Mass distributions in monoenergetic-neutron-induced fission of ²³²Th

L. E. Glendenin, J. E. Gindler, I. Ahmad, D. J. Henderson, and J. W. Meadows Chemistry Division, Argonne National Laboratory, Argonne, Illinois 60439

(Received 15 February 1980)

Fission product yields for 38 masses were determined for the fission of ²³²Th with essentially monoenergetic neutrons of 2.0, 3.0, 4.0, 5.9, 6.4, 6.9, 7.6, and 8.0 MeV. Fission product activities were measured by Ge(Li) γ -ray spectrometry of irradiated ²³²Th foils and by chemical separation of the fission product elements followed by β counting. The mass yield data for ²³²Th(n, f) show a sensitive increase of fission yields in the near-symmetric mass region (valley) with increasing incident neutron energy E_n and a pronounced dip in yield at the onset of second-chance fission just above the neutron binding energy (at ~ 6 MeV) where the excitation energy is lowered by competition with neutron evaporation prior to fission. The effect of second-chance fission is also seen in the yields of asymmetric peak products. A distinct third peak is observed at symmetry in the valley of the mass distribution, and enhanced yields are observed in the asymmetric peaks at masses associated with even Z (proton pairing effect). The fission yields of ²³²Th(n, f) are compared with those of ²³⁸U(n, f) and ²³²Th(γ, f).

NUCLEAR REACTIONS, FISSION ²³²Th(n, f) $E_n = 2.0, 3.0, 4.0, 5.9, 6.4, 6.9, 7.6, and 8.0 MeV; measured mass yields.$

I. INTRODUCTION

Examination of the literature reveals a lack of data on the characteristics of fission product mass distributions for monoenergetic-neutron-induced fission of ²³²Th, particularly as a function of incident neutron energy E_n . Ford and Leachman¹ determined the yields of four fission products in the near-symmetric (valley) mass region (¹⁰⁹Pd, ¹¹¹Ag, ¹¹²Pd, and ¹¹³Ag) at five E_n values in the range of 9.1-18.1 MeV. Dubrovina et al.² measured the fission yield ratios for seven fission products relative to ⁸⁹Sr at nine neutron energies between 1.5 and 17.7 MeV. Somewhat more complete mass-yield data obtained for $E_n = 3$ and 11 MeV are summarized in the compilation by Crouch.³ Much more extensive data for "fast" reactor neutron fission and for $E_n = 14$ MeV are given in Ref. 3 and in the compilation by Meek and Rider.4

The present work was undertaken to determine in detail the characteristics of the mass distribution for 232 Th(n, f) as a function of E_n over the range of 2-8 MeV with particular emphasis on the question of structure in the valley of the massyield curve and on the effect of the onset of second-chance fission near $E_n = 6$ MeV. For this purpose reasonably complete mass distributions (38 masses) were obtained at E_n values of 2.0, 3.0, 4.0, 5.9, 6.4, 6.9, 7.6, and 8.0 MeV.

II. EXPERIMENTAL

A. Neutron irradiations

Targets for the neutron irradiations were 2.54cm diameter by 0.0254-cm-thick disks of thorium metal with an average weight of 1.3 g. The attenuation of neutrons in the energy range of 2-8 MeV by a target disk was about 0.5%. Irradiations were made at the Argonne Fast Neutron Generator Facility⁵ in the manner described by Smith and Meadows.⁶ The targets were attached to a low-mass fission chamber containing a thin, standardized deposit of ²³⁸U to monitor the fission rate. This assembly was positioned about 3 cm from the neutron source. Neutrons with energies below 5 MeV were produced by the ⁷Li(p, n)⁷Be reaction; neutrons of higher energy were produced by the ²H(d, n)³He reaction.

Details of the monoenergetic neutron beam characteristics have been given in a previous publication.⁷ Spread in the principal neutron energy ranged from 4-8%. Beam intensities averaged about $3 \times 10^7 \text{ cm}^{-2} \text{ sec}^{-1}$, and fission rates in a target disk were typically 2×10^4 sec⁻¹. Also present were small contributions to the fission rate by neutrons of other energies arising from the ⁷Li $(p, n)^7$ Be* reaction, from deuteron stripping reactions (primarily in the deuterium target cell). and from elastic and inelastic scattering by the room environment. Small corrections (1 to 8%) were made for the effects of these neutrons on the fission yields of masses that are strongly sensitive to neutron energy (A = 103 to 127). To ensure adequate intensities of fission product activities the targets were irradiated for periods of 14 to 15 h.

