Elastic scattering of 'Li at 73.2 MeV

R. Huffman,* A. Galonsky, R. Markham,[†] and C. Williamson[†] Cyclotron Laboratory, Michigan State University, East Lansing, Michigan 48824 (Received 6 December 1979)

Angular distributions for ⁶Li elastic scattering at 73.7 MeV from targets of ⁵⁸Ni, ⁹⁰Zr, ¹²⁴Sn, and ²⁰⁸Pb have been measured. Optical-model parameters for Woods-Saxon real and imaginary volume potentials have been found which describe the data well and exhibit both discrete and continuous ambiguities. For a fixed geometry, the dependence of the optical potentials on Z and \overline{A} of the target and on the bombarding energy was investigated.

> NUCLEAR REACTIONS 58 Ni, ^{90}Zr , 124 Sn, 208 Pb (6 Li, 6 Li), $E = 73.7$ MeV; measured $\sigma(\theta)$; deduced optical-model parameters.

I. INTRODUCTION

There have been studies of ^bLi elastic scattering by medium- and heavy-weight nuclei with bombardin energies between 30 and 50 MeV (Refs. 1-5) and above 100 MeV. ⁶ The motivation for this study was to provide optical-model parameters at an intermediate energy, namely 73.7 MeV. The parameters are presented for use in direct-reaction calculations and, when coupled with the results at higher and lower bombarding energies, may be used to investigate the systematics of ⁶Li elastic scattering. The present study uses targets of ⁵⁸ Ni, ⁹⁰ Zr, 124 Sn, and 208 Pb. The dependence of the potential depths on the Z and A of the target and on the bombarding energy has been investigated.

II. EXPERIMENTAL PROCEDURE

A beam of 73.7 MeV 6 Li $^{+++}$ ions was produced by the MSU sector-focused cyclotron. The beam was produce by an arc-type ion source⁷ which employed the sputtering
action of Ne on ⁶Li enriched LiF pellets. The beam was transported to a 1-m scattering chamber where elasticscattering measurements were taken. system, consisting of two analyzing magnets and several quadrupole focusing magnets, produced a beam spot approximately ² mm by 4 mm as viewed with an MgO scintillator, On-target beam currents of 1-100 nA were monitored by stopping the beam in a Faraday cup. An Ortec charge digitizer was employed to integrate the beam current from the Faraday cup in order to obtain charge measurements for each experimental point.

The targets employed in this study were isotopically enriched, self-supporting foils with average thicknesses as
follows: ⁵⁸ Ni, 3.8 mg/cm²; ⁹⁰ Zr, 10.2 mg/cm²; ¹²⁴ Sn, 5.1 mg/cm²; ²⁰⁸ Pb, 10.3 mg/cm². The average thicknesses were obtained by weighing the targets with a precision balance and by measuring the surface area. An alpha-par ticle gauge was then used to investigate the central region of each target in order to determine thickness uniformity in the beam-spot region. The alphagauge measurements revealed relative variations of $\pm 3\%$

for the Ni, Zr, and Sn targets and $\pm 12\%$ for the Pb target.
Detection of the scattered 6 Li^{+++} ions was made by using two $\Delta E-E$ telescopes mounted symmetrically on opposite sides of the beam axis. The detectors in both telescopes were Ortec silicon surface barrier detectors telescopes were orted silleon surface barrier detectors
with thicknesses of ~100 \upmu m for the ΔE detector and \sim 1000 µm for the E detector. The angular acceptance of each telescope was defined by a collimator placed at the front of the telescope. For each telescope, the angular acceptance was 0.3[°] for angles less than 30[°] and 1[°] for

angles greater than 30° . The detector arrangement provided two advantages over a single-telescope-plu fixed-monitor arrangement. Continuous monitoring of any beam drift from the true beam axis was provided by comparison of the yields in the elastic peaks of the two telescopes after each measurement. For a slight telescopes after each measurement. $\frac{1}{2}$ misalignment, $\Delta\theta$, the average value of the two yields is correct to second order, since one angle is $\theta + \Delta\theta$ and the other is $\theta - \Delta \theta$. A difference between yields indicated that the beam had moved slightly from the original beam axis, and a realignment of the beam could be made before the next measurement. The other advantage was that the use of a second telescope produced an improvement in statistical accuracy by a factor of $\sqrt{2}$. Due to the low beam currents, the angular range of measurements was limited by a combination of time and decreasing cross section with angle.

