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The treatment of the Coulomb interaction in the multiple scattering theories of Kerman-McManus-Thaler and
Watson is examined in detail. By neglecting virtual Coulomb excitations, the lowest order Coulomb term in the
Watson optical potential is shown to be a convolution of the point Coulomb interaction with the distributed nuclear
charge, while the equivalent Kerman-McManus-Thaler Coulomb potential is obtained from an averaged, single-

particle Coulombic T matrix. The Kerman-McManus-Thaler Coulomb potential is expressed as the Watson
Coulomb term plus additional Coulomb-nuclear and Coulomb-Coulomb cross terms, and the omission of the extra
terms in usual Kerman-McManus-Thaler applications leads to negative infinite total reaction cross section
predictions and incorrect pure Coulomb scattering limits. Approximations are presented which eliminate these
anomalies. Using the two-potential formula, the full projectile-nucleus T matrix is separated into two terms, one
resulting from the distributed nuclear charge and the other being a Coulomb distorted nuclear T matrix. It is shown
that the error resulting from the omission of the Kerman-McManus-Thaler Coulomb terms is effectively removed
when the pure Coulomb T matrix in Kerman-McManus-Thaler is replaced by the analogous quantity in the Watson
approach. Using the various approximations, theoretical angular distributions are obtained for 800 MeV p + '"Pb
elastic scattering and compared with experimental data.

NUCLEAR REACTIONS 208Pb(p, p), E=0.8 GeV, Kermnn, McManns, a,nd

Thaler, and Watson multiple scattering theories, Coulomb correction terms,
high momentum transfer.

I. INTRODUCTION

At medium energies the theoretical description
of single particle projectile elastic scattering
from a many-body system of nucleons can be
formulated within the framework of the nonrela-
tivistic many-body Schrodinger equation. Two
popular approaches are the Watson' and the Ker-
man-McManus-Thaler (KMT)' multiple scatter-
ing formalisms. However, these and other simi-
lar presentations contain no explicit treatment of
the Coulomb interaction, ' ' although, for the three-
body system Coulomb effects have been studied in
detail. ' For practical microscopic analyses of
medium energy data the Watson and KMT approa-
ches are most often used, and the Coulomb inter-
action is generally included according to some ar-
bitrary prescription. ' ' Until recently, ' such pre-
scriptions have lead to adequate. descriptions of
proton-nucleus elastic scattering data.

However, the recent observation' of the unphy™
sical behavior of specific KMT results for 800
MeV P+ ""Pb elastic scattering at large moment-
um transfers was recognized to originate from the
inadequacy of the particular prescribed treatment
of the Coulomb interaction. This observation'
provides the motivation for the present study con-
cerning the role of the Coulomb interaction in

multiple scattering theory.
In Sec. II the Coulomb contribution to the Watson

and KMT optical potentials is examined in detail.
Although the lowest order Coulomb term in both
optical potentials consists of a convoLution of the
Coulomb interaction with the nuclear charge dis-
tribution, it is found that additional Coulomb-nu-
clear and Coulomb-Coulomb terms are required
for the KMT potential to make it equivalent to that
of Watson. Omitting these additional Coulomb
terms in KMT is shown to lead to negative infinite
total reaction cross sections and incorrect pure
Coulomb scattering predictions. Additional ap-
proximations are presented which eliminate these
anomalies. In Sec. III the results of numerical
calculations employing the various approximations
are compared to experimental data. A summary
of results and some conclusions are given in Sec.
IV.

II. THEORY

The goal of multiple scattering theory is to ex-
press the complicated projectile-nucleus scatter-
ing amplitude in terms of elementary projectile-
nucleon 7 matrices. ' ' In exact formulations these
p matrices are complicated many-body operators
and approximations are required to permit calcu-
lations. For charged projectiles the Coulomb and
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nuclear parts of the projectile-nucleon interaction
are mixed when forming the T matrices. The pro-
jectile-nucleus optical potentials of KMT and Wat-
son which are constructed thus involve products
of Coulomb and nuclear dependent parts, even in
first order4 (i.e., no target nucle'on correlations) ~

We now focus on the first order KMT and Watson
optical potentials and show that a few reasonable
approximations allow the Watson potential to be
cleanly separated into Coulomb and nuclear terms,
and that additional approximations are required to
achieve this separation in the KMT optical poten-
tial.

A. The Coulomb interaction in the Watson approach

Initially, we consider the projectile-nucleus op-
tical potential approach developed by Watson. ' In
this formulation one seeks a U~(E) which satisfies'

PT (Z)P = PU~ (E)P+PU~(E)PG(E)PT(E)P, (I)

where P projects onto the target nuclear ground
state, PT(E)P is the elastic projectile-nucleus
amplitude, and G(Z) is given by

G(E) = (E —h, -a„+iq)-' . (2)

In Eq. (2), Z is the parametric energy, h, is the
projectile kinetic energy operator, II„ is the tar-
get nucleus Hamiltonian, and the iq represents
the usual outgoing wave prescription. In the lowest
order Watson optical potential one approximates
PU~(E)P by

PU (E)P=PU "'(Z)P=QP~, (Z)P,

v, (E) =v, +v, G,(E)Qr, (E), . (4)

and G,(E) =(Z —h, +iq) '; Q=l —P. The N-N in-
teraction v, can be expressed as a sum of Coulomb
and nuclear parts: v, =v~~+v,"-. Because the Cou-
lomb force is both relatively weak and long ranged,
the role of intermediate Coulomb excitation is min-
imized, and a reasonable approximation is to as-
sume

Pv Q=Qv P=O

in Eti. (4). With these approximations, Pv, (E)P
becomes

PT, (E)P=Pv, P+P, Q[G (Z)-Q, Q]-'Q, P,

Pv, (E)P=PvcP. +Pv~P+Pv,"Q[6,'(E) —Qv, Q] 'Qv", P, .

P; (E)P =P P+LPv P+Pv "Q [ G,'(Z) —Qv "Q1 'Qv,"P]'+(Pv,". Q[ G. '(E) —Qv,'Q] '(Qv';Q)

x [ G,-'(E) —Qu,"Q—Qv, Q] 'Qv,"P},

Zr, (E)P=Pv', P+ [P7,"(Z)P] PU "'(E)P=PU "'(E)P=P+v P+PQ ~ (E)P

+ (Pv,"Q[G,-'(Z) -Q',"Q] '

x(Qv',. Q)[G, '(E) -Qv,"Q

-Qv'Q] 'Q "Pk (7)

We observe that the first term in square brackets
in Eq. (7) is the usual nuclear scattering operator
of the Watson prescription without the inclusion
of Coulombic effects. It is given by

~,"(Z) =vP+vPG, (Z)Q~,"(Z) .