B. Fission yield determinations

Fission yields were determined by high-resolution γ -ray spectrometry of an irradiated thorium

152

22

target or by chemical separation of a fission product element followed by β counting. The two radiometric methods are designated herein as the γ and RC- β methods, respectively. For the measurement of the low intensities of fission product activities in the valley mass region (103 to 127) and for ⁷⁷As and ⁷⁸As, it was necessary to employ the more sensitive RC- β method. The γ method was used for all other determinations.

For chemical separation of the fission product elements, the irradiated thorium metal targets were dissolved in concentrated hydrochloric acid containing small quantities of nitric and hydrofluoric acids and carriers for the elements of interest. The elements were then separated, chemically purified, and samples prepared for β counting according to the procedures compiled by Flynn.⁸ The samples were counted in a calibrated low-background (0.5 count/min) β proportional counter⁸ equipped with an automatic sample changer. The radioactive purity for each sample was verified by following its decay over an extended period of several half-lives. Decay curves were analyzed with the least-squares computer program $CLSQ.^9$ The observed β counting rate at the end of irradiation for each fission product was then corrected for chemical yield, counting efficiency, decay, genetic relationships, and degree of saturation during irradiation to give the saturation activity A_{∞} .

For γ counting the irradiated targets were mounted on flat stainless steel plates and placed in a computer-controlled sample changer designed to ensure reproducible positioning of samples. The γ -ray spectrometer system was based on an 80-cm³ lithium-drifted germanium Ge(Li) detector with a resolution of 2.1 keV full width at half maximum (FWHM) for the 1.33-MeV γ -ray of ⁶⁰Co. Details of this system and the γ counting method are given in a previous publication.⁷ To enhance statistical accuracy in the determination of the fission product γ -ray activities, a large number (~40) of γ -ray spectra were recorded over a sufficient period of time (~1 month) to encompass the wide range of half-lives involved. These complex spectra were then analyzed with the computer program GAMANAL¹⁰ to obtain the intensities of the resolved photopeaks.

The fission product γ decay data selected for use in these measurements are presented with references in Table I. Since the largest single source of error in the γ counting method lies in the values taken for absolute γ emission intensities I_{γ} (listed as photons per 100 disintegrations in Table I), the values were checked by application of the method to thermal-neutron-induced fission of ²³⁵U and comparison of the observed fission yields with the

TABLE I.	Fission product gamm	a decay	data used in
fission yield	measurements.	v	

Nuclide	Half-life	E_{γ} (keV)	I _γ (%)	Ref.
⁸³ Se ^r	22.6 min	356.7	68.6 ^a	11
⁸⁴ Br ^g	31.8 min	881.6	42 ± 4	12
		1897.6	14.9 ± 1.9	12
85 Kr ^m	4.48 h	151.2	75.5 ± 0.6	12
		304.9	14.0 ± 0.5	12
⁸⁷ Kr	76.3 min	402.6	49.5 ± 1.6	12
⁸⁸ Kr	2.84 h	196.3	26.3 ± 1.6	12
		1529.8	11.1 ± 0.7	12
(⁸⁸ Rb) ^b	17.8 min	898.0	14.5 ± 1.0	12
		1836.0	22.1 ± 1.5	12
⁸⁹ Rb	15.2 min	1031.9	59 ± 6	12
		1248.1	43 ± 4	12
⁹¹ Sr	9.5 h	652.9	11.1 ± 1.0	12
		749.8	23.1 ± 1.2	12
		1024.3	33.5 ± 0.7	12
$($ ⁹¹ \mathbf{Y}^m $)^{\mathbf{b}}$	49.7 min	557.6	60.4 ± 2.1^{b}	12
92 Sr	2 . 71 h	1383.9	90 ± 11	12
93 Sr	7.3 min	168.5	34.5 ^a	11
		590.2	67.7^{a}	11
⁹³ Y	10.21 h	266.9	6.8 ± 0.4	12
		947.1	1.94 ± 0.11	12
⁹⁴ Y	19 min	919.2	49 ± 2^{c}	
⁹⁷ Zr	16.9 h		· · · ·	
$\binom{97}{07}$ Nb ^m) ^b	60 sec	743.4	92.8 ± 0.9^{b}	12
	72 . 1 min	657.9	105.9 ± 1.1^{6}	12
⁵⁵ Mo	66.0 h	140.5	5.7 ± 0.5	12
		181.1	6.52 ± 0.19	12
. 99		739.5	13.0 ± 0.4	12
$({}^{ss}Tc^{m})$	6.02 h	140.5	84.9 ± 0.9^{5}	12
¹⁰¹ Te	14.1 min	306.9	88 ± 6	12
120Sb	4.35 h	812.6	43.5	11
132	8.04 d	364.5	81.2 ± 1.1	12
132-1 h	78.2 h	228.2	88.2 ± 0.2	12
(1) -	2.30 n	522.7	$10.6 \pm 0.6^{\circ}$	12
		001.1	101.7 ± 0.1	12
133 _T	20 0 h	520.0	10.0 ± 1.9	12
134	41.0 II	190.0	87.3 ± 0.2	10
Te	41.0 1111	278.0	17.9 ± 1.0 21.2 ± 1.0	12
		566.0	188 ± 10	12
		742.6	10.0 ± 1.0 14.7 ± 0.7	12
		767.2	29.9 ± 0.8	12
¹³⁵ T	6.61 h	1038.8	7.9 ± 0.3	12
-		1131.5	22.5 ± 0.8	12
		1260.4	28.6 ± 1.0	$12^{}$
		1457.6	8.6 ± 0.3	12
		1678.0	9.5 ± 0.4	12
		1791.2	7.70 ± 0.25	12
$(^{135}{ m Xe}^m)^{b}$	15 . 3 min	526.6	14.0 ± 0.5^{b}	12
¹³⁸ Xe	14.2 min	258.3	31.5 ± 1.3	12
		1768.3	16.7 ± 0.7	12
¹³⁸ Cs	32.2 min	462.8	30.7 ± 0.7	12
		1009.8	29.8 ± 0.7	12
139-		1435.9	76.3 ± 1.6	12
¹³⁰ Ba	83.0 min	165.9	$22 \pm 1^{\circ}$	
⁺ ^{**} Ba (140 - ∖ h	12.79 d	537.3	24 °	11
(***La) "	40.22 h	487.0	$49.5 \pm 0.2^{\circ}$	12
		815.9	$25.9 \pm 0.8^{\circ}$	12
		1986'9	$110.0 \pm 0.2^{\circ}$	12

