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Pade approximants to the scattering function F = k cot(6,) are studied in terms of the variable x = k, using four
examples of potential models which possess features of the np 'So state. Strategies are thereby developed for
analytically continuing F when only approximate partial knowledge of F is available. Results are characterized by
high accuracy of interpolation. It is suggested that a physically realistic inverse scattering problem begins with such
an analytically continued F. When it exists, the solution of this problem in terms of the Marchenko equation is a
local potential of the Bargmann type. Some strategies for carrying out this program lead to a stably defined

potential, while others do not. With hard core repulsions present, low order Fade approximants accurately describe F
for E, ( 300 MeV. However, since the condition b(00) —b(0) = 0 is not satisfied in any of our examples
containing hard core repulsions, the Marchenko method does not have a solution for them. A possible physical
consequence of this result is discussed. Another inverse scattering method is proposed for application to hard core
problems.

NUCLEAR REACTIONS Pade approximants used to calculate k cot (&0) and to
solve inverse scattering problem for models of np So scattering; effects of hard

cores.

I. INTRODUCTION

A goal in nuclear physics is to describe the in-
teraction between nucleons in agreement with ex-
periments and underlying dynamical principles.
Phenomenologies used in attaining accurate fits of
nucleon and meson scattering data are elements
in achieving this goal. Recent developments em-
ploying dispersion relations for two pion exchange
have led to two new meson-theoretic potential mod-
els of the nonrelativistic && interaction. While
one of these potentials has no free parameters,
the other is semiphenomenological in that a short-
range repulsion is introduced to fit phase shifts
derived from experiment. Other more pheno-
menological potential models have also been deve-
loped in recent years which have introduced unusu-
ally weak short-range repulsions, referred to as
super soft cores (SSC),' designed to give excellent
agreement with np 80 and other low angular mo-
mentum phase shifts. With one pion exchange
effects having been successfully included and
evaluated through an NN phase shift analysis,
efforts are underway to include both vector and
pseudoscalar meson exchange effects in future
analyses. Phenomenology and meson-theoretic
approaches are thus seen to be drawing closer
together, each using some parts of the other.
Clearly, high interest continues in refining pheno-
menological techniques fox studying the two-nu-
cleon interaction.

Pads approximants (PA) have a possible role
in scattering phenomenology, their use in low and
medium energy +N scattering is the subject of this

paper. A PA is a ratio of polynomials defined to
have the same truncated Taylor series as the func-
tion it r epr esents. For theorems and conj ectur es
about the convergence and analytic continuation
properties of a PA the reader is referred to
Baker. An additional problem of uniqueness
arises when the Taylor series is not known, as in
fitting experimental data, and methods of approxi-
mating a PA must be used. We introduce techni-
ques useful in fitting data and study uniqueness
of interpolation using different approximation cri-
teria by making comparisons with known functions.
Our computational framework is given in Sec. II.

The scattering function studied here is @cot(50),
where k is the relative momentum and &0 is the s-
wave phase shift. Reference in the sequel is made
to this function as F(x), expressed in terms of the
variable x =k, which is proportional to the energy

in the center of mass system when &, is
nonrelativistically defined. Four examples are
chosen which are appropriate to the simple and
much-studied experimental situation, the np So
state. A two-fold problem is considered: Given
a partial knowledge of the scattering function of a
given potential, (1) find its appropriate Pads ap-
proximants and (2) use the Pads approximants to
construct approximations to the original potential.

We study four local potential models for which
the scattering function can be computed to high
numerical precision. These are the hard core
(HC), square well (SW), hard core square well
(HCSW), and hard core Yukawa (HCY). Data gen-
erated using these model potentials are fitted in
this investigation to learn how well the procedures
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work under verifiable conditions. A subsequent
study employing the full range of np So phase
shifts obtained by MAW is reported elsewhere.

Knowledge of the effective range expansion,
given by

kcot(&0)=. —+~k -Era k +Qro k +'''1 y
0 2

is central to the first problem in that it either
leads to Pade approximants or is computable from
them. In contrast to np scattering experiments,
from which only the scattering length a and the
effective range ro are reliably known for the So

state, three of our model potentials can be used
to generate analytic expressions for the shape
parameter & and higher terms. Furthermore,
as reviewed in Sec. III, the presence of a hard
core can also be managed by analytical procedures.
As pointed out in the Discussion, an analytical
Pade hard core transformation introduced in Sec.
III may have some applications to both of the prob-
lems posed above.

The second problem, which is to recover a local
potential from Pads approximants to E(x), can be
considered a "physical inverse scattering prob-
lem, " in that realistic experimental physical condi-
tions in determining E(x) are assumed. Only par-
tial knowledge of E(x) over a finite energy range
is used in obtaining an analytic form of E(x) pro-
duced in an approximate analytic continuation of
the effective range expansion. A local potential is
then generated which exactly reproduces the ana-
lytically defined scattering function. In contrast,
a corresponding "mathematical inverse scattering
problem" either starts with complete knowledge
of the phase shifts of a single partial wave at all
energies, or the phase shifts of all partial waves
at one energy, from which a local potential is de-
rived.