If, additionally, we ignore the term in the curly
braces in Eq. (7) we find that PU ' '(E)P becomes

—PUwP+ PUw(1)(E)P (9)

In this approximation a complete separation be-
tween the Coulo'mb and nuclear parts of the Watson
optical potential is obtained. The Coulomb part is
just the classical static potential due to the ob-
served nuclear charge distribution. The optical
potential U "'is distinct from U~"'by the addi-
tional restriction that v; =Pv,- P. The ability of
U "' to successfully explain experimental elastic
scattering data is demonstrated in Sec. IIC. This
serves as justification for the simplified form of
the first order Watson optical potential given in
Eg. (9).

The structure of the approximation under dis-
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cussion is most readily apparent if we write the
Watson optical potential as'

where

T'(Z) =[(A —1)/A]T(z) . (16)

U«(E) = V + V Q(G(E) ' -VQ) 'V

with

(10) In this case the pseudopotential U~ is associated
with the Watson optical potential by the relation'

V Vc + V"=Ave +Av"

If we then impose PVc Q = QVc P = QVc Q = 0 on E(I.
(10) we immediately obtain

Uz [(A —1)/A]U +A 'UvvGPU«

where the explicit energy parameter has been
dropped. In the lowest order approximation,
U~ =U«"'=Qv, =Ax, and E(I. (17) becomes

(17)

=PU', P+PU, (z)P . (12)

pU (E)p PVGP+ p[ V«+ V«Q(G (E) 1 V«Q) 1 V «]p U'=U'"'=(A 1)T-+TG~U«"'=(A —1)(1 —TGOP) 'T

= (A —1)[1—(1-vG,Q) 'vG, P]

U(v(z) Uw(1)(Z) (13)

we obtain the first order Watson result displayed
in E(l. (9).

B. The Coulomb interaction in the KMT approach

The KMT formulation is designed to avoid the
double-counting error implicit in the replacement
of v((E) defined in E(I. (4) by

t, (z) =v, +v, G,(Z)t,.(Z). . (14)

This is done by finding a pseudo-optical potential
U«(E) such that

PT'(E)P =PU (E)P+PU (E)PG(E)PT'(E)P, (15)

This approximation again leads to a separation of
the Coulomb and nuclear contributions to the op-
tical potential. If circumstances warrant the ap-
proximation [i.e., the "impulse" approximation or
II„=0 in E(I. (2) and no target nucleon correla-
tions]

x(1 -vG, Q) 'v

=(A-1)t .
This is the first order KMT approximation and is
completely equivalent to the Watson prescription
in E(I. (3).

When Coulomb scattering must be taken into
account, however, we observe from the nature of
E(l. (17) that if U""' can be linearly divided into
Co~lomb and nuclear parts, then U~"' cannot be
similarly separated, . Thus, we now seek a method
to solve E(ls. (15) and (16) with U "'of E(I. (18)
when Coulombic effects enter the amplitude t. One
approach which uses the two-potential formula to
separate Coulomb and nuclear terms is given in
Appendix A. Another approach can be obtained
through the relation between the pseudo-optical
potential U and the Watson optical potential U

given by E(l. (17). Substituting the first order
Watson optical potential U "'of E(I. (9) into E(l.
(17) yields

PU/cp PUK(0) P [1 A-1PU(v(0) pG ]
-(

[(A I)/A]PU(v (0&p

=(1-A '[PUcp+A(1+Pt "PG,) 'Pt "P]G,] ' [(A —I)/A][PUcp+A(1+Pt"PGO) 'Pt "P],

= (A —1)(1-Pu, PG, ) '(Ptv, p+Pt "P)= (A -1)PtP, (19)

where

P(v, P=A '(1+Pt «PG0)PUcp . (20)

In obtaining the expressions in E(I. (19) the nuclear
T matrix t" defined by

is exploited. In the absence of Coulombic effects,
E(I. (19) reduces to the familiar lowest order KMT
result, viz. , PU«(0'P = (A —1)Pt «P. We further
note that in the absence of nuclear interactions Eq.
(19) becomes

t"=v "+v"G,t" (21)

is introduced, and the relation between t" and T",
- (A-1)(1-A 'PU', PG, ) 'A (PU'p-

gE ~0

~N t N t Eg p~N (22) = (A —1)Ptop . (23)
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Here, Pt P is the Coulombic T matrix due to the
single particle average Coulomb potential Pv, P
~A 'PUc P=A 'PQ)v(P, or

PtcP =Pv, P+Pv, PG+'tcP .
Further manipulation of Eq. (19) yields

Pt P = (1 —PN&, PG,) '(Pm, P +Pt "P)

(24)

Pt P =Pt NP + (1 -P v, PG,) 'P v, P

=Pt P+Pt P . (26)

=Pt "P+ (1 —Psu, PG,) 'Pro, P (1+ G, Pt "P)

(25a)

=Pt P+(I P((&, P-G ) 'Pt "P(1+0 Pt P) .
(25b)

I

If we are willing to assume that Pe, P=Pv, P,
based on the argument that the nuclear distortion
given by (1+Pt "PG,) is short ranged while the
Coulombic force is long ranged, then Eq. (25a) be-
comes

PvcP=Pv, P+Pv, QGOQrcP P—v, P . (30)

Therefore, a proper interpretation of the KMT
prescription for Coulomb scattering requires the
use of

PU, "'P = (A - I)Pt'P, (31)

Hence, the use of (A —1)v, for U~"' instead of
(A -1)tc entails a difference, DUAL"'=(A -1)
(tc v, ), whose imaginary part is

im&U. "'= —(A —I).t'5(Z —a,)t", (33)

which contains a familiar singularity because of
the infinite range of the Coulomb interaction. '
Omitting h, U~"' will, of course, manifest itself
most prominently in any attempt to relate the total
reaction cross section to the calculated small angle
scattering amplitude. This point will be discussed
below.

where t~ is obtained from Eq. (28). Using Eq. (28)
it follows that

UcN(0& = (A - 1)v, + (A - 1)v, (G, ' - v, ) ' v, . (32)

t~=v +v Qt~c c 0 (28)

just as we defined a nuclear averaged single-par-
ticle T matrix t" in Eq. (21). Under the assump-
tion v, =Pv, P, we obtain Eq. (24) from Eq. (28).
In contrast one can define T as

The same argument applied to Eq. (25b) gives

PtP=Pt P+(1+Pt PG(&)Pt P(l+G(&Pt P)j

(27)

which reduces to Eq. (26) if it is assumed that the
long range Coulombic distortions do not signifi-
cantly alter the nuclear T matrix Pt "P.