Nuclide	Half-life	E_{γ} (keV)	I _γ (%)	Ref.
¹⁴¹ Ba	18.2 min	190.2	46 ± 4	12
		277.0	23.3 ± 2.0	12
		304.2	25.2 ± 2.2	12
		343.7	14.2 ± 1.3	12
¹⁴¹ Ce	32.5 d	145.4	48.0 ± 2.0	12
142 La	92.7 min	641.2	46 ± 2^{c}	
		894.9	9.4 ± 1.2	12
		1901.3	8.7 ± 0.8	12
¹⁴³ Ce	33.0 h	293.3	43.4 ± 2.0	12
¹⁴⁶ Ce	14.2 min	218.3	21.5 ^a	11
		316.8	55 ^a	11
¹⁴⁷ Nd	11.06 d	91.1	27.9 ± 0.5	12
		531.0	13.1 ± 0.8	12
¹⁴⁹ Nd	1.76 h	114.3	18.8 ± 2.0	12
		211.3	27.3 ± 1.8	12

TABLE I. (Continued.)

^aUncertainty of $\pm 10\%$ assumed.

^b In equilibrium with parent nuclide.

 $^{\circ}I_{\gamma}$ from measurement of fission yield in $^{235}U(n,f)$ (see text).

well-known values given in the compilations of Refs. 3 and 4. With the exceptions of 94 Y, 139 Ba, and 142 La, it was found that the use of I_{γ} values from Refs. 11 and 12 given in Table I resulted in satisfactory agreement. For 94 Y, 139 Ba, and 142 La, the empirical values of I_{γ} determined in 235 U(*n*, *f*) are used in the present work.

The measured fission product γ -ray activities from the GAMANAL¹⁰ program were analyzed by the decay program CLSQ⁹ to obtain the activities at the end of irradiation. Further corrections were made as required for counting efficiency, cascade coincidence losses,⁷ absolute γ emission intensities (Table I), genetic relationships, and degree of saturation during irradiation to give the saturation activity A_{∞} .

Values of A_{∞} determined by the methods just described are related to fission yields by the expression

fission yield =
$$A_{\infty}$$
/fission rate. (1)

Since a suitable ²³²Th monitor for the fission chamber was not available, a ²³⁸U monitor was used to provide an approximate fission rate. The fission yields were then placed on an absolute basis by normalization of the complete mass distribution to 200% total yield, the undetermined yields being interpolated or extrapolated from measured yields. As only ~30% of the total yield was undetermined, the uncertainty (1 σ) in the fission rate obtained by the normalization procedure is only 2% when a 20% error is assigned to all interpolated or extrapolated values.