The pulses from both telescopes were processed by the same octal ADC and were, thus, subject to the same system dead time. Two measurements for the dead time were made simultaneously using pulses from the charge digitizer and from the ADC strobe. Each set of pulses was counted by two scalers, one of which was inhibited whenever the $\overline{\mathrm{ADC}}$ was busy. The ratio was the fractiona live time. The two determinations were always within one percent of each other. A two-dimensional ΔE vs (E + ΔE) display was used for each telescope for particle identification and for gating of the spectrum of interest. The elastic peaks in the gated spectra had resolutions of \sim 400 keV (FWHM). Spectra were taken in one-degree steps from 8 \degree to 30 \degree and in two-degree steps for angle greater than 30'. The maximum angle measured (in the lab) was 50° for Ni, Zr, and Pb and 56° for Sn. Points taken at the start of a run were repeated at the end; agreement was always within statistics.

III. EXPERIMENTAL RESULTS

The measured $\rm ^6$ Li angular distributions are shown in Fig. 1. The indicated errors are relative errors only. Where there is no error indicated, the error is smaller then the point size. At large angles, the errors are primarily statistical due to low counting rates. At all angles there are small cross-sectional errors due to uncertainties in the settings and readouts of the angular positions of the detectors. These differ from angle to angle. since These differ from angle to angle, they are a function of the slope of the angular distribution. There are also small uncertainties due to possible beam drifts across the somewhat nonuniform central region of each target. The relative errors are generally \leq \pm 4% for all but the largest angles. The absolute errors

10

0.¹

0.1

-1

 σ $\mathbf b$

 \overrightarrow{b}

 10^{-2} \sim $\sqrt{8}$ $\sqrt[3]{3}$ 10^{-4} $208p_b$ 10 40 20 $\theta_{c.m.}$ [deg] Fig. 1. Ratio-to-Rutherford angular distributions

0.1 \downarrow 10⁻³

for 73.7 MeV, elastically-scattered 6 Li. The curves are optical-model results from the grids on V_R for each target.

are \pm 5%.

At forward angles, the angular distributions are strongly dominated by the Coulomb potential. Modifications due to the nuclear potential are small and relatively insensitive to a choice of parameters. The angular distributions are thus expected to approximate Rutherford scattering at small angles. Disagreements between predicted cross sections and measured cross sections for scattering from
¹²⁴ Sn and ²⁰⁸Pb at small angles (~8% for Sn and ~18%) for Pb) resulted in the need to normalize the scattering data to Rutherford scattering at the extreme forwards
angles ($\leq 8^\circ$ for Sn and $\leq 12^\circ$ for Pb). The angular distributions for ⁵⁸Ni and ⁹⁶Zr were not normalized. The
measured cross sections for ⁹⁶Zr agreed well with predicted cross sections at the extreme forward angles.

The measured cross sections for 58 Ni never reached a value as high as that of Rutherford scattering.

IV. OPTICAL-MODEL SEARCHES AND DISCUSSION

A. Optical-Model Search Code

The angular distributions were analyzed with the optical-model search code $SGIB$,⁸ which is a modifie version of the code GIBELUMP⁹ by Perey. The nuclea potential term was a standard six-parameter, Woods-Saxon form:

$$
U(r) = -V_R f_R(r) - iW_S f_I(r),
$$

where

$$
f_{X}(r) = [1 + \exp \left(\frac{r - R_{X}}{a_{X}}\right)]^{-1}
$$

and

$$
R_x = r_x A^{1/3}
$$
; $x = R, I$.

The Coulomb potential had the form:

$$
U_c(r) = 3Ze^2/r
$$
 for $r \ge R_c$,
= $(3Ze^2/2R_c)(3-r^2/R_c^2)$ for $r < R_c$,

where $R_c = r_c A^{1/3}$. In the above expressions Z and A are the target atomic number and mass number, respectively. In all searches, the Coulomb radius parameter, r was kept fixed at 1.4 fm.

The search code minimized the quantity χ^2 given by

$$
\chi^2 = \frac{N}{i-1} \left[\left(\sigma_{\exp}(\theta_i) - \sigma_{\text{th}}(\theta_i) \right) / \Delta \sigma_{\exp}(\theta_i) \right]^2
$$

where N is the number of experimental points.