Thus, the lowest order KMT pseudo-optical po-
tential U "', which yields a final T matrix equiva-
lent to the lowest order Watson optical potential
Eq. (9), contains Coulomb-nuclear interference
terms given explicitly in Eq. (25). Additional,
reasonable approximations allow one to separate
the Coulomb and nuclear parts as in Eq. (26). It
is imperative to note, however, that here the low-
est order pseudo-optical potential Coulomb term is
obtained from the effective, averaged single-par-
ticle Coulombic T matrix Pt P and not from the
Coulomb interaction v~, as was the case in Eq. (9).
Thus, from Eq. (24) we are compelled to define a
Coulombic T matrix of the form

UN (0)
[(A I)(A] Uw + UK(1& +A-1

[(I —A '[1+ (A -1) 'UNN"'GoP]UcvGOP)

&( (U N' G(& PUc + [I.+ (A —1) 'UNN"'G, P]Uf G,P

&(([(A —I)/A]U,'+ U„'"']}], (34)

where

N(l& [(A I)(A]Uw(1 +A- U 1& G PU&((l& (35)

It is to be noted that U "' in Eq. (34) is equivalent
to that in Eqs. (19) or (25), where we identify

Ulc (1) (A 1)t N (36)

The lowest order Watson optical potential can be
expressed as

U'"' = U;+ [A((A —1)]U'"'-[»(A —1)']U "'

C. Summary and application to proton elastic scattering
at 800 MeV

We now concisely summarize the results of Sec.
II A and II 8. For clarity we reexpress the lowest
order Watson and KMT optical potentials. With
U '= Uc+ UN'"' from Eq. (9) and using Eq. (17)
we obtain

v =v, +v, Gofer (29) X[1+(A -1)-'G PU "']-'G.PUN"' (37)
and under the assumptions which led to Eq. (9) we
obtain using Eq. (35). The KMT and Watson optical po-
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ljm U

C "o
(38)

and in the limit of no nuclear interaction Eq. (34)
becomes

lim U»"' -[(A —1)/A]Uc

+ [(A —1)/A'] Uc G,P (1 -A ' Uc G, P) 'Uc ~ (39)

This latter expression is just the limit of Eq. (17)
with no nuclear forces.

In order to facilitate the discussion that follows,
Eqs. (34) and (37) are rewritten in the following
abbreviated forms:

tentials U "'and U~"'are expressed in terms of
U~ and U„"' for numerical convenience since the
latter terms ean be computed more readily than
U~"' or U~"'. In the limit of no Coulomb interac-
tion, U~c =0, Eq. (34) yields

tudes. From Eq. (34) or Eq. (39) we see that
U (0)(r) does not rapidly approach r ' as r-~ so
that numerical evaluation of Eq. (40) is complica-
ted by the occurrence of the U~ „~ correction.
Similarly U„„complicates the explicit calculation
of U~(0) in Eq. (41).

In order to evaluate Eqs. (1) and (15) using Eqs.
(40) and (41), these I.ippmann-Schwinger equations
are converted to nonlocal Schrddinger equations in
the usual way be defining T'(t) —= U»)I(' and T(t)
—= U~C, where G, '

(t) = 0. For simplicity we take
U„"' and U~~ to be local potentials in both Eqs-.
(40) and (41), but Uc „cand U„„are allowed to
be nonlocal as given by Eqs. (34) and (37). By
matching the Schrodinger equation solutions to the
appropriate outgoing wave boundary conditions,
phase shifts are obtained for all partial waves up
to L, ,„. Higher partial waves are assumed to be
dominated by the asymptotic (non-nuclear) part of
the optical potential. In the Watson approach the
full proton-nucleus scattering amplitude is given
(ignoring the spin of the projectile) by

U»(o) [(A I)/A]UIY+U»(1)+U

U~( ' =U~~+ [A/(A —1)]U ' '+U» „,
(40)

(41)

~max

f(&)=f, +& ' g
l =o

. ~C
(2l + l)e" '( e' ) sin5c) P, ( cso8),

(42)

where the definitions of U~ „~ and U„N are ob-
vious. Target nucleon correlations have been ne-
glected, the impulse approximation has been im-
posed and Pvc(Q =QvcP= QucQ = 0 are assumed in
both Eqs. (40) and (41). Both expressions yield
equivalent projectile-nucleus scattering ampli-

where f„and o, are the Rutherford amplitude and
Coulomb phase shifts for the charge product Ze',
k is the projectile-nucleus c.m. wave number, and

is the phase shift due to the nucl ear potential
and the distributed nuclear charge. In the KMT
approach, using Eq. (16),

~max

f(t))=[A/(A —1)] 6„+k ' g (2l 1)+e &2(e( & sin5c( P, (cose)
1=o

(43)

where, in general, F„and Z, are the scattering
amplitude and phase shifts due to the asymptotic
part of U»"' as given by the limit in Eq. (39). If
U~ „~ is neglected, .then F~ and ~, could, for
example, be the Rutherford amplitude and Cou-
lomb phase shift due to the point charge product
(A —1)Ze'/A, or 6:„and &, could be made equal
to the scattering amplitude and the total phase
shift resulting from the distributed nuclear charge
[(A —1)/A]Uc~ with no nuclear interaction included
(see Sec. III). The phase shift due to the short
range part of U~"' is denoted by 5g '.

Equations (40) and (41) will now be applied to
800 1VleV proton elastic scattering from "'Pb
where the data have been extended to high moment-
um transfer, 5.3 fm '.' The effects of U~ ~ ~ and

U„„on the differential cross section will be ex-
amined first. The potential U„"' is assumed to be

(A —l)t„)o,where t„„is the nuclear part of the
free N I(t T matrix a-ccording to Eq. (21), and P is
the ground state nuclear density form factor. '
The Coulomb potential U~ is obtained by folding
(e/r) with the nuclear charge density. The ex-
perimental data, the parameters for t,„, the
"'Pb matter densities, and further details of the
calculations are given in Refs. 6 and 7. For sim-
plicity, the spin dependence of t„„is omitted here
so that only the spin-independent effects of
U~ „~ and U„N are investigated. Also, because
of the high momentum transfer involved, the con-
vergence and numerical accuracy of the computer
calculations were carefully checked and verified
to be quite adequate.