Given the scattering function E(x) in Pads form,
the inverse problem is quickly and easily solved
by the integral equation procedure of Marchenko,
provided that it is possible to be solved. The case
at hand, the np So state, is simple in that there
are no bound states, and therefore any solution is
unique. Lambert, Corbella, and Thome have
shown that the necessary and sufficient condition
for solvability of this inverse scattering problem
is

(1.2)

whenever the scattering function has the form

where L and M are the degrees of the numerator
and denominator polynomials, and provided that
M ~ L —1. It is easily seen that a hard core re-
pulsion by itself cannot satisfy the conditions of
this theorem because Levinson's theorem does
not apply to such a. case.

The condition Eq. (1.2) is easily checked. We
shall not display any of the potentials which re-
sult from the solution of the inversion problem,
remaining content in this paper to see whether
Eq. (1,2) is satisfied in various cases. Some de-
tails of the Marchenko procedure are given in
the paper by Sprung and Srivastava wherein the
first SSC potential model is developed starting
from the MAW phase shifts. A reanalysis of the
MAW data, based in part upon the results of this
payer, but made along lines similar to Ref. 14,
is presented elsewhere.

There are questions about the stability of various
approaches to the physical inverse scattering
problem. Can a convergent procedure be found
that is relatively insensitive to incomplete know-

ledge of the phase shifts, especially at high ener-
gies? LCT studied examples which appeared
stable with respect to small variations of the ef-
fective, range parameters. However, Viano found
instabilities to be inherent in the inversion prob-
lem which starts with phase shifts at a fixed en-
ergy. An efficient computational algorithm for
minimizing X', called &&NIR~&, has recently been
developed especially for rational furictions. The
convergence of the iterated Pads parameters for
the examples of this paper together with the
Pade fit of E(x) using MINIRAT are evidence
of stability. Another technique commonly used is
applied and is seen to exhibit a type of instability,
as defined in the next section. Section Dt gives the
results of these computations.

ln the Discussion (Sec. V), a shortcoming of our
approach to the inverse scattering problem for
potentials containing hard core repulsions is point-
ed out, a conjecture is made about a possible
physical consequence, and a method is proposed
for application to hard core problems.

II. PADE METHODS

Consider a function f(x) which is to be represen-
ted by the rational approximant Pz, (x)IQ&(x), where
P~(x) and Q„(x) are polynomials of degree L and

M. The Pade algorithm is to expand f(x) as a
power series, f(x) =Q,"0C~ ", and to solve the
linear equations resulting from equating coeffici-
ents of powers of x' in

Q„(x)f(x) =P, ( )+xO(H'"") . (2.1)
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The coefficients in P~(x) and Q~(x),

P~ (x) =Q a~', (2.2a)

Q~(x) =Q b,x',
a=0

(2.2b)

are determined in this way. Setting b0 —1 nor-
malizes P and Q. The solution, written as [L/M],
has the same power series as f(x) through the
first L+M + 1 terms. Through the use of power-
ful recursion algorithms, [LIM] can be used to
generate a table of other Padh approximants (PA).

In the current application we are exclusively
concerned with the scattering function E(x}
= k cot(6,). From experiments, E(x) is determined
numerically at a discrete set of N energies and a
goal can be to construct a Taylor series, which is
just the effective range expansion, from these
data. A more ambitious goal is to construct Pade
approximants dir ectly. Originally formulated and
solved as a classical interpolation problem by
Cauchy, the latter problem has seen refinements
by a succession of workers. Following Baker,
we refer to solutions as N-point Pade approxi-
mants (NPA). Different means of determining
NPA have been explored and important applications
have already been made to scattering problems,
as discussed by Haymaker and Schlessinger.
They employed NPA for analytically continuing
scattering functions from a mathematically acces-
sible but unphysical region of momenta to the phys-
ical region.

HS illustrated the superiority of point methods
over norm and moment methods in their NPA cal-
culations. A simple and straightforward point
method which we also employ is to solve the linear
equations

Pz, (xa)f(xa) = Q~(xa), & = l, 2, , L + M + l

for the coefficients in Pq(x) and Q„(x). The ration-
al function approximant fits f(x) precisely at the
L +M+ 1 points used. Although this procedure
should be appropriate when f(x) itself is known

with great precision, to force a precise fit to a
function only known approximately from experi-
ment can lead to poor fits, including unwanted
poles and zeros, in regions where f is known but
its values are not among the L +M + 1 data points
used. Rational approximants possessing such
unwanted poles and zeros are termed defective.
As seen in Sec. IV, defective NPA are often gen-
erated even when the data are given with high pre-
cision. This is easily understood. The ansatz

that the scattering function E(x) has a, . particular
rational form must generally be regarded as an
approximation, albeit in many cases a very good
one.

Defective NPA are sometimes useful for inter-
polation, however, they are unacceptable for sol-
ving the inverse scattering problem. If an inverse
scattering method produces defective NPA as a
recurring artifact which is sensitive to small
changes in the data, then that method must be
considered to exhibit instability.

Another point method to find the NBA to a scat-
tering function is to determine P~ (x) and Q~(x)
either by least squares or X minimization. These
have the advantages of norm methods in fitting
approximate data approximately, and including all
data. The use in this paper of the X -minimiza-
tion procedure, MINIRAT, appears to be free of
defects that occur in the exact &-point fits. This
is shown in the numerical results in Sec. IV.