III. RESULTS AND DISCUSSION

The results of the fission product yield determinations are presented in Table II and depicted graphically as mass-yield curves in Fig. 1. Also shown for comparison in Fig. 1 is the mass distribution for $E_n = 14$ MeV based on the average of the fission yield data compiled in Refs. 3 and 4. Uncertainties (1σ) in the fission yield values were obtained by consideration of all known sources of random and systematic error with the usual rules of error propagation. For fission yields measured by the γ method, σ values fall typically in the range of 3 to 10%. Larger uncertainties ranging from 10 to 25% are associated with the yields measured by the RC- β method. An assessment of possible error in determination of the mass yield due to direct formation in fission (independent yield) of chain members beyond the one measured was made using the charge distribution systematics of Wolfsberg.¹³ For the E_n range of 2-8 MeV, calculated cumulative yields for the fission products in Table II are > 99% with the exception of 134 Te (92 to 95%). The data in Table II contain no corrections for possible charge distribution effects.

The salient features apparent from the mass distributions shown in Fig. 1 are (1) the strong dependence of fission yields in the valley mass region on E_n (increased probability of near-symmetric fission with increasing excitation energy), (2) the existence of a definite symmetric fission peak (around A = 115) in the valley, and (3) the appearance of fine structure, presumably caused by the proton pairing effect,¹⁴ near masses 90, 96, 134, and 140, where yields are enhanced for even atomic numbers Z = 36, 38, 52, and 54. Both the symmetric peak and the fine structure appear to "wash out" slowly with increasing E_n .

Since the literature data^{3,4} on fast neutron fission of ²³²Th leave considerable uncertainty as to the existence of a third peak at symmetry in the mass distribution, a special effort was made in the present work to outline carefully the valley region. The results are shown in Fig. 2, where mass yields are plotted for $E_n = 4.0$ and 5.9 MeV. For the isomers $^{115}Cd^{g}$ and $^{121}Sn^{g}$, the total chain yields were obtained by assuming isomer ratios (m+g)/gof 1.11 ± 0.05 for ¹¹⁵Cd^g (average value for several fissioning systems in Ref. 4) and 1.16 ± 0.11 for ¹²¹Sn^g (Ref. 15). The peak at symmetry is clearly apparent and is seen to diminish with the increase of E_n from 4.0 to 5.9 MeV. Data of poorer quality obtained at 2 and 3 MeV are consistent with the curves shown in Fig. 1. The peak is still apparent to a slight extent at $E_n = 14$ MeV (see Fig. 1).