The calculations of the angular distribution for
P+"'Pb elastic scattering at 800 MeV using Eqs.
(41) and (42) with Uz „omitted is shown by the
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FIG. 2. Percentage difference between the angular
distributions of KMT No. 1 and the Watson calculation in
Fig. & for p+ Pb at 800 MeV (solid curve). The same
quantity computed with Uc+= 0 is indicated by the dashed
curve. The solid (dashed) curve thus indicates the effect
of U&.& and Uc N c (Uz N only) on the angular distribu-
tion. The arrows denote the angular positions of the dif-
fractive minima in the Watson differential cross section
of Fig. 1.
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FIG. 1. Predicted and experimental angular distribu-
tions for 800 MeV proton elastic scattering from 2IPb.
The data are from Ref. 6. The first order Watson cal-
culation (solid curve) corresponds to Eq. (41.) with UN N
= 0 and Eq. (42). The 2Pb neutron matter density has
been adjusted to provide the best possible fit to the for-
ward angle data. Note that the angular scale has been
divided in two in order to improve the clarity of the fig-
ure.

solid curve in Fig. 1. The fit at forward angles
is excellent and the smooth diffractive pattern ob-
served over 10 decades in the data is reproduced
by the Watson calculation. The theory does how-
ever become out of phase with the data at higher
momentum transfer. This could be due to omis-
sion of any number of additional corrections. Our
interest here is in evaluating the effects of
Uc- N c and UN N so these additional, physically
important corrections are beyond the scope of the
present work.

Since U„N has been omitted in the calculation
of Fig. 1, its effect on the cross section must be
ascertained. This is done by setting Uc =0; then
Eqs. (40) and (41) reduce to

UK (0) UK (1) (44)

Uw(0) —[Aj(A 1)]U&u)+U (45)

Calculations were made assuming Eq. (44) and

U ' ' =[Aj(A —1}]U„"'.The difference in the cross
sections is therefore due to U„„. The result is
indicated by the dashed curve in Fig. 2, where it
is seen that this term affects the angular distribu-
tion by only a few percent. The full Watson calcu-
lation including U„„would therefore be very sim-
ilar to the result shown in Fig. 1. The qualitatively
good agreement out to 42' c.m. between experi-
ment and the approximate first order Watson cal-
culation in Fig. 1 partially justifies the assump-
tions which led to Eq. (9) [i.e. , Eq. (5) and ignoring
the Qvc@ term in Eq. (7)]. Regarding the discrep-
ancy between theory and data observed at the back
angles in Fig. 1, one should reexamine the various
approximations leading to Eq. (41) as well as the
additional approximations made in the numerical
calculation.

In order-to ascertain the effect of Uc N, c, U "'
is set equal to ][(A —1}/A]Ue + U»

' ') and the result
is compared to the solid curve in Fig. 1. The dif-
ference in these two differential cross sections is
due to both Uc- N. c and U„„. With Uc- N, c
U~'0' -[(A —1)/A]U~~ as r -~, and the proton-nu-
cleus scattering amplitude in this approximation,
from Eq. (43), is

f"'(0)=[A/(A —1)]' fz'+0 ' g (2l+1)e" I e' &'sinbi'P, (cos8)
1=0

(46)
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where f„' and vI are the Rutherford amplitude and
Coulomb phase shifts corresponding to the poten-
tial (A -1)Ze'/(Ar) as explained above. The KMT
calculation with Uc „c= 0 and f "'(8) computed as
in Eq. (46) will be referred to as KMT No. l.
Comparing the cross section prediction using KMT
No. 1 to the Watson prediction in Fig. 1 produces
the solid curve in Fig. 2. The effect of both U„„
and Uc ~ c is seen to be small, about 1-2%. The
comparison of the solid and dashed curves con-
vinces us that the effect of Uc ~ ~ alone on the
angular distribution is also small, about a few
percent.

As mentioned earlier one result of omitting
U~ „~ in the KMT approach is that the predicted
total reaction cross section obtained from Eq. (46)
is negative infinity. This occurs because the in-
finite total cross section due to [4vA/
(A —l)k] Imf +(0) is not exactly canceled by the
infinite elastic total cross section due to [A/
(A —1)]'J I f„'

I
'dQ when evaluating the nuclear

total reaction cross section. ' Omitting U~ ~ c
disrupts the equality between U "' and U~"', even
in the pure Coulombic interaction limit. Because
of this the KMT No. 1 approach with U„"'=0 will
fail to yield the correct scattering amplitude from
either a distributed or point charge.

The straightforward way to avoid these difficul-
ties is to include U~ ~ ~ in the KMT calculation
and evaluate Eq. (43). The difficulty of actually
computing Uc ~ c [see Eq. (34)] is readily appar-
ent, and the next section of this paper is devoted
to a simpler but less direct approach aimed at ac-
counting for U~ „~. An attempt is made to find
some additional aPP~oximation to the KMT calcu-
lation which eliminates the predominant ill effects
caused by the omission of U~ „~. The criteria
used to select an acceptable additional approxima-
tion are that the following be obtained: (1) a finite
total reaction cross section, (2) a reasonable re-
production of the Watson differential cross section
in Fig. 1, (3) the correct U~~"' =0 limit, and (4) the
point charge, Rutherford scattering limit.

III. ADDITIONAL CORRECTIONS FOR THE KMT
CALCULATION

The discussion in the previous section points out
the unacceptable problems which arise in approxi-
mate KMT calculations which omit U~ ~ ~. In this
section an attempt is made to find additional ap-
proximations which partially cancel the effects
produced by the omission of U~ „~. We therefore
wish to modify the projectile-nucleus scattering
amplitude constructed from the KMT optical poten-
tial in Eq. (40) with Uc „~= 0 so that it resembles
the exact scattering amplitude as closely as pos-

sible. The exact result can be obtained either from
Eqs. (15), (16), and (40) or from Eqs. (1) and (41)
with U~ ~ ~ and U„„included, respectively. The
exact T matrix referred to here makes use of the
full optical potentials in Eqs. (40) or (41) and is
not meant to imply a complete evaluation of the
entire KMT or Watson optical potentials. ' ' The
Watson approach will be used to express the exact
T matrix since Eq. (41) contains no Coulomb cor-
rection term. The formal development necessary
to this section is the subject of Appendix B.