A variety of rational approximants is tested in
this paper. We now introduce a compact notation
for distinguishing them. The symbol [I/M] re-
fers to a Pade approximant determined from a
Taylor series, while [I-/M], is an approxirpant
obtained by truncating both numerator and denom-
inator of a representation of a function given as a-
ratio of two infinite series. While the latter
[&/M], is clearly not a PA it can be used to find a
PA. An exact fit to I-+M+ 1 points is denoted by
[1./M]„, and [I-/M], is either a minimum X or a
least- squares fit.

The values of I- and M used for this paper are
restricted to I- =M + 1, which satisfies a condition
in the ICT theorem ' on the solvability of the
inverse scattering problem. This choice of L and
M also gives the same asymptotic behavior of
E(x) at high energy as the Born approximation of a
Yukawa potential. Experience has shown that for
&,.m ~300 MeV, the cond~tron L =M+1 appears
to be optimal for strictly attractive short-range
potentials, while in the presence of short-range
repulsions, scattering functions are nearly equal-
ly well fitted when the conditions L =M or I-=M
—1 are satisfied. For a hard core potential, E(x}
does not display asymptotic convergence, with
zeros and poles alternating over a11 positive ener-
gies. However, the asymptotic form E(x) -x is a
reasonable requirement upon E(x) when the fit is
over a finite energy range and the potential is at-
tractive with an inner hard core repulsion.

III. ANALYTIC EFFECTIVE RANG@ EXPANSIONS

Our calculations are based upon+olutions of the
s-wave Schrodinger equation.
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du
dY
.+(k'- U)u=o, (3.1) Np —kpC,

where k =2pE/I and U=2p V(r)/h . Natural
units (k =c=1) are used. The reduced np mass
is used for p, and for computational convenience
two fundamental constants are defined and used
throughout. They are a reduced Compton wave-
length k/2P c=0.21016417 fm, and a conversion
factor 1 MeV=5. 0676893&&10 fm '. These are
consistent with a recent revision of physical con-
stants. "

A. Hard core

Since hard cores have seen much use in NN po-
tential models and are simple to study, they are
our first example. The s-wave phase shift is
simply -kR, where R is the hard core radius and
the scattering function F(x}= k cot(bp) occurs
naturally as a ratio of two infinite series in the
variable x =k:

and

k, b'

,4 +„0

80 24k p' 16kp

b k() b 1
720 16kp 16kp'

b' 5b' 5b

2016 192kp' 192kp 128kp

kpb b b

40320 576kp 384kps

5b2

128kp' 128kp

Dp —S-Ckpb,

(3.4}

cos(kR}
(1/k)[ sin(kR}]

' (3.2)
b'kp

6 (3.5)

The first few terms of the Taylor series are need-
ed:

1 R2 R4
2 2RS Rs

F(~) = —1-—x- —x'- x'- x'- "
R 3 45 945 4725

(3.3)

B. Square we11

For scattering by a square well of radius b and
well depth t/'p, the scattering function takes the
form F(x) =N/D, where

N =k sin(Ãb) +A cos(kb) cos(&b), (3.3a)

Of the strategies mentioned in Sec. II, truncation,
PA, and NPA (except for'X minimization and least
squares) are used both in this example and for the
square well.

2 24 120 24k y

b'

48kp 360 48kp 240kp 5046

These are sufficient to obtain the first four terms
of the effective range expansion and to evaluate
[2/1].

C. Hard core Pade transformation

If a potential V(r) gives rise to a phase shift
bp(k), then the potential V(x R) outside —a hard
core of radius R is easily seen to produce a phase
shift of b0(k) —kR. This relationship between the
two phase shifts has a counterpart in Pade pheno-
menology. If the original potential V(r) gives the
scattering function F =N/D, it follows that the
new potential V(r R), plu—s hard core of radius
R, has the solution F=N/D with

D = sin(Kb) cos(Ãb) ——sin(kb) cos(Ãb}, (S.Sb}
K

N =N + [k tan(kR)]D,

tan(kR)
k

(3.6a)

(3.6b)

with

&= (ko + k ) ~ and ko= (2p, Vo)
~ .

The expansion of & and D in powers of x is given
in terms of the coefficients in N =+1V„x"and D
=QD„x", where we also introduce S= sin(kob)
and C = cos(kob) in giving the terms used in the
present work:

If N/D is a Pads approximant and a Taylor series
is used for tan(kR), then a rational function is obtained

by truncating' andD. This function is of course not a
Pade approxim ant. The Pade procedure is to use
N/D to generate L +I+I terms of the effective range
expansion, from which [ L/M] is found. The terms in
this series are easily obtained, although their
complexity rapidly grows. We give transforma-
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(a, r„P,R)-(a', r,', I', -R).