Some mass distribution characteristics derived

Fission product	Measurement technique	2.0	3.0	4.0	Incident neutro 5.9	on energy (MeV) 6.4	6.9	7.6	8.0
77 AS	RC_R					0.030 ± 0.006		0.030 ± 0.004	
⁷⁸ AS	$RC-\beta$					0.065 ± 0.010		0.078 ± 0.012	
⁸³ Se ^m	۶	0.93 ± 0.21	1.12 ± 0.20	0.91 ± 0.15		1.25 ± 0.27	1.44 ± 0.26	1.38 ± 0.22	1.85 ± 0.28
84 Br ⁶	۶	4.54 ± 0.48	4.05 ± 0.52	4.35 ± 0.47	4.02 ± 0.76	5.34 ± 0.65	5.50 ± 0.71	5.05 ± 0.60	5.47 ± 0.53
⁸⁵ Kr ^m	4	5.13 ± 0.21	4.38 ± 0.17	4.17 ± 0.16	4.00 ± 0.20	5.70 ± 0.22	6.82 ± 0.33	6.01 ± 0.26	5.81 ± 0.20
^{8′} Kr	۶	7.37 ± 0.34	6.85 ± 0.33	6.21 ± 0.30	5.28 ± 0.30	6.80 ± 0.31	7.61 ± 0.39	7.10 ± 0.35	7.44 ± 0.30
$^{88}_{ m Kr}$	~	6.93 ± 0.29	6.64 ± 0.27	6.16 ± 0.25	5.71 ± 0.27	6.46 ± 0.25	7.55 ± 0.34	7.03 ± 0.30	6.71 ± 0.25
$^{89}_{\rm Rb}$	2	7.70 ± 0.64	7.56 ± 0.67	7.18 ± 0.58	7.49 ± 1.00	$7.97^{\circ} \pm 0.71$	$\textbf{6.98} \pm \textbf{0.66}$	7.07 ± 0.64	7.76 ± 0.84
$^{91}_{0.0}$ Sr (Y)	~	7.82 ± 0.24	7.71 ± 0.23	7.30 ± 0.21	6.63 ± 0.21	6.93 ± 0.16	7.28 ± 0.23	7.15 ± 0.21	7.15 ± 0.20
$^{^{32}}Sr$	٨	7.24 ± 0.87	7.23 ± 0.88	6.93 ± 0.86	6.56 ± 0.81	6.26 ± 0.76	6.46 ± 0.81	6.45 ± 0.78	6.62 ± 0.81
Λ_{gg}	٨	5.61 ± 0.38	6.09 ± 0.43	5.68 ± 0.38	4.85 ± 0.49	4.71 ± 0.37	5.21 ± 0.44	5.26 ± 0.38	5.01 ± 0.39
۳. ۳	X	5.79 ± 0.36	6.07 ± 0.67	6.20 ± 0.35	4.48 ± 1.23	4.75 ± 0.93	4.79 ± 1.16	5.58 ± 0.66	5.19 ± 0.39
$\sum_{n}^{n} \operatorname{Zr}(Nb)$	λ	4.50 ± 0.12	4.87 ± 0.15	4.85 ± 0.13	4.80 ± 0.13	3.38 ± 0.11	3.50 ± 0.10	3.62 ± 0.13	3.59 ± 0.10
(DI) oM ^{ee}	λ.	2.87 ± 0.17	3.15 ± 0.16	3.41 ± 0.15	3.79 ± 0.23	2.60 ± 0.13	2.09 ± 0.16	2.21 ± 0.13	$\textbf{2.25} \pm \textbf{0.23}$
¹⁰¹ Tc	ح.	0.82 ± 0.15	1.08 ± 0.12	1.25 ± 0.11	1.77 ± 0.22	1.22 ± 0.15	0.78 ± 0.32	1.00 ± 0.12	1.08 ± 0.15
¹⁰³ Ru	$RC-\beta$		≤0.15	0.15 ± 0.04	0.67 ± 0.10	0.16 ± 0.04			
105 Ru	$RC-\beta$		≤0.011	0.037 ± 0.004	0.24 ± 0.05	0.13 ± 0.02	0.18 ± 0.03		
Pden1	$RC-\beta$		0.016 ± 0.007	0.036 ± 0.005	0.19 ± 0.03	0.14 ± 0.03	0.13 ± 0.02	0.18 ± 0.04	0.18 ± 0.04
an Ag	$RC-\beta$	≤0.004	0.027 ± 0.003	0.076 ± 0.008	0.29 ± 0.03	0.20 ± 0.03	0.17 ± 0.02	0.22 ± 0.03	0.28 ± 0.03
pd	$RC-\beta$		0.028 ± 0.004	0.097 ± 0.011	0.30 ± 0.04	0.24 ± 0.04	0.18 ± 0.03	0.26 ± 0.04	0.28 ± 0.05
	$RC-\beta$	0.005 ± 0.001	0.023 ± 0.004	0.099 ± 0.015	0.27 ± 0.04	0.23 ± 0.04	0.20 ± 0.03	0.20 ± 0.03	0.29 ± 0.04
1^{21} Sn ⁶	$RC-\beta$			0.063 ± 0.010	0.19 ± 0.03	0.14 ± 0.03		0.21 ± 0.04	
12' Slo	$RC-\beta$	0.003 ± 0.001		0.056 ± 0.011	0.22 ± 0.04	0.18 ± 0.03	0.15 ± 0.03	0.20 ± 0.03	0.26 ± 0.05
¹²⁹ Sb	$RC-\beta$	0.11 ± 0.02	0.09 ± 0.02	0.32 ± 0.06	0.64 ± 0.13	0.47 ± 0.07	0.37 ± 0.07	0.48 ± 0.07	0.40 ± 0.08
129 Slo	Å		0.20 ± 0.05	0.34 ± 0.05	0.90 ± 0.13	0.61 ± 0.09	0.58 ± 0.10	0.51 ± 0.07	0.62 ± 0.11
I I I I I	٨	1.40 ± 0.07	1.87 ± 0.08	2.13 ± 0.08	2.75 ± 0.16	2.01 ± 0.09	1.67 ± 0.10	1.76 ± 0.08	1.69 ± 0.09
¹³² Te(I)	γ	2.74 ± 0.08	3.25 ± 0.09	3.42 ± 0.10	3.80 ± 0.13	2.98 ± 0.15	2.72 ± 0.11	2.78 ± 0.11	2.77 ± 0.09
Icer	٨	4.11 ± 0.15	4.85 ± 0.15	5.19 ± 0.17	5.64 ± 0.19	4.51 ± 0.15	4.23 ± 0.14	4.34 ± 0.14	4.32 ± 0.12
¹⁰⁴ Te	٨	6.97 ± 0.44	7.44 ± 0.76	7.68 ± 0.61	8.08 ± 0.53	6.33 ± 0.40	6.62 ± 0.41	6.80 ± 0.51	7.16 ± 0.32
Icer	λ	5.92 ± 0.18	6.18 ± 0.17	6.12 ± 0.17	5.98 ± 0.19	5.38 ± 0.16	5.42 ± 0.16	5.49 ± 0.16	5.58 ± 0.15
¹³⁸ Cs	۲	6.36 ± 0.31	6.29 ± 0.27	6.18 ± 0.35	5.93 ± 0.28	6.04 ± 0.36	6.15 ± 0.37	5.85 ± 0.33	5.95 ± 0.34
15 ⁹ Ba	٨	8.34 ± 0.64	7.56 ± 0.62	7.56 ± 0.60	7.24 ± 0.88	7.05 ± 0.69	8.16 ± 0.77	7.49 ± 0.63	6.61 ± 0.71
140 Ba (La)	λ	8.95 ± 0.25	8.60 ± 0.23	8.01 \pm 0.20	7.75 ± 0.55	8.08 ± 0.23	8.70 ± 0.34	8.38 ± 0.23	$7,87 \pm 0,35$
¹⁴¹ Ba, Ce	λ	8.90 ± 0.45	7.69 ± 0.41	8.14 ± 0.41	7.37 ± 0.55	8.41 ± 0.63	8.00 ± 0.83	7.64 ± 0.61	7.27 ± 0.57
¹⁴² La	λ	7.23 ± 0.38	6.61 ± 0.39	6.27 ± 0.36	5.76 ± 0.43	6.51 ± 0.42	7.55 ± 0.94	7.01 ± 0.43	6.84 ± 0.36
^{14.5} Ce	٨	6.79 ± 0.38	6.45 ± 0.37	5.97 ± 0.35	5.59 ± 0.35	6.66 ± 0.40	7.67 ± 0.46	6.95 ± 0.41	6.94 ± 0.33
¹⁴⁶ Ce	٨	4.45 ± 0.65	3.71 ± 0.70	3.33 ± 0.43	3.07 ± 1.11	3.67 ± 0.62	3.11 ± 0.50	3.13 ± 0.46	3.88 ± 0.49
PN	λ	3.40 ± 0.97	3.32 ± 0.49	2.64 ± 0.34		3.02 ± 0.64		3.11 ± 0.57	2.88 ± 0.32
PNe PI	λ	1.38 ± 0.21	1.06 ± 0.16	1.10 ± 0.15	1.45 ± 0.35	1.17 ± 0.30	1.29 ± 0.22	1.02 ± 0.22	1.08 ± 0.17