From Eqs. (1) and (9) the exact projectile-nu-
cleus T matrix is given by

T " = TCoul+ TC-N = T„+T{hst + Tc-N (47)

+ T Q{( + TKMT
Coul C-E & (48)

where T~„, is the T matrix resulting from the
scaled Coulomb potential [(A —1)/A]Uc, TcK"~~- is
the Coulomb distorted nuclear T matrix in KMT,
and T is defined by

T" =[A/(A - I)]T,'.„, T,.,
-

By comparing Eqs. (47) and (48) it is seen that
replacing[A/(A —1)]Tc,„, with Tc,~ (or dropping
Zco) in Eq. (48), will yield a projectile-nucleus
T matrix which more closely resembles T'""'.
Omitting Tcc in Eq. (48) therefore yields a new
prescription for the KMT projectile-nucleus T
matrix, which is denoted as KMTNo. 3 and is
given by

T (KMT No. 3) = Tc,„,+ T c (50)

In the separate limits of no nuclear or no Coulomb
interactions T'""' and T(KMT No. 3) are equiva-
lent,

The omission of U~ ~ c leads to T(KMT No. 1)
in Eq. (48) which contains' the long range Coulomb
correction amplitude T and a nuclear scattering
amplitude which differs from that in T'""' by the
Coulomb distortions. The term T is the cause
of the negative infinite reaction cross section and
the improper pure Coulomb force limit. By omit-

where T~ is the T matrix resulting from a point
charge product Ze', T~~, is the projectile-nucleus
T matrix which arises from the spatial distribution
of the nuclear charge, and Tc,„, is the full project-
ile-nucleus T matrix corresponding to Coulomb ef-
fects acting alone. The Coulomb distorted Watson
nuclear T matrix is given by T~""~.

We now turn to the KMT approach. Using Eqs.
(15), (16), and (40) with Uc „~=0, the projectile-
nucleus T matrix becomes

T (KMT No. 1)=[A/(A —1)]To,„,+ TP "~
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ting this term to obtain T(KMT No. 3) the anomal-
ies caused by the omission of Uc ~ c have been
partially corrected. T(KMT No. 3) still differs
from T'""'by the Coulomb distortion effects on
the nuclear amplitude but this remaining difference
should be inconsequential compared to the differ-
ence caused by Tcc

Although the approximation leading to Eq. (50)
appears to be sufficient, it is instructive to dis-
cuss a different approximation to T(KMT No. 1)."'
This involves replacing[A/(A —1)]T„' with T„ in
Eq. (48), where T„' corresponds to scattering from
the reduced point Coulomb potential [(A -1)/
A]Ze'/r. This provides an alternate prescription
for removing the long range part of Tcc from Eq
(48). Hence, T(KMT No. 1) becomes

T (KMT No. 1) = [A/(A —1)](T„'+T~c,
'

) + T ~~

IO'

I04

E IO'

Z',
O
I—
olo
LJJ
V)
(A
(/)

CL
olo
o

Io

IO I5 20

= T„+T""+[A/(A —1)]T~,'+ Tc"~~,

(51)
where T~, ' results from a spatially distributed
nuclear charge which is reduced in strength by
(A —1)/A and T""=-[A/(A. -1)]Tz —Tz. The addi-
tional approximation suggested here is to omit
T"", yielding

T(KMT No. 2) =T„+[A/(A —1)]T d
' tT+c~ ~ (52)

The residual differences between T(KMT Nos. 1,
2, and 3) and T'" ', when expressed as

Io
I

l I

I I I I I I I I I I I I I I I I

25 30 35

FIG. 3. The 800 MeV p+ @Pb predicted elastic angu-
lar distribution of KMT No. 2 (dashed curve) compared
with the data and the Watson calculation of Fig. 1 (solid
curve).

T'""' =T(KMT No. i)+Tq (53)

are given explicitly in Appendix B. Qualitatively
the nature of each T, is as follows. Each of these
three KMT prescriptions differs from the exact
result in the Coulomb distortions of the nuclear
T matrix. However, T, contains the long ranged
Coulomb squared term T~~ of Eq. (49), T, con-
tains a strong, short ranged Coulomb squared
term, while T, contains no further Coulomb
dependent terms. The presence of T in T, pre-
vents KMT No. 1 from yielding finite reaction
cross sections or the correct pure Coulomb scat-
tering limits. The strong, short range nature of
T, permits one to calculate finite reaction cross
sections and to recover the correct Rutherford
scattering limit with KMT No. 2; however, the
pure Coulomb scattering from a distributed charge
is not correctly obtained. Also the strong, short
ranged part of T, can be expected to produce
noticeable effects in differential cross section
predictions. Clearly, T(KMT No. 3) best approx-
imates T'~' .

The partial wave expansions corresponding to
T. (KMT Nos. 2 and 3) can be obtained from the
analogous series for T(KMT No. 1), Eq. (46), by
simply replacing [A/(A —1)]f„with f~ and [A/(A —1)]

&&fc,„,with fc,„,, respectively, where f„(f„')and

fc,„, (fc',„)are the Rutherford and full Coulomb
scattering amplitudes corresponding to the unscaled
[scaled down by (A -1)/A] nuclear charge.

The angular distributions for p+ Pb at 800 Me&
predicted by KMT Nos. 2 and 3 [see Appendix B,
Eqs. (B27) and (B32)], in which the same values
of U~~ and U~"' are assumed as given in Sec. II
(U~ „c=0), are shown in Fig. 3 by the dashed
curve and in Fig. 4 by the solid curve. The angu-
lar distribution prediction of KMT No. 2 is rea, -
sonable at forward angles but deteriorates signi-
ficantly at large momentum transfer near 35 c.m.
The KMT No. 3 angular distribution is very simi-
lar to the Watson result in Fig. 1, and the differ-
ence between the two is shown by the solid curve
in Fig. 4. The difference is typically only 1-2/o.
Recall that the Watson calculation displayed in
Fig. 1 omits U„„sothat this curve is not pre-
cisely the same as that which would result from

However, from Fig. 2 we see that little
difference between the P+ "'Pb angular distribu-
tions corresponding to U "'= Uc + [A/(A —1)]U~, '& '

and T' "is expected; hence from Fig. 4 we note
that the Coulomb distortion error of KMT No. 3
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FIG. 4. Percentage difference between the angular
distributions of KMT No. 3 and the Watson calculation in
Fig. 1 for 800 MeV p+ Pb. The solid curve here is in-
distinguishable from the solid curve in Fig. 2 beyond 10'
c.m. ; this implies that the long ranged Coulomb squared
correction T of KMT No. 1 affects the angular distrib-
ution only at very forward angles. The arrows indicate
the positions of the diffractive minima in the Watson cal-
culation of Fig. 1.

is very small for this particular case. At moder-
ate and back angles & 10 c.m. the angular distri-
bution predicted by KMT No. 3 is indistinguish-
able from that of KMT No. 1, but recall that this
new prescription does not suffer from the defects
of KMT No. 1. The KMT calculations Nos. 1 and
3 differ by the long range Coulomb amplitude T
Eq. (49) [in Appendix B compare T, in Eq. (B22)
with T, in Eg. (B26)]. Although omitting Tcc in
KMT No. 3 removes the negative infinite reaction
cross section, its effect on the angular distribution
is very small and is confined to forward angles
(compare the solid curves in Figs. 2 and 4) which
is expected because of the long range nature of

TCc

The relative success of each of these KMT meth-
ods (with Uc „o=0) in meeting the four criteria
listed at the end of Sec. II is given in Table I. In
addition, the qualitative nature of the differences
between these three KMT scattering amplitudes
and the exact amplitude (i.e., T„T„and T,) is
summarized here also. The long range Coulomb
nature of T, accounts for the three failures of
KMT No. 1 in Table I. Since the infinite Coulomb
amplitude in f' ' and f' ' is in the form of an un-
scaled Rutherford amplitude f„, KMT Nos. 2 and
3 both yield finite total reaction cross sections.
The remaining short range Coulomb correction
to KMT No. 2 prevents the U„"'= 0 limit from
being correctly obtained and explains the anomal-
ous structure in the large angle angular distribu-
tion. The remaining correction to the Coulomb
distortion of the nuclear scattering amplitude is
present for KMT Nos. 1, 2, and 3. From Table
I, Fig. 4, and the definition of T, thi. s remaining
Coulomb distortion effect is seen to be of minor
importance for this case.