Prior to extensive searching for optical-model solutions to the scattering data, judicious choices were made for. N_H, the radius at which the asymptotic solution is
matched to the internal solution of the Schrödinger equation, and for h, the step size for integration from $\vec{0}$ to ${\rm R_{m^*}}$. The values chosen were determined by studying
selected scattering matrix elements and large-angle differential cross sections as functions of $R_{\rm m}$ and h in the following manner. With h set at 0.1 fm, $\ddot{\texttt{R}}_{\texttt{m}}$ was varied from 10 fm to 25 fm in steps of 1 fm. Values of the scattering matrix and cross section were approximately scattering matrix and cross section were approximately
independent of R_m from 14 fm to 18 fm for the 58 Ni, mate period in the state. Choosing $R_m = 17$ fm for 58 Ni, $3^{9}Zr$, and 12^{4} Sn data. Choosing $R_m = 17$ fm for 5^{8} Ni, 16 fm for both 5^{9} Zr and 12^{4} Sn, and 20 fm for $2^{0.8}$ Pb, h was then varied from 0.15 fm down to 0.03 fm in steps of 0.01 fm. As the step size was decreased the cross sections at even the largest angles tended to converge. The cross sections for the cases of $h = 0.03$ fm and $h = 0.05$ fm were almost identical. However, at angles where we actually had data, the cross sections were identical for values of h from 0.03 fm to 0.11 fm. To minimize computational time without risk of error a value of $h = 0.1$ fm was chosen for all searches.

$B.58_{Ni}$

As seen in Fig. 1, the angular distribution for scatterin from the ⁵⁸Ni target shows the greatest diffractiv behavior of any of the angular distributions of the target
studied. As have been reported previously,^{3,5,10–1} both discrete and continuous ambiguities exist in opticalmodel analyses of ⁶ Li elastic-scattering data. It was hoped that the diffractive behavior would help to eliminate some of the ambiguities which appear in
analyses, and thus the ⁵⁸ Ni data were the first data analyzed.

Searching for optical-model parameter sets which describe the 58 Ni data began with three independent griddings on V_R. In these griddings, V_R was varied fron
10 MeV to 300 MeV in steps of 10 MeV. The first gridding was started at $V_R = 160 \text{ MeV}$, and the remaining five
parameters were those of Chua et al. The five para-.
meters, r_R, a_R, W_S, r_I, and a_I, were varied in pair
combinations, and the final search was a simultaneou: five-parameter search. The best-fit parameters from the search at V_R =160 MeV were used to initiate the searche at V $_{\rm R}$ = 150 $\rm \dot{M}$ eV and at V $_{\rm R}$ = 170 MeV, which had the same search pattern as that used for V_R = 160 MeV. The result from the V_R= 150 MeV search were used to initiate the search at V_R = 140 MeV, and the results from the search at $V_R = 170$ MeV were used to initiate the search at V_R^R = 180 MeV. This pattern of using the best-fit parameters of one grid point to initiate the search at the next grid point was continued to the limits of the grid. The second gridding on V_R used the parameters of Chua et al.¹
to initiate the search at each grid point. Again, the remaining five parameters were varied in pairs, and the last search was a simultaneous five-parameter search. The third gridding on V_R was a four-parameter search where $\rm r_R$ was kept fixed at 1.26 fm. This was done in an attempt to avoid the continuous $V_{\mathbf{R}} \mathbf{r}_\mathbf{R}^\mathbf{n}$ ambiguity. The remaining four free parameters were varied in pairs and then in a simultaneous four-parameter search. Finally, r_R was allowed to vary, first alone, then in a simultaneous five-parameter search.

The results of these griddings were then combined into a single grid on V_{R} . The parameters for a given grid point were determined by using the parameter set for the grid point which gave the lowest χ^2 of the three paramete sets for that value of V_R , Using the results from the combined grid, the real well depth was next allowed to vary, first by itself, then in a simultaneous six-parameter search. While most of the parameter sets resulting from this search were similar to those initiating the search and approximately the same χ^2 , five minima appeared where the χ^2 was reduced significantly and the parameter sets were significantly different. These five minima were investigated by gridding on V_R every 5 MeV for a distanc
of approximately 30 MeV on either side of each minimum The search was a simultaneous five-parameter search on r_R, a_R, W_S, r_I and a_I, using the parameter values at the minimum as starting values. The results of this final grid are presented in Fig. 2. This grid exhibits the behavior of both the continuous ambiguity and the discrete family ambiguity. The parameter sets which correspond to the best fits for the five discrete families of potentials are listed in Table I, and the fit from Family IV is shown in Fig. l.

