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Current densities in the projected Hartree-Fock approach. II.Transverse form factors
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Collective and single-particle contributions to transverse form factors of rotational nuclei have been computed in
the projected Hartree-Pock approach using the density matrix expansion effective Hamiltonian. Results on several
odd-A rare earth nuclei ("'Ta, '"Ho, '"Tb) are presented and compared to the available experimental data.
Theoretical predictions for transverse electric form factors of '"Er are also presented. A comparison is made of the
resulting form factors as q ~ 0 with those extracted from measured transition probabilities 8(E(M)iL; I, —+ If).

NUCLEAR STRUCTURE ' ~Tb, ~6 Ho 66Er ' 'Ta calculated elastic and in-
elastic transverse form factors. Angular momentum projected Hartree-Fock

approximation.

I. INTRODUCTION

Electron scattering experiments on '"Ta at 180
are now being performed' at the Bates Linear Ac-
celerator Center and experiments on other rare
earth rotational nuclei are planned for the near fu-
ture. It is well known' that such experiments mea-
sure transverse form factors and in turn provide
information on nuclear currents.

The transverse form factors for elastic and in-
elastic scattering within a given rotational band
can be written in terms of intrinsic current den-
sity multipoles' which contain the information on
the intrinsic structure of the band. The limited
experimental information presently available' does
not make it possible to extract detailed information
about the rotational current. From a theoretical
point of view the projected Hartree-Fock ap-
proach'» (PHF) provides a plausible first step for
investigating these properties for the first few
states in the ground-state rotational band. In this
case, the intrinsic structure is not expected to be
drastically modified by the rotation, as confirmed
by experimental information on charge distribu-
tions of rare earth nuclei.

Although the projection after variation method
does not in general lead to the right inertial pa-
rameters' and its description of rotational prop-
erties is questionable, it has been shown, ' how-
ever, that it leads to collective gyromagnetic ra-
tios in good agreement with experimental ones.
One may therefore expect that it would give a rea-
sonable description of the collective current dis-
tribution.

To first order in 1((J,') the PHF approach leads
to a decomposition of the transverse form factors
in terms of single particle and collective form
factors. 4 This decomposition is analogous to the
one obtained' by keeping first order terms in I,
in the general transformation' of tensor operators
into the intrinsic coordinate system. This is
briefly discussed in Sec. II where a summary of
the theory is presented. The calculations were
done in plane wave Born approximation (PWBA),
details given in Appendix A, with the results pre-
sented in Sec. III. A detailed discussion of the re-
sults on '"Er and '"Ta is given in Secs. IIIA and
III8, respectively. The calculated transverse
form factors for '"Tb ' 'Ho and "Er and '"Ta
are presented in Sec. IIIG where a comparison is
made with available experimental data from elec-
tron scattering as well as from y transitions
(extrapolated to q= 10 ' fm ').

II. SUMMARY OF THEORY

Following the notation of DeForest and Walecka'
we write the differential cross section at 180 for
elastic and inelastic scattering within the ground-
state rotational band (E) as

where the transverse form factor squared is given
by
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F '(q) ~, , = Q [E,,'(q)]'

with

+ Q [F",'(q)]'
X=odd

(2.2)

S",'(q) = &KK~0
~
I,K) F",'(q)+

f

x E2»(q}

[~(~+ 1)+ K(K+ l.) —I&(I,+ 1)]
[2X(X+1}]' '

&I,KII T»'(q)ll I,K&

v'47)' ~ (2I,+1)'i.'

Z ~,( }
&I&KIIT"'(q)III;K&

44g '~ (2I, +1)".'
The one body transverse electric and magnetic
operators are defined as in Ref. 9 with a factor i'
so that the relevant reduced matrix elements in
(2.3) are real. The latter can be written as linear
combinations of intrinsic matrix elements weighted
by different angular momentum dependent coeffi-
cients. As in the case of M1 and E2 y transitions,
a "model independent'" decomposition of the form
factors can be made into intrinsic ones based on
general symmetry principles. It can also be
shown' that, to first order in I„' such an analysis
leads to the results summarized below for the
cases of interest here, I&~ I,=E.