 $\underline{22}$

MASS DISTRIBUTIONS IN....

155

FIG. 1. Mass-yield curves for monoenergetic-neutroninduced fission of ²³²Th.

from the fission yield data for monoenergetic-neutron-induced fission of ²³²Th are presented in Table III. The mean mass (first moment) of the light fission product group is seen to remain essentially constant over the E_n range of 2-8 MeV, while the mean mass of the heavy group decreases by ~ 1 u, indicating that the increase in neutron emission per fission $\overline{\nu}$ with increasing excitation

FIG. 2. Valley mass yields for 232 Th(*n*,*f*) showing third peak at symmetry.

energy is primarily from the heavy fragment. Values of $\overline{\nu}$ calculated from the mean masses are in reasonable agreement with experimental values based on direct measurement by fission-coincident neutron counting.16

Yield values for several valley fission products from the present work, combined with data from the literature, are plotted as a function of E_n in Fig. 3. Our data show clearly the effects of excitation energy on near-symmetric fission yields, i.e., the very sensitive increase in yield with increasing neutron energy, and distinct dips following the onset of second-chance fission (near E_n = 6 MeV), for which excitation energy is lowered by competition with neutron emission prior to fission. The latter effect was first seen by Bowles et al.¹⁷ in proton-induced fission of 232 Th.

In contrast with the valley region, the yields of fission products in the asymmetric peaks of the mass distribution are not strongly dependent on incident neutron energy, but the effect of secondchance fission is nevertheless clearly apparent in the yield data plotted for several complementary asymmetric masses in Fig. 4. Distinct breaks in the yield vs E_n curves are seen for several masses in both the light and heavy peak regions.

Compared in Fig. 5 are the fission yields of a peak (¹⁴³Ce) and a valley (¹¹⁵Cd) product as a function of E_n for ²³²Th(n, f) and ²³⁸U(n, f). Data for ²³⁸U are taken from our previous publication.⁷ Also shown (at the bottom of the figure) are the cross section curves for neutron-induced fission. Arrows indicate the approximate positions where second-chance fission (n, nf) becomes energetically possible. The more sensitive increase of valley yield with increasing E_n and the more pronounced effect of the onset of second-chance fission for ²³²Th are clearly visible.

TABLE III. 232 Th(n, f) mass distribution characteristics.