From Table I we see that KMT No. 3 alone
meets all four criteria successfully, and hence is
the best prescription for canceling the effects due
to the omission of Uc „c in Eq. (40). While this
is true for P+"'Pb at 800 MeV, the success seen
here might be merely fortuitous. Tests similar
to those conducted here should be carried out on a
case by case basis for other applications of KMT
at high momentum transfer.

The peculiar KMT result of Ref. 6 may now be
explained. The calculation in Ref. 6 is very simi-
lar to KMT No. 2 and uses a prescription which is
given by'

TABLE I. The relative success of KMT Nos. 1, 2, and 3 in meeting various criteria and the qualitative nature of the
differences between T(KMT Nos. 1, 2, and 3) and the exact scattering amplitude T'"~ .

KMT No.
2

ORETC flnlte
Correct UN'~ =0
limit

Correct point
charge limit

Reasonable
do/dO

Qualitative
nature of T;
corrections

No
No

No

Yes

Alteration of Coulomb
distortion of nuclear
amplitude

long range Coulomb
squared, moderate
short range dependence

Yes
No

No

Alteration of Coulomb
distortion of nuclear
amplitude

+
sizable short range
Coulomb squared
dependence

Yes
Yes

Yes

Yes

Alteration of Coulomb
distortion of nuclear
amplitude
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~max . ~u
f(Ref. 6) =fz +[A/(A —1)]k ' g (2l+1)e2('(e' ( sin6c( P, (cos8), (54)

where 6, " is the phase shift obtained from match-
ing the Schr5dinger equation solution for the opti-
cal potential (U»c+U„"') to Coulo'mb wave functions
which are based on the point Coulomb potential
Ze'/r. Explicit calculations demonstrate that
KMT No. 2 and Eq. (54) yield very similar angular
distributions (see Fig. 3) when the same Uc» and
U "' are used. Thus the physically unreasonable

208structures in the large angle p+ Pb elastic angu-
lar distribution of Ref. 6 and Fig. 3 for KMT No. 2

have a common origin. The problem is due to the
omission of U~ » c in Eq. (40) and an improper
cancellation of this effect in going from Eq. (46) to
KMT No. 2 or Eq. (54). In particular, the residual
short range Coulomb correction in 7, would have
to be added to the amplitudes in KMT No. 2 and

Eq. (54) or in Ref. 6 in order to significantly
change the back angle cross section. The actual
calculation in Ref. 6 includes a spin-dependent,
second order KMT optical potential, ' but these
additional refinements do not affect the large angle
irregularity.

While KMT No. 3 removes the gross problems
which originate from the omission of U~ „,~ it is
clear from Eq; (53) for T, and Fig. 4 that the full
U»'0' in Eq. (40) is not being computed exactly.
One possible way to insure that 7' " is being
evaluated accurately is to compute U„„in Eq.
(41) and use the Watson partial wave expansion
Eq. (42) to obtain the proton-nucleus scattering
amplitude. If one assumes U~ =0 such that U "'
=U„"' then the equivalent Watson potential U„"'
from Eq. (17) is

( A & U(('(&~
) = [ (A 1) &U»(&~]

+[-(A 1) U "']G P(-A ~U»"'}

(55)

where we have multiplied through by (-A ').
Equation (55) is of the form T =V + V G, PT, so
that a Lippmann-Schwinger or SchrMinger equa-
tion solution for the "1' matrix" with the "optical
potential" [- (A —1) 'U»"'] yields the equivalent
Watson potential upon multiplication by (-A).
Since U~»"'+L/(A —1)]U»»"'+U»» U„„has thus
been included. The resulting proton-nucleus scat-
tering amplitude can be readily evaluated from
Ulv(0) Uw+ Uw(1) and Eq. (42)

Finally, since analyses which examine nuclear
matter density distributions are predominantly
affected by the forward angle elastic scattering

data (q & 2.5 —3.0 fm ') """the U»» and

U~ „~ corrections are not significant in such
analyses, at least for this particular case. Fur-
thermore, the forward angle calculation and any
deduced matter density distributions will be unaf-
fected by the various additional approximations
represented by KMT Nos. 2 and 3. The full signi-
ficance of the Coulomb effects discussed here be-
comes apparent only for multiple scattering des-
criptions of charged projectile scattering at high
momentum transfer.

IV.. SUMMARY AND CONCLUSIONS

The approximations necessary to separate the
first. order Watson optical potential into Coulomb
and nuclear terms have been specified and the
equivalent KMT optical potential derived. It was
shown that Coulomb-nuclear and Coulomb-Coulomb
cross correction terms are obtained in KMT. Al-
though this KMT, Coulomb correction term
U~ „~has a minor effect on angular distribu-
tions, its omission results in negative infinite
total reaction cross sections. Two further ap-
proximations which are motivated by comparing the
final proton-nucleus T matrices evaluated with and
without U~ „,~ are presented. Both avoid the in-
finite reaction cross section anomaly, but one pro-
duces a physically unreasonable angular distribu-
tion at high momentum transfer. The prescription
which more effectively recovers the full 1' matrix
produces reasonable angular distributions, gives
the correct Coulomb scattering li.mit, recovers
the Rutherford scattering amplitude in. the ex-
treme limit of a point charge target, and gives a
finite total reaction cross section. This prescrip-
tion KMT No. 3 expresses the full proton-nucleus
scattering amplitude as a sum of two amplitudes
which alternately vanish when either Uc~ = 0 or when
U~"' = 0. The Coulomb amplitude is constructed
to be the scattering amplitude which would result
from the potential U~» with no (A -1)/A scaling.
The final projectile-nucleus T matrix of KMT No.
3 continues to differ from the exact T matrix with
respect to the Coulomb distortion of the nuclear
T matrix. While this effect is quite small for the
particular case considered here one should care-
fully examine the importance of this remaining
Coulomb distortion error for othertargets and en-
ergies.