Odd-A nuclei

the intrinsic structure of the (ground state) band.
They could, at least in principle, be determined
by an analysis of precise experimental data on
transverse form factors. This renders the situa-
tion analogous to the analyses of y transitions in
terms of the familiar gyromagnetic ratios and

quadrupole moments. ' To establish this analogy
in a more explicit way we notice that in the long-
wavelength limit the intrinsic form factors de-
fined above are given by

(2.7)

(2.8}

(q) ='—
(
—~~ ((l)'" (-—)(g, -zg))',

1for I3 =»
( i)() )(- 1

~-0 Z (2e8/h )(2X+ 1}!!
/ y+ 1)) /2 (2g+ 1

)

(2.9)

(2.10)

where g», gn, and b (the magnetic decoupling pa-
rameter) are defined in Ref. 8. The last relation
(2.10) follows from the continuity e(luation. ' Con-
sistent with the expressions (2.5) and (2.6) only
the lowest order terms in angular momentum have
been kept for the longitudinal form factor and for
the energy difference. 8 is the moment of inertia
(in units of 5 'MeV ') and the Q~ multipoles are,
as defined in Befs. 8 and 10,

x F")( ) (2.4)
(2.11)

F „'(q) = &K -K~2K) I,K&E',gq)+ &KKX0 ~I, K&

&& [I,(I,+1) -K(K+1)]F,'(q).

Even-even nuclei (K= 0)

(2.5)

E (q) ~,=5 E (q)= I (I +l.)F„'(q)5,,,,
(2.6)

Equations (2.4)-(2.6) are model independent in
the sense that they do not depend on the particular
model used to describe the rotational band —pro-
vided that a first order expansion in angular mo-
mentum is valid —nor do they depend on the par-
ticular approximation to the operators T~'"'~

(whether they are the usual one body operators or
include terms coming from exchange currents).
These characteristics will only be reflected in the
predictions of different models to the intrinsic
multipoles. ' The intrinsic form factors E»"(q),
E",~»'~(q), and E~u'»'~(q) are to this order indepen-
dent of initial and final spins and depend only o~

Finally I',~ is proportional, in the long-wave-
length limit, to the signature dependent term in

B(EA) (Ref. 8) (and to the decoupling parameter a
in bands with K= —,'). This relation —as well as
those corresponding to higher magnetic multi-
poles —is not so useful and has been omitted here.

The relations (2.7)-(2.10) are interesting for
two reasons.

(1) They serve to estimate the transverse form
factors at low q (q& 1/R) from experimentally
known gyromagnetic ratios and quadrupole mo-
ments.

(2) For theoretical calculations of the intrinsic
form factors within a model, they servte to check
the validity of the model as well as the internal
consistency of the model calculations. %e will
come back to this point at the end of Sec. III where
our PHF results are discussed.

In the PHF approach the intrinsic form factors
defined above are given' 4

by
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F"„'(q)= &y, Ir,",(q) Iy &,

(2.12)

(2.13)

(2.15)

(2.17') (or their equivalents for odd-A nuclei).
As in the case of collective gyromagnetic ratios'
the results were almost identical. The calcula-
tions on '"Ho and '"Tb were performed using Eq.
(2.17), since this saved a considerable amount of
computation time. The explicit expressions used
in the computer codes as well as other details of
the calculation can be found in Appendix A. They
apply to calculations with and without pairing. In
the case of no pairing, 8„B= 1 for A occupied and
B unoccupied (or vice versa), and zero otherwise.

(2.16)

F"~(q) also contains a term proportional to 1/&J,''&.