IV. COMPUTATIONS

(3.6)

In the examples that follow, we employ several
sets of energies for evaluating the NPA. The sub-
script i in [L/M]„; denotes that choice:

i=1:E„=n MeV, n=1, 2, . . . ,

i=2: &„=5n MeV, n=1, 2, . . . ,

i=3: &„=05n-0.25 MeV, n=1, 2, . . . ,

i=4: &„=2n-l.75 MeV, n=1, 2, . . . ,

i =5: &„=14n-13.75 MeV, n = 1, 2, . . . .
We have not formulated a precise criterion for an
optimal energy set. However, experience sug-
gests a compromise between low energies, which
are superior for effective range parameters, and
a large energy spread, which tends to produce
fewer defects.

We also consider two different cases of the use
of MINIPAT in )p minimization: j =6 or 7 in[L/
I],&. For j=6, the scattering function is evalu-
ated at the 40 energies. used by MAW in their solu-
tion for the np So phase shifts and their standard
errors are also employed in the X functional.

tions here for the first three effective range
parameters a', ro, and I" in terms of a, ~0, and
P obtained from V(r): 1

a' =a+R,
ro=ro/y +2R/y+2R /(3a y ), (3.7b)

P'( r)0=Pro /y -R /(45a y ) —2R /(15a y )

—R /(3ay ) —R ro/(Gay ) —R /(3y )

—R ro/(2y ) Rro'/(4y '), (3.7c)

where y =1+R/a. It is useful to be able to find
the effective range parameters (a, ro, P) associated
with V(r) in terms of experimental values (a', ro,
P') and R. By the symmetry of the problem, this
transformation is obtained by making the inter-
changes in Eqs. (3.7):

For j=7, the same energies are used as for j=6,
but the standard error (in the phase shifts) is h'eld

constant at 0.01 degrees. In effect, the j=7 case
is a least-squares fit of the phase shifts. For
j= 8, the procedure is identical to j= 6 except that
only the lowest 24 energies are used (through &,
&70 MeV.

A. Hard core

We fix the value of the hard core radius at 0.5
fm. Then the singularities in E(x) are simple
poles at k = 2nm fm, n = 1, 2, . . . , even the first
occurring at a relativistic energy beyond the
physical region of validity of this nonrelativistic
model. However, the problem is mathematical'y
well defined and convergence to the first pole is a
test of the NPA.

Table I gives the coefficients of various rational
approximants and Table II compares the different
locations of the first pole. When the exact expres-
sion for &(x), given in Eg. (3.2), is simply trun-
cated, the location of the pole is clearly inferior
to the values given by [L/L- 1] and [L/L- 1]„.
For [3/2], there is no pole. The [L/L- 1]„re-
sults closely resemble those for [L/L —1] when
care is taken to fit points over a sufficiently large
energy range. There is excellent numerical
agreement among all the approximations con-
sidered in the medium energy range (k & 3 fm ).
A 0.1 percent numerical precision is achieved by
all approximations considered, with the exception
of [2/1], .

B. Square well

The well depth Vo and range b of our SW model
have been chosen to fit the experimental np singlet
scattering length, a=-23.719+0.013 fm, and ef-
fective range ro —2.76+ 0.05 fm." They are b

=2.6409672 fm and V0=13.455115 MeV. Table
DI gives the parameters of the scattering function
for various approximations and Table IV displays
values of E(x) for these same approximations.

From [4/3]„with eight parameters, the first

TABLE I. HC Pade coefficients for R=0.5 fm.

a& a2
Approximation fm fm 3

a3 a4 b~ 53
(10 ) fm 5 (10 ) fm ' (10 ') fm' (10 ') fm'

[3/z],
3/2
2/1
3/2 „g

(.2/&] n&

]2/1. n2

0.25
0.2273
0.2143
0.2423
0.2273
0.2143
0.2144

-0.5208
-0.2525
-0.1190
-0.4133
-0.2526
-0.1192
-0.1196

0.4340
0.0301

0.1195
0.0301

-0.4167
-0.3030
-0.2381
-0.0038
-0.3031
-0.2382
-0.2384

0.5208
0.1263

0.3050
0.1264
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TABLE II. Location of first pole for HC potential
with R=0.5 fm.

Method
error

(%)

Fxact
[4/s
[3/2
[2/I]
s/2]
'2/1]

[3/2]
[2/I]
[2/i]

ni

6.283
6.034

3.820
6.285
6.481
6.186
6.285
6.480
6.476

-4.0

-39
+0.029
+3.1
-1.6
+0.029
+3.1
+3.1

No real pole occurs in this approximation.

four terms of the effective range expansion can be
found. The PA, [2/1], constructed from these
four terms is.clearly superior in reproducing +(x).
This illustrates the optimal property of the Pade
method.

Truncation is not a unique procedure. If Eqs.
(3.3) are divided by cos(kb) cos(IA) and the result-
ing rational function is truncated to [4/3] the same
effective range expansion to four terms results,
but the errors in &(x) grow rapidly with energy,
order-of-magnitude discrepancies appearing at a
few MeV. Nonuniqueness is also found in the NPA.
The spread of energies used for [L/M] 2 yields
improved convergence at higher energies relative
to [L/M]„i. However, the smaller energy spread
of [LIM]„i gives a better fit at low energies than
does [L/M]„2.