The discrete family ambiguity is exhibited in Fig. 3 where three fits to the data corresponding to distinc parameter sets are presented. Each of the fits has approximately the same χ^2 . The discrete ambiguity is also apparent in Fig. 2 where the parameters, which vary smoothly within a family, show discontinuities between families.

The discrete ambiguities appear to be the result of Igo Incornect ambiguities ¹⁴ and internal wave function phase-shift
ambiguities.¹⁵ The phase-shift ambiguity exists for partial waves with small & values. These partial waves penetrate the nuclear surface and are reflected inside the potential well by the angular momentum barrier. As shown in Fig. 4a, moving from one solution to the next deeper solution increases the number of half waves in the potential well by one. The asymptotic phase of the wave function remains unchanged.

The Igo ambiguity is the result of partial waves with large ℓ values being scattered by nearly identical nuclear surfaces. The condition for surfaces to be nearly identical is expressed by requiring potential wells to have approximately the same values of the Igo constants

$$
I_R = V_R e^{-R_R/a_R}
$$

and

$$
I_I = W_S e^{-R_I/a_I}.
$$

As seen in Fig. 4b, partial waves which see only the surfaces of the potentials contain the same number of half waves in the surface regions and have the same asymptotic phase for all potentials with constant I_R and

 Γ_I . The values of I_R and I_I for our best-fit parameter sets are presented in Table I. I_R , with the exception of the value for the $V_R = 60$ -MeV potential, varies by approximately 20%, and I_I for all solutions varies by less than 15%. The constancy of the values of I_R and I_I indicates that the surface regions must be approximately the same. For the imaginary part of the potential, it is clear from the values in Table I for W_S , r_I , and a_I that both the surface and interior regions are similar for the five solutions. We sometimes started W_S at 40 MeV, but
the search always led to a value near 20 MeV. The real potential wells for three of the discrete solutions are shown in Fig. 5. Particularly for Families III and V, the potentials are almost identical beyond 6.3 fm, where the value is approximatelv -14 MeV.

The continuous ambiguity is exhibited in the regions
ar the y^2 minima. In these regions the value of y^2 is near the χ^2 minima. In these regions the value of $\bar{\chi}^2$ nearly constant over a range of V_R values. Over this range the values of the remaining five parameters vary smoothly. This smooth variation of parameters (see Fig. 2) allows for small variations of one parameter to be compensated fov by small variations of other parameters.

