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Generalized-master-equation theory for heavy ion collisions
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We apply nonequilibrium quantum statistical mechanics to the description of heavy ion collisions. Starting
from the Liouville-Von Neumann equation we derive via the generalized master equation, the drift and

diffusion coefficients.

NUC LEAR REACTIONS heavy ions nonequilibrium quantum statistical mechan-
ics, drift and diffusion coefficients.

Recently' ' transport equations in general and
the Fokker- Planck equation in particular have been
used with considerable success in explaining the
experimental data in heavy ion collisions with en-
ergies up to several MeV per particle. Conse-
quently, the drift and diffusion coefficients which
characterize the solution of the Fokker-Plao, ck
equation are of considerable importance. Thus
a justification of these coefficients, from first
principle in terms of the dynamics of the system,
is very much warranted. In a recent publication,
Handrup' has attempted to find the expressions of
these coefficients. Taking the Fokke r- P lanck
equation for granted, he has tried to obtain the
expressions using a time-dependent perturbation
theory in the framework of quantum mechanics.
Here, we present a simple and straightforward
derivation of these coefficients starting from the
Liouville-Von Neumann equation and following the
basis of nonequilibrium statistical mechanics. At
the outset we must emphasize that the basic quan-
tity in our formalism is the memory function
[Eq. (10}]which is kept completely general in the
present communication. By assigning different
forms and shapes to memory functions one ar-
rives at different types of transport equations.
This is very interesting. However, we defer its
discussion at present and shall elaborate on it
elsewhere.

The details of the formalism using the memory
functions are discussed elsewhere' and hence will
not be repeated. However, with the help of a few
essential steps we define our notations. The
Liouville-Von Neumann equation for the density
matrix p is

ih —= [H, p]=Lp,

where I, is the Liouville operator and H is the
Hamiltonian of the system which can be written as

H =Ho+ V.

BP;(t) t ~

=
j) ds Q [W()(t —s)P, (s)

0 j
—W, , (t —s)P, (s)]+S, (t), (5)

where

W, ,(t) = (6'Le '"-' ~"(l -6')L}„»

tt, (t) =t($'Le "~' ~ (l -6')p(0)};;

Under the initial diagonality condition

p (o) = p, (o), (8}

s,.(t) becomes zero in Eq. (5) and one obtains the
generalize3 master equation (GME) as

s p, (t) ds g [W„.(t —s)P,(s).
0 j

-W, , (t s)P, (s)], —(9)

where 5"s are called the memory functions. Un-
der the weak coupling approximation, Zwanzig has
obtained the expression for g as

W»(t) =2l&tll'I j&l'cos(E( —6 ~ )t.
Equation (8) is an exact consequence of quantum
mechanics and describes the time evolution of the
microscopic state li&. However, to use the GME
for macroscopic description, one introduces

Let i, j, . . . and q, , q&, . . . refer to the eigenstates
and energy eigenvalues of Ho. The occupation
probability P,. in the state p is given by the diago-
nal element of the density matrix

P; = &tlplt& .
Following Zwanzig' one introduces a projection
operator defined through the relation

(eo)„.= o, , 5,,
for any operator p and then one obtains from Eq.
(l)
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coarse graining by labeling a group of eigenstates
of ~, as a single coarse grained state

~ f) and then
makes the identification

I'r= i Pi

The resulting QME has exactly the same form as
(9)

t
= J ds g [W, (t —s)P (s)

0 J'

-w„(t-slj', (s)]} . (12)

W»(t) =2 p l(ifv/q)l'cos(~, . ~, )i. — .
t QI

We make nearest neighbor approximation on & in
(12) and obtain

The coarse grained memory function also assumes
the form

~=K & l~l»[".~..5'. .].
which transfers particles from target B to pro-
jectile A and vice versa. The microscopic states
i, i —1, and i+ 1 can be written as

i = @~(N„)$PN~),

i —1 = (t& ~(N~ —1)Q r(Ne+ 1),
i+ 1 = Q~(N„+ 1)(t] r(N~ —1),

where

e,(N. ) = ".
l o),

A'

e,(N, ) = f,'l o&.
g=1

Thus we assume that successive macrostates
differ by the configuration of only one micro-
scopic state. It is straightforward to obtain from
Eq. (13) the expression for W. .. and W»„as

W, „,=2 e V

»,(t) ds[WI l,(t —s)P~, + Wl ~„(f—s)PI„
0

—Wr-], tPr —Wr ]., rPi]. (14)

x cos(e~ —eg)f ~

W.,..= 2 p I(o.
l
1'l »[(f")"'(1-f')' "]]' (19)

Taking the continuum limit and assuming W to be
symmetric we obtain from Eq. (14)

(15)

where

&& cos(e —e~)t,

where f", and f~~ are the occupation probability of
the single-particle states o. and P in the nuclei A
and B, respectively.

Following Munn it is ea,sy to show that the
memory is related to the diffusion constant D as

~y= ~r, r+l —~r, r-l 2D= W~ t dt ~

0
(20)

8'~ = 8', „+W
Straightforward analogy gives the drift coefficient
V~ as

It is easy to see that the Marcoffion approximation
on W~ and 8'~ would lead to the usual Fokker-
Planck equation.

Now we consider two isolated systems A and B,
the projectile and target, respectively, consisting
of many noninteracting fermions. Assuming a
single-particle picture for both, the Hamiltonian
H, in Eq. (2) could be written as

H0= H~+H~

VD=
0

W~(t)dt .

x l(n}vl»l'5(e. - e,),

v, =2~+ [f".-fa]l&~lvl»l'5(e. -es)

Using (16), (19), (20), and (21) we arrive at

2+=2+ Q [f (1 fe)+f (1 f")]

(21)

= g e ata + g e~b~~b~,

where a, a~ and b~, b~~ are the destruction and
creation operators satisfying the usual anticom-
mutation rule. The two systems are allowed to in-
teract by way of exchanging particles. This inter-
action is represented by one-particle transfer
operator V given by

Considering the two systems to be large, we re-
place the sums over the states as integrations over
energy

de„p„(e„),

Q —Jl de~ pe(ee),
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where p„(e„)and ps(es) are the density of single
particle states in A and B, respectively. This
leads to

2D= 2m de[(1 —f"(e))f e(e)+f (e)(1 —fs(e))]

x
~

V(e)~'p„(e)p.(e),

V =2m t de[f (e) —f"( )e] ~V(e)~'p„(e)p (e).

These expressions for drift and diffusion coeffi-
cients match up exactly with the expressions ob-
ta, ined by Randrup. ' Using a model heavy ion po-

tential he has applied these expressions to specific
cases of physical interest. Consequently, we do
not elaborate on their applications here. It is
gratifying to note that using quantum statistical
mechanics and via GME one arrives at the ex-
pressions of drift and diffusion coefficient without
making a Mar coff ion approximation which have been
obtained by Randrup following the time-dependent
perturbation theory in the framework of quantum
mechanics. It is worth emphasizing here that the
present work links in a straightforward manner
the dynamics of the system with the nonequilibrium
statistical aspects of the transfer phenomena in

heavy ion collision.
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