The NPA [5/4]„i has a simple pole and a simple
zero which are nearly superimposed at x= -1.09053
fm . This is not a defect because the point is in
a region that is not physically accessible to elastic
scattering. Such structure, seen in numerous
examples in this investigation, is typical of the

manner in which Padbapproximants sometimes
represent branch points. In this instance, com-
parison with [5/4]„2, which has no such structure,
but which is clearly superior at high energies to
[5/4]„i (see Table IV), suggests that this structure
is an artifact of the energy set used.

C. Hard core square we11

Inasmuch as the hard core radius R can vary
with the radial shape of potentials fitted to data,
it is desirable to study more than one value of R.
Two parametrizations, both fitting the experimen-
tal a, and ro„are considered here. Potential &
has R =0.5 fm, leading to a momentum k,
=1.237 8704 fm at which the phase shift changes
sign. Potential & has R =0.15 fm. Such a small
core radius is required with this radial shape if
the change of sign of &0(k) is to occur in the ex-
perimental region. Here k, =1.67653 fm is in
reasonable agreement with experiment.

The potential parameters are b, which is the
well radius as measured from the edge of the hard
core, and Vo.

Potential &: 2p, Vo
—0.887 691 61 fm

b = 1.623 6374 fm,

Potential &: 2p VD
—0.419325 38 fm

& =2.3348365 fm.

Tables V and VI give values of E(x) for poten-
tials & and &, respectively. Two new classes of
approximations introduced here are defined in
terms of the hard core Pade transformation given
in Sec. III C, [L/M]« is obtained by finding the
[L/M] Pade approximant of the outer well, trans-
forming it according to Eq. (3.7), and truncating
the [LIM]; [LIM]~„shown here only for [3/I], is
the Pads approximant to [L/M]«, computed in each
case by carrying all the hard core terms up to

TABLE III. Square well potential Pade coefficients.

ao a& a2
Approximation (fm ) (fm 3) (fm )

a3
(fm 7)

a4
(fm~)

a&
(fm-~~)

b)
(fm )

b2
(fm 4) (fm. 8)

b4
(fm-8)

0.04216
0.04216
0.042 56
0.042 59
Q.042 16
0.042 16
0.042 16
0.04216
0.042 16
0.042 16

1.385
1.364
1.365
1.362
1.350
1.352
1.345
1.345
1.384
1.339

0.7238
0.1292
0.1580
0.3252

-0.3315
-Q.2655
-0.4955
-0.4800

0.7427
-0.6758

-2.788

0.06820
0.084 21
0.145 5
Q.142 3

-0.305 4
0.216 2

0.1294
-0.374 7
-0.354 7
-0.2602
-0.714 9
-0.666 2

-0.003 125 -0.837 2
-0.002 174 -0.825 7

0.1300 0.002 601 0.083 46
-0.023 63 0.001 641 -0.097 14

-2.398 4.611

0.2087
0.1958
0.3231 -0.03446
0.3153 -0.032 18

-0.4438 0.260 2 -0.030 92
0.4385 -0.080 OQ 0.005 261
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TABLE IV. Values of scattering function I" (x) for square well potential at various energies.

Approximation 1 MeV 10 MeV

E(x)
(fm )

30 MeV 50 MeV 100 MeV 200 MeV

[4/3]
[2/2]
[2/lj
2/1]

[2/ij
[2/2]
[2/2]
[4/2]
[4/2]
[5/4]
[5/4]

nf

Exact 0.075 82
0.075 82
0.075 82
0.075 82
0.075 82
0.076 10
0.075 82
0.075 81
0.075 82
0.075 82
0.075 82
0.075 82

0.4160
0.4131
0.4252
p.4162
0.4161
0.4160
0.4160
0.4160
0.4160
0.4160
0.4160
0.4160

1.471
1.045

-2.284
1.504
1.496
1.476
1.471
1.471
1.471
1.471
1.471
1.471

2.980
'

1.359
p.9112
3.419
3.350
3.143
2.961
2.978
2.980
2.980
2.980
2.980

6.167
2.451
2.495

42.32
4.822
4.320
4'.749
5.521
6.210
6.179
6.198
6.167

10.79
4.869
5.342

-1.1.93
-20.79

14.00
2.697
4.198

15.77
13.68
14.98
10.13

[4/3] before finding the first four terms of the
effective range expansion, from which a [2/1]
I'ade is obtained exactly.

Defective approximants occur frequently here.
The narrow singularities in E(x) thereby created
may even be hard to detect in a coarse scan of
energies. In all cases presented in this paper the
zeros of defective PA and NPA do not occur at
low positive energies, preserving some useful-
ness for interpolation and determining effective
range parameters. Increasing the spread of ener-
gies fitted with the NPA algorithm simultaneously
increases the region of validity of the fit and de-
creases the chance of there being a defect.

The general trend in Tables V and VI is clear.
Pade approximants are superior to truncation,
higher orders of PA and NPA are better at higher
energies than low orders, provided they are not
defective; E(x) is better approximated by low-
order PA in the case of potential &, where the
pole is at a lower value of x than in the case of po-
tential &. Clearly, care must be taken to scruti-
nize the NPA because those containing defective
behavior must not be considered as legitimate
analytic continuations of the effective range ex-
pansions. The hard core Pade transformation is
most effective when used to generate a series
from which a PA is obtained. This is seen in the

TABLE V. Values of scattering function I"(x) for hard core square well potential, potential
A. , with R=0.5 fm, at various energies.