Target	Family	$\frac{1}{N}$	$\mathbf{v}_{\mathbf{R}}^{\mathbf{V}}$ (MeV)	r_R (fm)	$a_R^{}$ (fm)	$W_{\rm S}$ (MeV)	$r_{\rm T}$ (fm)	$a_{\texttt{I}}$ (fm)	σ _R (mb)	$\mathbf{I}_{\mathbf{R}}$ (MeV)	\mathbf{r}^{T} (MeV)
$58_{\rm Ni}$	1	1.3	60.0	1.431	0.837	17.4	1.787	0.778	2085.	4.49×10^{4}	1.26×10^5
58_{Ni}	11	1.3	111.7	1.258	0.867	18.3	1.768	0.775	2065.	3.05×10^{4}	1.25×10^5
58_{Ni}	III	1.3	163.0	1.161	0.876	19.2	1.753	0.777	2060.	2.75×10^{4}	1.19×10^5
58Ni	IV	1.3	223.4	1.081	0.882	20.3	1.738	0.777	2055.	2.55×10^{4}	1.16×10^5
$58_{\rm Ni}$	\mathbf{v}	1.3	292.0	1.015	0.885	21.2	1.726	0.779	2054.	2.47×10^{4}	1.12×10^5
90_{Zr}	A	3.3	63.7	1.394	0.808	84.1	1.326	0.882	2330.	1.44×10^5	7.05×10^{4}
$90_{\rm Zr}$	B	3.3	115.2	1.337	0.744	16.3	1.705	0.897	2461.	3.62×10^5	8.12×10^{4}
907r	$\mathbf c$	3.3	152.8	1.279	0.754	17.4	1.684	0.896	2442.	3.04×10^5	7.88×10^{4}
$90\frac{1}{2}r$	D	3.4	192.5	1.235	0.757	20.2	1.642	0.909	2440.	2.86×10^5	6.58×10^{4}
907r	E	3.5	240.0	1.186	0.765	22.6	1.611	0.914	2434.	2.49×10^5	6.04×10^{4}
907r	F	3.5	281.9	1.166	0.761	23.7	1.597	0.919	2438.	2.70×10^5	5.69 $x 10^4$
124 Sn	Α	2.3	163.9	1.226	0.798	21.9	1.602	0.924	2707.	3.47×10^5	1.24×10^5
124 Sn	в	2.3	195.0	1.093	0.880	23.6	1.577	0.928	2677.	9.51×10^{4}	1.12×10^5
$12+$ Sn	\mathbf{C}	2.3	223.7	1.125	0.837	20.2	1.621	0.914	2691.	1.81×10^5	1.39×10^5
124 Sn	D	2.3	256.8	1.127	0.813	24.6	1.562	0.938	2684.	2.56×10^5	9.89×10^{4}
124 Sn	Е	2.3	290.0	1,127	0.803	24:2	1.574	0.935	2704.	3.17×10^5	1.07×10^5
208Pb	Α	1.3	155.0	1,359	0.667	42.4	1.335	1.030	2740.	2.69 \times 10 ⁷	9.16×10^{4}
208Pb	в	1.2	183.3	1.376	0.619	17.4	1.467	1.073	2749.	9.56 \times 10 ⁷	5.68 $x 10^4$
208_{Pb}	c	1.2	238.0	1.340	0.629	19.5	1.450	1.068	2751.	7.24×10^7	6.10×10^{4}

Table I. Best fit optical-model parameters from grids on ${\tt v}_{_{\rm R}}$

For partial waves with small ℓ values this allows for a $\frac{1}{2}$ of half waves to remain in the potential However, as the variations ace is altered to a greater extent and partial waves with larg surface see differences in the potential surfaces. This leads to differences in the scattering cross sections and a worsening of the quality of the fit. If the surface is altered too greatly, then a new family may appear whose potential surfaces have shapes nearer to the one needed to

Fig. $3.$ Fits to the ⁵⁸Ni scattering data for parameter Families I, III, and V of Table
I. Differences in the fits are readily
discernible only beyond 52⁰.

Fig. 5. The real potential wells for ⁵⁸Ni Families Ine real potential wells for Thi Families
I, III, and V of Table I. The interiors of
the wells are different, but the surfaces are nearly identical.

accurately reproduce the scattering.

The smooth variation of parameters within a family implies the possibility that some of the parameters may be related. It has been noted by other groups that V_R and r_R appear to be related by $V_R r_R^0 \sim$ constant, where the constant is different for different families. Reported
values for n are π 1–2. ' ' ^{1, 1, 1, 1, 1} In our study n varies from 1.⁶ to 4.0. For Families I through ^V the values of ⁿ are 4.0, 2.7, 2.0, 1.8 and 1.6, respectively.

C. 90 Zr, 124 Sn, and 208 Pb

The results of the analysis for 58 Ni provided the bases for the analyses of the data sets of the other targets.
Each of the five solutions for ⁵⁸Ni was used as a starting point for a search on the data of each of the other three targets. Final grids on V_R were performed ($\Delta V_{\rm R}$ = 5 MeV
as in the case of ⁵⁸Ni. The grids on V_R extended from $W_R = 40$ MeV to 300 MeV for 3^6 Zr and from V_R extended iron UR = 150 MeV for 12^8 Sn and $2^{0.8}$ Pb. The solutions produced by the gridding are presented in Table I. As in the ⁵⁸ N case, both discrete and continuous ambiguities were obser ved.

Searches with the 90 Zr data produced six discrete families. The fit from Family E is shown in Fig. l. Over "a range of V $_{\rm p}$ values each family produced a continuou ambiguity, ^twhere the remaining parameters varied smoothly and produced only small changes in χ^2 . The correlation of V_R with r_R as V_R r_R \sim constant was evident with n~1.6-2 for all families except Family The Igo constant I varies by approximately 30% amongst the solutions, excluding Family A, and I_I varies by less than 50%.