Our attempt to find two approximations [i.e.,
setting U~ » c = 0 and replacing [A/(A —1)]f', with

fc,„,] which will cancel one another provides a
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satisfactory alternative to the difficult task of
evaluating UG „G directly, at least for the partic-
ular case examined here. Another practical ap-
proach would be to evaluate U„„directly as dem-
onstrated in Eq. (55) and calculate the projectile-
nucleus scattering using the Watson optical poten-
tial and Eq. (42). Finally the main discussion in
this work is relevant to any charged projectile-
nucleus (protons, )(', kaons, etc. ) elastic scatter-
ing at high momentum transfer. However, the
Coulomb related effects discussed here are of
minor importance at forward angles where recent
nuclear matter distribution studies have concen-
trated. ' ' "'"

g(-)t (1 ~(-)1' VCG)-). (A9)

The standard approximation for the treatment of
the Coulomb term is given by

Z

V' =PV'P =P ~ P=PU P (A 10)

PTP=PTP=PT P+(1 P(()„— PV PG )

x PT„P(1—G, PVcP)-'

In this case the elastic scattering as given by Eq.
(A6) becomes
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g(-)1' (1 ~(-)1'PVcpG )-) (A13)

where

PT, P=PV P+PV PG, PT, P =PV P(A), P, (A12)

APPENDIX A &8, = (1 —G, PVcp (A14)

T=T +0( )tVE
c c (Al)

where the external interaction potential V is sep-
arated into

An alternate approach to that presented in Secs.
II and III for the inclusion of Coulomb effects in
the KMT prescription is given here. The separa-
tion of Coulomb and nuclear scattering is best ac-
complished by means of the so-called two-poten-
tial formula. One familiar form of that relation
1s

We note that Eq. (A6) is exact, and that Eq. (All)
is exact to within the Coulomb approximation ex-
plicitly presented in Eq. (A10) with the replace-
ment of G by G,.

The first order Watson approximation for PT„P,
given by

PT„P=PT"'P=PU "'P+PU "'PG,PT"'P

(A15)

with

V=V +V"

with

(A2)
PU~"'P =P ~,"P=APv "P, (A16)

g, -V e
(() =(1-GV )

'

0' ' =1+O' ' VG .

(A8)

(A4)

(A6)

when inserted into Eq. (All) yields the identical
result given by Eq. (9).

We may calculate the quantity PT„P which ap-
pears in Eq. (All) according to the KMT prescrip-
tion as discussed in the main text. The first order
KMT nuclear optical potential

After some straightforward manipulation, Eq.
(Al) may be reexpressed as

T=Tc+(dc '
TN(dc ~

(A6)

PL('„")P=(A 1)Pt P-
may be used to calculate the scaled T matrix

PT'„P =I (A —1)/AjPT~P,

(A17)

(A18)

where

VE+ VNGg VE~ —~( ~t Vs
N N . N 8

~(- ) 't
(1 V J)(G)-1

(Av)

(A8)
PUGP=PV P (A19)

may be used to calculate the Coulomb I matrix
PT, P. The Coulomb distorted wave function oper-

from which the quantity P1'~P follows immediately.
Similarly the Watson Coulomb optical potential
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ator PQ, P can be readily evaluated using Eq.
(A12), PVcP, and the solution for PT, P implied
by PVcP. The distorted wave function operator
P~', '~P can be evaluated in an analogous manner
with the modified Coulomb optical potential
P~'„' PV P. Then the distorted wave matrix ele-
ment of PT„P as given in Eq. (A11) may be calcu-
lated and added to PT+ to yield PTP. This pre-
scription represents an appropriate modification
of the KMT procedure in the presence of the Cou-
lomb field. The calculations implied here are of
course equivalent to that demanded in Eqs. (9),
(25), (40), or (41). The value of the expression in
Eq. (A11) is that approximations are readily sug-
gested. For instance, it is probable that in most
circumstances of interest P&+ can safely be re-
placed by P(d+. In fact, over a very wide range
of energy and momentum transfer it may be suffi-
cient to approximate both P~Q and P(d+ by unity,
in which case the prescription of Eq. (All) be-
comes particularly uncomplicated.

APPENDIX B

Texact T + T exact
Cou] (B2)

where T is the projectile-nucleus T matrix re-
Coul

suiting from Uc~ alone. It is given by

Tc,~ =[1 —Uc GcP] 'Uc .

Solving for T c"'„yields

Texact [1 (UW+UW(1) )G P] -lU [1 G PU ] 1

(B4)

which is the Coulomb distorted nuclear T matrix.
The Coulomb T matrix can be further separated
into a point Coulomb p'art (Rutherford amplitude)
and a term which depends on the distributed nu-
clear charge. Thus the exact T matrix may be

The formal development of the KMT Coulomb
prescriptions of Sec. III, including the relation-
ships between KMT Nos. 1, 2, and 3 is given here.
This appendix demonstrates that an additional ap-
proximation (to the Coulomb amplitude) can be
made which, when imposed on the projectile-nu-
cleus T matrix constructed from the KMT optical
potential of Eq. (40) with Uc ~. c =0, yields a bet-
ter KMT approximation of the exact T matrix.

The exact projectile-nucleus T matrix is con-
structed using Eqs. (1) and (9) and is given by
(elastic channel projections of the operator rela-
tions in this appendix can be readily made)

Texact [I (UW+ UW(1) )G P] -1(UW + UIV(1)) (BI)

A more convenient form is obtained by invoking
the two-potential formula. Then T'x"' becomes

written as

T exact T + TC + T exactB, dist C-N &

where

T„=(1 —Uvt G()P) 'Uyt,

Tc (1 UwG P) 1U-lv t (1 G PUc )-1

(B6)

(Bv)

On-shell matrix elements of the operator T~ in
Eq. (B6) yield the usual Rutherford amplitude.
In these equations the Coulomb potential Uc~ is
divided into point and distributed terms,

Us' Uc + U%'&c ut c (B8)

where Uvct =Ze'/&. Note that Ucw' vanishes for
r»R„„,, R„being the nuclear radius. Equation
(B8) divides the Coulomb potential into long and
short range parts.