Approximation 1 MeV 10 MeV 50 MeV 100 MeV 200 MeV

[2/1]
[2/1]
[2/1]
[2/2
~2/2]
)'4/2]

[4»]
[2/2
[4/2]
[4/2
[2/1]
[2/2
[2/lj
[2/lj
[2/1]

n2

n2

tt
a

pt

0.075 90
0.075 90
0.075 90
0.075 90
0.075 90 '

0.075 90
0.075 90
0.075 90
0.075 90
0.075 90
0.075 90
0.075 90
0.075 90
0.075 90
0.075 90
0.075 91

0.4292
0.4292
0.4292
0.4292
0.4292
0.4292
0.4292
0.4292
0.4304
0.4290
0.4292
0.4292
0.4292
0.4292
0.4275
0.4292

7.083
7.111
7.109
7.098
7.165
7.082
7.082
7.083

-10.440
3.833
7.051
7.111
6.846
7.112
5.128
7.050

-4.666
-4.552
-4.554
-4.570
-4.536
-4.867
-4.667
-4.667

0.3799
3.270

-4.816
-4.552
-5.229
-4.551

-10.3200
-4.633

-2.026
-1.791
-1.792
-1.803
-1.785
-1.724
-2.051
-2.038

2.918
3.741

-2.392
-1.791
-2.669
-1.791
-4.253
-1.843

The [2/1]& are computed using the series generated by the [l./M]&& immediately above
each entry.
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TAB LE VI. Values of scattering function E(x) for hard core square well potential, potential B,
with A=0.15 fm, at various energies.

Approximation 1 MeV 10 MeV

F(x)
(fm ~)

50 MeV 100 MeV 200 MeV 300 MeV

Exact

[2/i]
[s/2]
[3/2]
[4/s]
[4/&]
[«s]
f5/4].
f5/4J
«5]
«5]

[4/s],

[2/&J~
[2/i],

n2

ref

tl 2
a

ng

ll2

[2/i
[2/i „,

0.075 85
0.075 85
0.075 85
0.075 95
0.075 85
0.075 85
0.075 90
0.075 85
0.075 85
0.075 85
0.075 85
0.075 85
0.075 85
0.075 85
0.075 85
0.075 96
0.075 96

0.4213
0.4214
0.4213
0.4213
0.4213
0.4213
0.4213
0.4213
0.4213
0.4213
0.4213
0.4213
0.4213
0.4213
0.4214
0.4205
0.4213

3.960
4.307
4.250
4.082
3.947
3.958
3.960
3.960
3.960
3.960
3.960
3.960
3.960
3.962

-476.8
3.746
4.062

52.36
-15.66
-17.41
-29.47

23.58
35.62
52.51
52.46
52.46
52.57
52.35
52.58
52.36
56.09
-0.7572

251.5
-31.90

-24.03
-4.734
-5.036
-6.577

4.337
10.16

-21.21
-21.51
-21.51
-21.07

35.50
-21.04
-24.04
-18.53

1.187
-10.51
-6.782

-11.55
-3.879
-4.178
-5.707

2.640
5.573

-8.412
-8.542
-8.542
-8.364
-7.529
-8.354
-11.62
-7.504

2.584
-9.169
-5.904

Defective approximants containing zeros in P and Q at nearly equal positive energies.

TABLE VII. Location of singularities in F(x) for
various approximations, for HCSW potentials A. and B.

M.ethod

Potential A
Ec.m.

(MeV)

Potential B
Ec.m.

(MeV)

last six entries of Tables V and VI.
' One other test is the ability of these approxi-
mations to locate the singularity. As shown in
Table VII, results similar to these of Tables V
and VI obtain. The failure of [3/2]„ to produce a
yole in the right region for potential & highlights
the uncertainty in the rate at which convergence
sets in, particularly when the pole is so distant
from the origin.

It is not necessary to assume that the singu-
larity in E(x) is a pole if the phase shifts are
known numerically with precision. Another Fade
technique, the d/dx logarithm method, ' gives the
power 'Y of the singularity in &(x) when evaluated
at points near xp, where +(x) -(x —xp) . A crude
scan of (x —xp)(d/dx) in[&(x)] through the singular
point has been carried out and has yielded 'V= 1
+ 0.00004 for potential A and V= 1+0.001 for
potential &. Here departure from y=1 is princi-
pally a measure of the errors of the numerical
scanning procedure and the location of the pole.
More complete use of the power of I'ade techni-
ques can be utilized to determine both xo and 7
more accurately if needed.

Exact 63.55 116.47 D. Hard core Yukawa

[4/3]
[3/2]
[2/i J

[2/i]
[2/i]
[«2]
[3/2]
[4/s]
[4/3]
I5/4]
5/4]

f«5J
[«5]

a
46.37b
63.41
63.41
63.45
63.33
63.57
63.55
63.55

, 63.55-
63.55
63.55c
63.55c

a
32.37'
82.33
83.56
88.77

a

116.35
116.42
116.29
116.60
116.33c

116 57

No singularity under 300 MeV.
Oscillations of sign occur at low energies.
These are defective.
These oscillate (see Tables V and VI).