The grid on V_R from 150 MeV to 300 MeV produced five
solutions for the 124 Sn data. The fit produced by Family C is shown in Fig. 1. The values of I_1 vary by approximately 40%. The large variations in I_R , a factor of 3.5, indicate that the surface regions for the real potentials have more variation for 12^4 Sn, as can be seen in Fig. 6, than for 5^8 Ni, Fig. 5. For Families A through E, the values of ⁿ for the continuous ambiguity are 15, 1.3.

2.8, 1.2, and 4.2, respectively.

The grid on V_R from 150 MeV to 300 MeV produced three solutions for the $2^{0.8}$ Pb data. The Family-C fit is shown in Fig. 1, and the best-fit parameters are listed in Table I. In rig. 1, and the best-int parameters are itself in the case of 1^{2} Ph is in the case of 1^{208} Pb vary by a factor of \sim 1.8. The values of n for 208 Pb vary by a factor of \sim 1.8. The values of n for Families A, B, and C are 4.6, 1.9, and 2.1, respectively.
The non-uniqueness of the surface regions for the 124 Sn
and the 208 Pb solutions may be the result of the influence of the Coulomb interaction on the scattering.
The larger Z of the 124 Sn and 208 Pb nuclei and the limited angular range of data for all the nuclei studied produces a stronger Coulombic influence on the 124 Sn
and 208 Pb data than on the 58 Ni and 302 r data. The stronger Coulombic influence reduces the sensitivity of the predicted cross sections to changes in the nuclear potential parameters.

In order to investigate the mass and charge dependences of the potential wells, searches were performed on the Zr, Sn, and Pb data in which only the potential depths, $V_{\bf R}$ and $W_{\mathbf{C}}$, were varied. The geometry parameters were chosen from the Ni families and fixed for the searches in two ways.

The first set of searches used the light-ion conventic The first set of searches used the light-ion convention
to define the radius of the potential well, $R_x = r_v A^{-1/3}$, where $r_{\mathbf{v}}$ is either the real or the imaginary radius parameter. The quantities which were fixed for these searches were the two radius parameters, r_R and r_I , and the two diffusivities, a_H and a_I. The parameter values
were those of the five families found for 58 Ni and listed in Table I. Separate searches were performed for each family. The results of the searches are presented in The results of the searches are presented in Fig. 7. It was assumed that the potentials had an \overline{A} and Z dependence of the form $V_{\mathbf{R}} = C_1 + C_2 Z/A^{-1/3}$ and $W_{\mathbf{S}} = C_3 + C_4 Z/A^{-1/3}$. S¹⁶ No investigation of a nuclear potential symmetry term of the form (N-Z)/A was
performed. Since ⁶Lihasanisospinofzero-sucha-termis

Fig. 6. The real potential wells for 124 Sn
Families A, B, and C of Table I. The Families A , B , and C of Table I. inter iors and the sur faces of the wells are different.

Real and imaginary well depths, V_R and W_S, from light-ion convention, constantgeometry searches as a function of Z/A The solid lines are the "best fit" results of the parameterization discussed in the text. Fig. 7.

not expected. The "best fits" for this parameterization are shown in Fig. 7 for each family, and the values for $V_{\mathbf{R}}$, $W_{\mathbf{S}^1}$, C_1 , C_2 , C_3 , and C_4 are given in Table II. As seen in Fig. 7, this linear parameterization of the real well depth is reasonably appropriate. For Families I and II, the
potentials decrease as Z/A^{1/3} increases. This result is different from the result for proton scattering, where V_R increases as Z/A ^{1/3} increases. ¹⁷ The linear parameterization of the imaginary well depth appears to
describe the data particularly well for Family IV and reasonably well for Family V. For the other three families, the points for Ni, Zr, and Sn are fairly linea with steeper slopes than shown, but the Pb points are then relatively high. Of course, 19 of the 20 points fall within a narrow band, and a single line would eorne within 2 MeV of each of them. All families have a monotonic decrease in W_S with increasing $Z/A^{1/3}$.
The second set of searches used the heavy-ion conven-

