the strong coupling
of the 'D, state to the 'S, state. However, the net
effect of using in the BbS equation E(P,', P,', q')
instead of E(M', M', q') is to reduce 5('D,) as may
be seen from Fig. 4.

At this point we wish to discuss the relevance
of the above OPE-BbS form factor calculations for
the m + 2m + & BbS potential model fits to NN data.
The use of restricted form factors E(M', M', q')
together with such complete potentials should
yield triplet-D-wave phase shifts similar to the
Paris phase shifts. fWe note that in the Stony
Brook model, use of both u- and t-channel form
factors (of the eikonal type) lowers &('D,) con-
siderably below the result that would be obtained
with only a t-channel vertex function. ] The sig-
nificance of replacing E(M', M', q') by our fully
off-shell form E(P,',P,', q') is that it lowers
&('D,) by =9 at 400 MeV in the GPE-BbS model.
Moreover, it will probably also lower 5('D, ) in
any realistic m+2m+ ~ model. The magnitude of
this decrease in 5('D, ) is precisely that required
to fit the data. Furthermore, no permissible
variation in any other parameter in NN models
seems to be able to reduce &('D,) by the above
amount; e.g. , variation of f~» leaves 5('D,)
practically unchanged and variation of the J = ONN- mm amplitude is severely restricted by the very
precise 5('D,) data

At this point it could be objected that although
E(p,', p, ', q') decreases 5('D,) by the right amount,
it also lowers &('D,), a seemingly undesired fea-
ture. However, we have found that an increase
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in f»„, within experimentally allowable limits,
produces a significant increase in 5( D,), enough
to more than compensate for the decrease brought
about by &(P,', P,', q'). lt is important to point
out here that our form factor does not lower 5('D,)
below the Stony Brook curve in Fig. l.

It is, therefore, our opinion that our fully off-
shell form factor, together with some allowable
variations in other parameters of the model, will
bring the (m+ 2m+ u)-exchange NN theory into
agreement with experiment for D waves in the
region 200-400 MeV. This corresponds to the
critical central region of the nucleon-nucleon
force (1-2 fm).

One might inquire if these modifications which
solve the D-wave puzzle could have detrimental
effects for NN fits to the higher partial waves.
The answer to this appears to be no. In fact, our
calculations show that use of F(P,',P,', q') instead
of E(M', M', q') changes the L, ) 3 OPE-BbS phase
shifts only slightly; also, permissible variations
in the p and ~ coupling constants will have only
minor effects in & waves and higher, because of
the inherently short range of the p- and ~-ex-
change potentials.

We conclude that use of our vertex function
E(P,',P,', q') in place of previously used forms
will allow for agreement between dispersion-
theoretical (m+2w + &a)-exchange calculations and
experiment for D waves and higher. It is more
difficult to predict the effect in I' and S states,
but uncertainty in the ~NN coupling constant al-
lows for considerable readjustment of the critical
triplet-P-wave phase shifts (to name just one
possibility) and, of course, the 'S, and 'S, scatter-
ing lengths are not predicted by any meson-ex-
change theory, but are to be fixed in the manner
of subtractions in dispersion theories. Thus it is
quite possible that good fits will be possible in
I =0 and 1 states as well. "

IV. CONCLUSIONS

We have discussed here a simple model for an
off-shell hadronic form factor that incorporates
the salient most successful features of the dual
and Hegge models. Furthermore, the unitariza-
tion of this form factor may be achieved in a
straightforward manner. Another attractive fea-
ture is that the single free parameter of the
model (in each leg) has a transparent physical
interpretation; i.e., it is related to the asymptotic
behavior of the form factor in the spacelike reg-
ion. Independent theoretical information, e.g. ,
the CIM, may then be used in order to estimate
this parameter.

An application of this model to the mNN vertex
shows that the effects of taking the nucleons off
shell turn out to be rather dramatic. In fact, as
seen in Fig. 2, a reduction of =50%%up in the wNN

form factor is to be expected at zero-momentum
transfer. This feature might prove essential in
explaining some long standing problems in NN

phase shifts.
It goes without saying that the model presented

here is not restricted to describe just the mNN

form factor. Equation (5) or its corresponding
unitarized version can describe any hadronic
vertex function with one, two, or three particles
off shell. Therefore, it should be possible to
use this model in conjunction with one-boson-ex-
change potential calculations, 6(1232) production,
three-body force calculations, etc. In view of
the results obtained so far, we foresee some
radical changes in results obtained under the as-
sumption of perfectly smooth behavior of
E(P,', P,',P,') as two or three particles go off
shell.
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