As a final application we present results for a
physically more realistic yotential, for which
analytic scattering solutions are not known. '

V(r) =~, r&R

exp(- r/b)
V(r) =-Vp

( / ), r~ R

with parameters 8=0.4 fm, b=0.7 fm, and Vo
=415.8896 MeV, where we have made adjustments
of the parameters given by Brown and Jackson to
conform to the physical constants adopted in this
payer. The phase shift changes sign at &,.
=113.562 MeV, which is reasonable. As the effec-
tive range expansion is not known, strictly numeri-
cal methods must be used throughout. We have
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TABLE VIII. Low energy values of I" (x) for HCY potential.

Method 1 MeV 2 MeV

E'(x)
(fm ~)

3 MeV 4 MeV 5 MeV 10 MeV

Exact
[z/1]„,
[2/&]. 4

[2/&]. s

[3/2]„,.
[3/2J.
[3/2]„,
[4»]. ~

[4/3 „,'
[3/2 „
[3/2]„

0.075 669 9
0-075 669 8
0.075 852 7
0.075 545 3
0.075 669 8
0.075 630 9
0.075 661 6
0.075 669 9
0.075 680 2

0.075 672 5
0.075 659 3
0.075 670 6

0.109601
0.109601
0.109707
0.109350
0.109601
0.109579
0.109585
0.109601
0.109606
0.109601
0.109653
0.109599

0.143 971
0.143 971
0.144 024
0.143 634
0.143 971
0.143 960
0.143 951
0.143 971
0.143 973
0.143 961
0.144 058
0.143 965

0.178 800
0.178 800
0.178 820
0.178411
0.178 800
0.178 791
0.178 779
0.178 800
0.178 801
0.178 776
0.178 901
0.178 789

0.214 109
0.214 108
0.214109
0.213 695
0.214109
0.241109
0.214088
0.214109
0.214 109
0.214 067
0.214 204
0.214092

0.398 548
0.398 622
0.398 548
0.398287
0.398 640
0.398 548
0.398 539
0.398 548
0.398 548
0.398 440
0.398453
0.249 897

These NPA have defects which appear at energies well above the energy region shown
here.

numerically integrated the Schrodinger equation
using the Noumerov method, with an estimated
fractional error in the phase shifts close to 10
thereby generating high quality data. It is of in-
terest here that defects occur earlier in the Pade
table, i. e. , for lower values of I-., than in any of
the previous examples. Clearly, if a precision of
10 generates defective NPA, then there are po-
tential difficulties in using the method on experi-
mental data. Therefore, we have chosen this ex-
ample for testing X minimization and least-
squares fitting procedures as some important
alternatives.

It is important to scrutinize the low-energy fits
of the various approximations to help judge which
set of effective range parameters is most cor-
rect. Table VIII compares various NPA values
of F(x) from 1 to 10 MeV. The two best approxi-
mants, [4/2]„~ and [3/2]„~, are both defective at

energies far displaced from the range (E, ~ 10
MeV) shown. However, the effective range param-
eters obtained in this example by expanding the
various NPA functions are likely to be best de-
scribed in terms of these two approximants. Val-
ues of a, ro, P, and Q are given in Table IX for
most of the cases of interest, including X mini-
mization and a least-squares fit. Table X com-
pares values of E(x) at higher energies and gives
the location of the singularity in terms of the en-
ergy F; at which the phase shift changes sign.

Among the NPA shown in the tables, [3/2]„~
appears to be optimal over the entire range shown.
We have been unable to find an energy set for
which we can obtain a [4/3]„which is not defective
and which at the same time gives a good fit at all
energies.

The X -minimized approximants, namely [3/2], 6

and [3/2J, S, give values of effective range param-

TABLE IX. Effective range parameters for HCY potential for various approximations in-
cluding g2 minimization and least squares; location of singularity at E~ and radius of conver-
gence at E&.

Method

Exact
[s/2]„,
[s/2]„,
[3/2 „,
[4»].3

[3/z]. ,
[3/2]. ,
[»2].,

(fm)

-23.719
-23.757
-23.718
-23.720
-23.724
-23.780
-23.720

fp

(fm)

2.7624
2.7653
2.7615
2.7627
2.7640
2.7722
2.7633

-0.016 484
-0.015 745
-0.016 532
-0.016 267
-0.015 619 9
-0.014 495 8
-0.015 903 7

0.001 234 25
0.001 767 5
0.001 405 5
0.001 525 9
0.001 857 70
0.002 037 11
0.001 795 46

. 0.013 37
56.288 b

0.001 29

&c
(MeV)

113.56
a

107.95
113.56

a
113.76
113.57
113.06.

(MeV)

27.19
27.23
24.93

These are defective NPA and are therefore considered to be unreliable for locating &,
and Ep.

This g is a least-squares value multiplied by 10 and is therefore comparable with the
other examples given.
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TABLE X. Values of &(x) for HCY potential, including
location of singularity (E,).