tion to define the potential well radii, $R_x = r_x (A^{1/3} + 6^{1/3})$, where the value of r_x is fixed Since the two radii for ⁵⁸Ni have given values for each family regardless of which convention is used, r_X was
determined from the relation
 $r_X^+(58^{1/3} + 6^{1/3}) = r_X 58^{1/3}$. Again the diffusivities
used were those from the ⁵⁶Ni analysis, and searches were performed for the geometries of all five 58 Ni families. The results of the searches are presented in Fig. 8. The parameterization of the potentials for this set of searches has the form $V_R = C_1^T + C_2^T Z/(A^{1/3} + 6^{1/3})$

Fig. 8. Real and imaginary well depths, V_R and W_S , from heavy-ion convention, constantgeometry searches as a function of $Z/({A^{1}}^{7/3} + 6^{1/3})$. The solid lines are the "best fit" results of the parameterization discussed in the text.

and $W_{S} = C_{3}^{1} + C_{4}^{1}Z/(A^{1/3} + 6^{1/3})$. The "best fits" for this parameterization are presented in Fig. 8 for each family, and the values of V_R, W_S, C 1, C 2, C 3, and C 4 are
given in Table II. For the real well depth this parameterization gives an accurate description of the results of the searches; for all five families the fits are very good. The intersection of the lines raises the question of whether the discrete ambiguity all but disappears for targets having an abcissa ≈ 4.0 , say $+0$ Ca or $+5$ Sc, where a real well depth of about 70 MeV is indicated for four of the families. We offer no answer to this question. The fits for the imaginary well depth represent the data fairly well.

Figures 7 and 8 should permit interpolation and extrapolation to obtain optical-model parameters for targets other than the four studied here. Although either of the two methods of defining radii produced fits useable for this purpose, a comparison of Figs. $\dot{\text{7}}$ and 8 shows that straight lines fit the points for the real well better when the heavy-ion radius convention is used. For the imaginary well we cannot make a choice between the two. Another point favoring the heavy-ion choice is that the searches on the Zr, Sn, and Pb data more often produced a lower χ^2 with the heavy-ion than with the light-ion convention.

E. Energy Dependence

The energy dependence of the optical potential para-
meters was investigated by analyzing the ⁵⁸ Ni, ¹²⁴ Sn,
and ²⁰⁸ Pb data of Chua et al.¹ at $E_{Lab} = 50.6$ MeV.
Since the energy dependence of the potentials is me ful only if common geometries are used, the data of Chua et al. were analyzed by using some of the geometrie found here, that is at 73.7 MeV, and searching on the well depths only. For each target the geometries of three of the families of Table I were examined using both the light-ion convention and the heavy-ion convention. Contrary to the optical model for protons, these calculations show an increase in V_R with an increase in
bombarding energy in all cases except the ²⁰⁸Pb, Family C, light-ion case. In all cases dV_R/dE <5. The energy dependences for the imaginary potentials are less
conclusive except that the variations are small. conclusive except that the variations are small $\text{d}W_{\rm g}/\text{d}E \leq 0.5$.

The results of a fixed-geometry grid on $V_R($ $\Delta V_R = 5$ MeV) with W_S being varied are shown in Fig. 9. In this illustra-
tion the χ^2 minimum occurs for V_R 150 MeV and $W_{\rm S}$ ~19 MeV, whereas the Family-III solution at the highe bombarding energy, 73.7 MeV, has $V_R = 163$ MeV,
W_S = 19.2 MeV. The figure clearly shows that there is no minimum in sight for V_R > 163 MeV; V_R does not decrease with increasing ⁶Li energy.

V. CQNCLUSIQNS

The elastic scattering of 6 Li at E = 73.7 MeV can be well described by using the optical model. The present analysis contains both discrete and continuous ambiguities which could not be resolved. obtainable at larger angles the ambiguities would likely
remain because the rainbow angles¹⁸ are too large. For none of our potentials, even the shallowest potential with the lightest target, Family I of Table I, does the angular distribution cease oscillating with angle and exhibit a structureless, approximately exponential falloff char-
acteristic of a nuclear rainbow.¹⁸ With ⁶ Li at a higher energy, 135 MeV, scattered from a lighter target, ²⁸ Si, there was rainbow scattering and a partial resolution of ambiguities was possible.¹⁹