E _n	Peak-to- valley ratio	Mean n Light group	nass (u) Heavy group	v a	₽ ^b
2.0	1600	90.9	139.8	2.3	2.20
3.0	300	91.2	139.4	2.4	2.35
4.0	70	91.3	139.1	2.6	2.50
5.9	25	91.9	138.4	2.7	2.78
6.4	30	91.1	138.9	3.0	2.86
6.9	35	90.5	139.1	3.4	2.94
7.6	25	90.8	138.9	3.3	3.04
8.0	20	90.9	138.8	3.3	3.10
14.7	5	93.3	135.8	3.9	4.11

^aCalculated from conservation of mass.

^bEvaluated from experimental measurements by fission-coincident neutron counting (Ref. 16).

22

0.1

0.0

0.1

FISSION YIELD (%)

0.01 0.001L 5 10 15 20 5 10 15 20 5 10 15 20 En(MeV)

FIG. 3. Valley fission yields as a function of neutron energy for monoenergetic-neutron-induced fission of ²³²Th.

The reason for the abrupt changes in the 232 Th (n, f) yields at the onset of second-chance fission and the relatively small changes in the $^{238}U(n, f)$

FIG. 4. Peak fission yields as a function of neutron energy for monoenergetic-neutron-induced fission of ²³²Th.

FIG. 5. Comparison of peak and valley yields and fission cross sections as a function of neutron energy for monoenergetic-neutron-induced fission of $^{232}\mathrm{Th}$ and $^{238}\mathrm{U}.$

FIG. 6. Comparison of mass distributions for 232 Th(n, f) and 232 Th (γ, f) .

TABLE IV. Calculated and measured $^{115}\rm{Cd}$ yields for 6.9-MeV neutron-induced fission of $^{232}\rm{Th}$ and $^{238}\rm{U}.$

Fissioning system	$\frac{\sigma_{f1}}{\sigma_f}^a$	$\begin{array}{c}Y_1(E_n)^{\mathfrak{b}}\\(\%)\end{array}$	$\frac{\sigma_{f2}}{\sigma_f}^c$	$\begin{array}{c}Y_2(E_n-\epsilon_n)^{d}\\(\%)\end{array}$	$Y(E_n)$ (%) calc	$Y(E_n)$ (%) exp
232 Th (n, f) 238 U (n, f)	0.38 0.61	$\begin{array}{c} 0.50\\ 0.15\end{array}$	0.62 0.39	$\begin{array}{c} 0.011 \\ 0.009 \end{array}$	$\begin{array}{c} 0.20\\ 0.101 \end{array}$	0.20 ± 0.03 0.116 ± 0.012^{e}

 ${}^{a}\sigma_{f1}$ determined by extrapolating σ_{f} from the region of first-chance fission.

 ${}^{b}Y_{1}$ determined by extrapolating the fission yields from the region of first-chance fission.

 $^{c}\sigma_{f2} = \sigma_{f} - \sigma_{f1}$, where σ_{f} is the fission cross section at $E_{n} = 6.9$ MeV.

 ${}^{d}E_{n} - \epsilon_{n} = 2.5 \text{ MeV for } {}^{232}\text{Th}(n, f) \text{ and } 1.5 \text{ MeV for } {}^{238}\text{U}(n, f).$

^eData from Ref. 7.

yields is associated with the slopes of the yield vs E_n curves for the two fissioning systems. Once second-chance fission becomes energetically possible, the observed yield Y at energy E_n is given by the equation

$$Y(E_n) = \frac{\sigma_{f1}}{\sigma_f} Y_1(E_n) + \frac{\sigma_{f2}}{\sigma_f} Y_2(E_n - \epsilon_n) .$$
 (2)

The relative amounts of first- and second-chance fission yields are given by the ratios of first- and second-chance fission cross sections to the total fission cross section at E_n . The first-chance fission yield is evaluated at E_n , and the secondchance fission yield is evaluated at $E_n - \epsilon_n$, where ϵ_n is the amount of energy removed from the excited compound nucleus ²³³Th or ²³⁹U, by the emission of a neutron, and correction is made for the difference in fission thresholds between the firstand second-chance fissioning nuclei. If it is assumed that the yields of the second-chance fissioning nuclei ²³²Th or ²³⁸U behave in the same manner with E_n as the yields of the compound fissioning nuclei, then $Y_2(E_n - \epsilon_n)$ for ²³²Th is reduced relatively much more for a valley fission product than is the yield for ²³⁸U. Examples of the calculated ¹¹⁵Cd yields for ²³²Th(n, f) and ²³⁸U(n, f) with 6.9 MeV neutrons are given in Table IV. This type of analysis accounts well for the yields of fission products found in the heavy-mass groups for both 232 Th(n, f) and 238 U(n, f), but not too well for the yields of fission products found in the light-mass groups. The reason for this is that the yields of the heavy-mass fission products for ²³²Th or ²³⁸U fission do not change appreciably from those for

²³³Th or ²³⁹U fission, provided the excitation energy above the fission thresholds is the same for either ²³²Th and ²³³Th or ²³⁸U and ²³⁹U. However, there is a shift of yields in the light-mass groups such that the average mass of this group is ~ 1 u less for ²³²Th than for ²³³Th. A similar phenomenon is observed for ²³⁸U and ²³⁹U.