Method 100 MeV

I' (x)
(fm ~)

200 MeV 300 MeV S, (MeV)

Exact
[2/x J
[2/i]
[2/i]

[3/2]

n4

n4

n5

23.917 7
0.003 574 38

-2.075 23
39.144 2

35.381
23.9152

-6.610 65
-3.047 90

2.062 48
-3.701 96
—4.572 73
-6.606 57

-4.028 34
5.276 39
4.190 76

-1.279 24
-2.216 55
-4.033 36

113.562
62.7783
72.943

106.753
107.954
113.563

eters that are close to the best ones, while coming
realistically close to the true value of &,. Re-
stricting the X minimization to lower energies
(&, & 70 MeV for [3/2]„) appears to lead to
excellent effective range parameters while coming
close to ~, as well. The least-squares fit, name-
ly [3/2],7, gives an excellent value of &, while
producing only slightly inferior values of the ef-
fective range parameters. The d/dx logarithm
method, when applied to the numerical phase
shifts, leads to a value of 1 + 0.000 09 of the power
y of the singularity, establishing the existence of
a simple pole.

With such a, low X (0.01337) and such close
numerical agreement in general, it is tempting to
conclude that our minimization procedures using
MINIRAT are a practical means of performing an
analytic continuation. However, we cannot ab-
solutely rule out other good & values in other re-
gions of Pade parameter space. In the light of
this uncertainty another numerical experiment has
been performed. As we discuss more fully in the
concluding section, the sign of a4 in P, (x) is cru-
cial in the solution of the inverse scattering prob-
lem. Where X. minimization has been performed
on the experimental phase shifts, a4 is found to be
positive, leading to a solvable inverse scattering
problem. ' Invariably a4 is negative in all our
[3/2] fits to the HCY potential problem, yielding
an unsolvable inverse scattering problem. We
have chosen Pade parameters that are charac-
teristic of the fits to the MAW phase shifts, with
a4 & 0, for the starting point of our X -minimiza-
tion routine. The approximant in Table IX, with
a4 & 0 and X =0.00129, is the end result after 90
iterations from that starting point. The imprint
of the hard core, then, seems unmistakable in
this example.

V. DISCUSSION

NI'A techniques provide a basis for an accurate
description of the s-wave scattering function for a

variety of central potentials. To illustrate the
NPA we have chosen examples with features char-
acteristic of the np So state. The presence of a
hard core, often introduced in describing this
state, creates both a simplification and a compli-
cation. The simplification derives from the ease
of accurate description of F(x) when it has a
simple pole singularity. Such a structure, par-
ticularly appropriate for Pade methods, in our
examples leads to good fits using [3/2] approxi-
mants.

The complication with the hard core lies in the im-
possibility in all our examples of solving the inverse
scattering problem using the Marchenko method.
We have checked every example which contains
a hard core, and we have found that the condition
5(0) —5(~) =0 is never satisfied, just as it is not
satisfied for the hard core alone. Although the
Marchenko method is not of use as it stands, a
modification of it using the hard core Pade trans-
formation should be possible. We will sketch the
proposed procedure, the practicality of which is
currently under investigation. We suppose we
are given an NPA of a scattering function &(x)
for which &(0) —&(~) ~ 0 but which does not support
a bound state. Assuming a value for a hard core
radius, we use Egs; (3.7) and (3.8) to find the Tay-
lor series for the scattering function of the exter-
nal potential. We then obtain the PA and, if pos-
sible, solve the Marchenko equations for the po-
tential, iterating the hard core radius if needed.
Although it is clearly possible in this way to re-
trieve a potential containing a hard core, there
are some. unresolved questions of uniqueness.

Interestingly, the phase shifts of MAW derived
from experiment lead directly to solutions of the
Marchenko equations. ' This may be construed
as indirect evidence, although hardly conclusive,
that an infinite hard core does not occur in the np
So state. The contrasting behavior of the scatter-

ing function for the HCY potential and for fits to
the So np phase shifts of MAW is shown in Fig. 1.

Two other r esults should be stressed. First,
the X -minimization approach to the NPA is an
efficient technique for approximating the scatter-
ing function, locating poles and also achieving an
approximate analytic continuation. Consider the
HCY example. For [3/2],8, the low energy values
at E, ~ 70 MeV are used to obtain values of &(x)
at intermediate energies for &, ~300 MeV. In
this example, the radius of convergence of the
Taylor series for [3/2]„ is 24.93 MeV. This re-
sult, shown in the last column of Table IX, is
obtained simply by factoring the denominator poly-
nomial. That data which are at energies beyond the
radius of convergence may be used for analytic
continuation serves to illustrate the flexibility of
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HCY example in Tables VIII, IX, and X. In Table
VIII the values of I" shown represent excellent
interpolations for the energy sets n3, n4, and n5,
while the values for the X -minimized sets, C6,
C7, and C8 are also close. This high accuracy
is representative of the observed interpolations
in all examples we have studied. Therefore, the
HCY results suggest that such a small number of
parameters as six can be useful in accurately
describing central force scattering experiments
over a wide energy range within the framework of
a Pade ansatz, even if that ansatz does not lead to
a solution of the inverse scattering problem. It
remains to be seen whether a similar economy of
description is possible for the considerably more
complicated triplet nP state.
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