The projectile-nucleus T matrix for KMT No. 1
is obtained with Eqs. (15), (16), and (40) with

Uc-N, c =0 and is

T(KMT No. 1)= (]1 -[(A —1)/A]Uc+ U)„.
' '}G()P )

x JUwc + [A/(A —I)]U'„")}. (B9)

T (KMT No. 1)= Tc,~ + T c + Tc (B13)

where

T = -A ((I —[(A —I)/A]UCGI)P} (UCGO

&&Pic[1 —G(IPUc] '. (B14)

The KMT No. 3 prescription is obtained by drop-
ping the Tcc term in Eq. (B13) yielding T(KMT No.
3) in Eq. (50). To obtain T(KMT No. 2) we start

As before, a more convenient expression can be
obtained with the aid of the two-potential formula.
If Tc,~ is defined to be the T matrix resulting
from [(A —1)/A] Uc, then

[A/(A —l)]Tc,„,=f1 -[(A —1)/A]UcGOP} Uc .
(B10)

Writing the full T matrix in Eq. (B9) as

T(KMT No. 1)=[A/'(A —1)]TC,~+ Tc~~ (B11)

yields

TKM' =(1/(A -1)/A]Uw+U""}G, P) '
x [A/(A 1)]U~"'(I [(A 1)/A]G PU }-'

(B12)

which is the Coulomb distorted nuclear T matrix
in KMT. Finally, defining T to be ([A/
(A —l)]Tc»1 —T«„I}the projectile-nucleus T ma-
trix for KMT No. 1 becomes
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with Eq. (B11) and define

C
Thou~ TA Tdjst

+ TKMT (B16)

where

[A/(A —1)]T„'=(1 —[(A —1)/A]U, GQ) (U t, (B17)

[A/(A —1)]T„„'=(1—[(A —1)/A]U GOP] 'Uw'

&&(1 —[(A —1)/A]GOPU„) ' . (B18)

Evaluating ([A/(A —l)]T„' —T„)with Eqs. (B6) and
(B17) yields

T "=—[A/(A —1)]T„—Tg

=(1 —[(A —1)/A]U„GOP] '(-A 'Up( G, PUp, )

x [1-G,PUp, ] (B1.8)

The expression for T(KMT No. 1) becomes

T(KMT No. 1) =T~+ T""+[A/(A —1)]Tdc;„'+Tc-))( ~

(B20)

The correction term T~~ has been constructed to
yield the long range limit of T . Omitting T in
Eq. (B20) yields T(KMT No. 2) of Eq. (52).

The differences between T(KMT Nos. 1, 2, and
3) and T'""' can be evaluated by solving (where i
=1, 2, and 3)

T'""'=T(KMT No. i)+T) (B21)

for each T, . The difference corresponding to
KMT No. 1 is

T =Tea' —T" —Tcc
1 C-N C-N (B22)

The operator T, becomes 0 and —T in the limit
of no Coulomb and no nuclear potentials, respec-
tively. The long range part of T& is contained in
T . Solving for T, yields

T, = To""N —Tq~+ T —[A/(A —1)]Tc ' (B23)

which becomes, with the aid of Eqs. (B7) and (B18),

then

T(KMT No. 1) =[A/(A —1)]Tz + [A/(A —1)]T~,,
'

T =T'"'0' -TKMT +2 . c-E c-E c c

X(A z(Uw G PUw&i+ Uw sG PUc )

—[(2A —1)/A'] Uc G, PUC
'

G, PU~&'Iur~t &uvt, .

(B24)

The operators in Eq. (B24) are given by

w (1 UwG P)-1

~w' (1 [(A —1)/A]UcGoP I

(1 Go PUpt )

(o'q —(1 —[(A —1)/A]G ()PU„j

(B25a,)

(B25b)

(B25c)

(B25d)

Because the third term in T, in Eq. (B24) is pro-
portional to Uc', T, is short range in character.
From the definition of Ucw' in Eq. (B8) we see that
Uc '- —~ as &- 0 so that this part of T, could very
likely have important consequences. In the limit of no
Coulomb potential T, becomes 0 but if the nuclear
potential is neglected, T, becomes equal to the
third term in Eq. (B24). In the point charge limit
Ucw'-0 and T, -O so that T(KMT No. 2) recovers
the Rutherford scattering result. Finally, T, is
given by

3 C N C (B26)

which contains no long range parts and vanishes
if either Uc or U„"' are set to zero.

The partial wave expansion corresponding to
KMT No. 2 can be obtained by replacing [A/(A —I, )]
xf„' with f„ in Eq. (46). The result is

~ max

f'"(9)=f„y[A/(A 1)]y-~ Q (2~+1)e'*') e"&
l=a

x sin5, 'P, (cosg),
(B27)

where f~ is the Rutherford scattering amplitude
evaluated from the operator relation in Eq. (B6).
The prescription used to generate KMT No. 3 from
KMT No. 1 is to replace [A/(A —1)] f~',„, with f
where these two amplitudes correspond to on-shell
matrix elements of the operators in Eqs. (B10) and
(B3), respectively. To evaluate the partial wave
expansion for KMT No. 3 we start with the partial
wave series for KMT No. 1, Eq. (46), which is
rewritten as

Lm

f"'(s)=(&/(& —&))(s))') ' g (2)+))(s-'" ' —))s(ooss)+ F , (2)+))(s" —1)P,(ooss)
-l=0 max

(B28)

where 6, ' = 5, '+ v,' is the total phase shift, and it is assumed that 5, ' = o', for I & L,„. To this partial wave
series is added and subtracted the quantity
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(B29)

(Bso)
l=o

~ma

[A/(A —l)](2ik) ' g (2l+ 1)(e"'& —l)P, (cos8),
l=o

where v~' is the total phase shift due to[(A —1}/A]Ue acting alone. If we assume that o, '=v,' for I &L
then the amplitude of Eq. (46) becomes

~ max

f' '(&)=(A/(4 —))]Ift,',~(e)+(2A) 'g (2)+))e" r' [e"' r 'r ' —))P(cos6)I,
l=o

which is in the form of Eq. (43). In Eq. (B29), [A/(A —l)]fc,~(8) is that amplitude obtained from Eq. (46)
with Ur(o)=[(A —1}/A]U~ only, or

CC&

f~~ (8) =f„'+ (2ik) ' (2l+ 1)e"') (e"') —I)&, (cos 8),

(Bsl)

(B32)

where o, '= o, '+ e,', and vie' is the phase shift due to the distributed nuclear charge. We now replace
[A./(A —1)]fc,~ with fc,~, given by

CC

fc,„,(8) =fz+ (2ik) ' g (21+ 1)e" ) (e"" —1)P, (cos 8),
l=o

&&here 0, is the phase shift due to the distributed nuclear charge given by U~ only. With this additional
approximation the amplitude of Eq. (B29)becomes,

L~
f"'(8)=fc.„(8)+[A/(A —1)](2ik) ' P (2I +l)e"'' ~' '"g'[e""~' ) ' —I]&,(cos8) .

l=o

Equations (B31) and (B32) are the partial wave expansions for T(KMT No. 3) in Eq. (50).
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