The shift in yield with fissioning mass in the light-mass group and the relative constancy of the heavy-mass group is illustrated in Fig. 6 in which the mass distributions for 2 MeV neutron-induced fission and 9 MeV photofission of ²³²Th are plotted. Photofission data are taken from the paper by Hogan et al.¹⁸ The ²³³Th compound nuclei are excited to ~ 7 MeV.¹⁹ The ²³²Th nuclei that undergo photofission have initial excitation energies from the fission threshold to 9 MeV. However, because of the enhanced photofission cross section at 6 MeV, most fission events occur in nuclei excited to this energy.¹⁸ Thus the initial excitation energies of the fissioning ²³³Th and ²³²Th nuclei are comparable to within ~1 MeV. The difference in excitation energies may account for some of the observed increase in ²³³Th fission yield for the heavy side of the light-mass group and the light side of the heavy-mass group. Other similarities in the two mass distribution are the fine-structure peaks at masses 134 and 140-141, but the finestructure peak at mass 93 reported for ²³²Th (γ, f) (Ref. 18) is not observed in 232 Th(n, f).

This work was performed under the auspices of the Office of Basic Energy Sciences, Division of Nuclear Science, U. S. Department of Energy.

- ¹G. P. Ford and R. B. Leachman, Phys. Rev. <u>137</u>, 826 (1965).
- ²S. M. Dubrovina, V. I. Novgorodtseva, L. N. Morozov, V. A. Pchelin, L. V. Christyakov, V. A. Shigin, and V. M. Shubko, Yad. Fiz. <u>17</u>, 470 (1973) [Sov. J. Nucl. Phys. 17, 240 (1973)].
- ³E. A. C. Crouch, At. Data Nucl. Data Tables <u>19</u>, 419 (1977).
- ⁴M. E. Meek and B. F. Rider, General Electric Vallecitos Nuclear Center Report No. NEDO-12154-2, 1977 (unpublished).
- ⁵S. A. Cox and P. R. Hanley, IEEE Trans. Nucl. Sci. <u>18</u>,

108 (1971).

- ⁶D. L. Smith and J. W. Meadows, Nucl. Sci. Eng. <u>58</u>, 314 (1975).
- ⁷S. Nagy, K. F. Flynn, J. E. Gindler, J. W. Meadows, and L. E. Glendenin, Phys. Rev. C 17, 163 (1978).
- ⁸K. F. Flynn, Argonne National Laboratory Report No. ANL-75-24, 1975 (unpublished).
- ⁹J. B. Cummins, National Academy of Science-National Research Council Publication No. NAS-NS-3107, 1962 (unpublished), p. 25.
- ¹⁰R. Gunnink and J. B. Niday, Lawrence Livermore Laboratory Report No. UCRL-51061, 1972 (unpublished).
- ¹¹J. Blachot and C. Fiche, At. Data Nucl. Data Tables 20, 241 (1977).
- $^{12}\overline{M}$. J. Martin, editor, Oak Ridge National Laboratory Report No. ORNL-5114, 1976 (unpublished); D. C.

Kocher, Oak Ridge National Laboratory Report No. ORNL/NUREG/TM-102, 1977 (unpublished).

- $^{13}\mathrm{K}.$ Wolfsberg, Los Alamos Scientific Laboratory Report No. LA-5553-MS, 1974 (unpublished). ¹⁴S. Amiel and H. Feldstein, Phys. Rev. C <u>11</u>, 845 (1975).
- ¹⁵B. R. Erdal, J. C. Williams, and A. C. Wahl, J. Inorg. Nucl. Chem. 31, 2993 (1969).
- ¹⁶F. Manero and V. A. Konshin, At. Energy Rev. <u>10</u>, 637 (1972).
- ¹⁷B. J. Bowles, F. Brown, and J. P. Butler, Phys. Rev. 107, 751 (1957).
- ¹⁸J. C. Hogan, A. E. Richardson, J. L. Meason, and H. L. Wright, Phys. Rev. C 16, 2296 (1977).
- ¹⁹W. O. Meyers and W. J. Swiatecki, Lawrence Radiation Laboratory Report No. UCRL-11980, 1965 (unpublished).