The results of fixed-geometry searches show, for the light-ion radius convention, that potential depths depend

Fig. 9. 9. Grid on V_R using the 58 Ni light-ior
convention, Family-III (Table I) geometry. The data used are from Chua et
al. The 73.7-MeV value for V_R was 163 MeV. As V_R is increased above 163 MeV the quality of the fit worsens; i.e. χ^2 increases.

linearly on Z/A^{1/3} for all five families with W_S always
decreasing sharply with this Coulomb parameter. For the heavy-ion radius convention the potential depths are well
fitted by a linear dependence on $Z/(A^{1/3} + 6^{1/3})$ with W_S increasing slowly

The energy dependence of the real potential depth for ⁵⁸ Ni is that of an increase with increasing bombarding energy, The results for the imaginary well depth depend

- *Present address: Depar tment of Physics and Astronomy, University of Massachusetts, Amherst, Mass. 01002.
- /Present address: Xerox Corporation, Webster, N.Y.
- 14580.
‡Present address: IBM Corporation, Rochester, Minn. 55901.
- L.T. Chua, F.D. Becchetti, J. Janecke and F.L. Milder, Nucl. Phys. A273, 243 (1976).
- V.I. Chuev, V.V. Davidov, B.G. Novatskii, A.A. Ogloblin, S.B. Sakuta, and D.N. Stepanov, J. Phys. (Paris) 32 Suppl. 11-12, C6-157 (1971).
- $R.S.$ Puigh and $\overline{K.W.}$ Kemper, Nucl. Phys. $A313$, 363 (1979).
- K.W. Kemper, A.F. Zeller, T.R. Ophel, D.R. Hebbard, A. Johnston, and D.C. Weisser, Nucl. Phys. A320, 413 (1979).
- R.I. Cutler, M.J. Nadworny, and K.W. Kemper, Phys. Rev. ^C 15, 1318 (1977).
- P. Schwandt, P.P. Singh, A. Nadasen, G. Adams, F.D. Becchetti, J. Janecke, and W. Ploughe, Bull. Am. Phys. Soc. 22, ⁶³³ (1977).
- E.D. Hudson and M.L. Mallory, IEEE Trans. Nucl. Sci., NS-23 1065 (1976).
- 8 R.R. Doering, A.I. Galonsky, and R.A. Hinrichs, J. Comput. Phys. 12, 498 (1973).

upon the geometry used, but the magnitude of any variation with energy is much less than for the real depth.

Grateful acknowledgment is herewith given to the National Science Foundation for its support under Grant No. Phy-7822696. Ne would like to thank Dr. D.A. Goldberg for calculating the relevant nuclear rainbow angles and discussing the results with us.

- ⁹ F.G. Perey, Optical-model search code, ORNL, and modified by R.M. Haybron, Cleveland State University, 1966.
- 10 W. Schmidt and U. Strohbusch, Nucl. Phys. $\frac{A159}{104}$, 104 (1970).
- 11^{c.} Bassani, N. Saunier, B.M. Traore, and J.
Raynal, Nucl. Phys. A189, 353 (1972).
- 12 I.E. Poling, E. Norbeck, and R.R. Carlson, Phys.
Rev. C 5, 1819 (1972).
- $13J.E.$ Poling, E. Norbeck, and R.R. Carlson, Phys. Rev. C $\frac{13}{648}$ (1976).
- ¹⁴G. Igo, Phys. Rev. Lett. $\underline{1}$, 72 (1958).
- 15R.M. Drisko, G.R. Satchler, and R.H. Bassel, Phys. Lett. 5, 347 (1963).
- ¹⁶C.B. Fulmer, J.B. Ball, A. Scott, and M.L. Whiten, Phys. Rev. 181, 1565 (1969).
- ¹⁷F.D. Becchetti and G.W. Greenlees, Phys. Rev. 182, 1190 (1969).
- 18D.A. Goldberg and S.M. Smith, Phys. Rev. Lett. 29, 500 (1972). In general, the rainbow angles are too large and the effect too weak. (D.A. Goldberg, private communication.)
- 19R.M. DeVries, D.A. Goldberg, J.W. Watson, M.S. Zisman, and J.G. Cramer, Phys. Rev. Lett. 39, 450 (1977).