The contribution of this term to g~ was calculated
in Ref. 7 and shown to be negligible; we have
therefore omitted it in the present calculations.
The notation used here follows that of Refs. 4 and
7. J=g,.j,. is the total angular momentum operator
divided by L In particular, these calculations have
been done with the same Hartree-Fock wave func-
tions (gz) as used in Ref. 7. These wave functions
have the property that the even-even core is time
reversal invariant and only the odd nucleon contri-
butes to F™~'and F",„' ". On the other hand, F~' "
receives equal contributions from time reversed
orbitals. We refer to the first term in Eqs. (2.4)
and (2.5) as the single particle contribution and to
the second term as the collective contribution.

, For even-even nuclei the matrix elements
&T;~J & (with @=E,M) are given by

R &7;"J&= g,e„,(&A
I

r Ia& &A q, I»
A, B

+-,'&AIr I8&&AIj, IB&), (2.17)

A, B
0„' 2AT' B Aj

8„',= n„n, + [n„(1 n„)n, (1 ——n, )]"",
AB +A +B AB

(2.18)

(2.19)

The collective form factors for ' Er and ' 'Ta
were computed using both expressions (2.17) and

For odd-A nuclei, corrections similar to those in
Ref. 7 must be applied to Eqs. (2.1'7) and (2.17')
[with s„s replaced by T;~, (-1)~T",, respective-
ly; also see Appendix A]. In the previous equa-
tions A, and B denote single particle HF states
(with m & 0), and 8„'s and H„s, as shown below, de-
pend on the occupation numbers pg„and jgB..

III. DISCUSSION OF RESULTS AND COMPARISON
WITH EXPERIMENT

An interesting aspect of electron scattering at
180' on rotational nuclei is that one can extract in-
formation on the distribution of the collective ro-
tational current density.

Experiments on even-even nuclei would provide
this information in a direct way. Inelastic scat-
tering experiments" have .recently begun on ' Er
to measure transverse electric form factors [see
Eq. (2.6) ]. Transverse magnetic form factors
could in principle be measured directly by elastic
scattering on excited states. Therefore the only
experimentally available information on them will
be from static moments.

In the case of odd-A, nuclei a model is needed to
separate single particle contributions from collec-
tive ones. Even in the case that Eqs. (2.4) and
(2.5) represent a good approximation, it is clear
that very precise data (on scattering to several
levels) are required to disentangle the different
contributions to the various electric and magnetic
multipoles. However, it is important to have an
estimate of the relative magnitude of single parti-
cle and collective form factors in a model that has
been previously tested for static moments and
longitudinal form factors. The PHF approach, to
first order in 1/&J„'&,'""is such a model.

Kith this objective we present the details of the
PHF results for ' Er and '"Ta in Secs. IIIA and
III B, respectively. In order to facilitate the com-
parison with other theoretical calculations, cor-
rections due to nucleon finite size and center of
mass effects are not included. These effects have
only been included in the total transverse form
factors presented in Sec. IIIC in order to compare
with experimental data. For purposes of clarity,
form factors maxima below -2.5 && 10 ' are not
shown in the figures.

An important question in assessing the validity
of these results is that of numerical accuracy and
convergence of the PHF solutions. The numerical
procedure that was used is similar to that devel-
oped by Negele and Rinker' in the calculation of
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additional check of our form factor calculations.
Similarly, the discrepancies between theoretical
and "experimental" F~' values is analogous to
those of g~ values' and are removed by using the
effective g, values given in Table IV of Ref. V.

As discussed in the previous subsection the use
of g,"' does not modify in a significant way the
single particle form factors at higher q values
and has not been enforced here. As for F~~' it
can be seen that in all cases it is approximately
twice as large as the "experimental" one. It
could be argued that this is due to the fact that the
PHF moment of inertia is smaller than the ex-
perimental one. '". However, one must keep in
mind that the continuity equation is not even satis-
fied within the model. To remove this discrep-
ancy, the continuity equation may be used before-
hand to relate a part of Ez~~ to F"/s [see Eq.
(B1) in Appendix B]. This has the disadvantage
that different parts of the current are treated on
a different footing and, although it leads to the
correct result in the low q limit there is no guar-
antee that the results at higher q will be more re-
liable. A calculation for the simple model de-
scribed at the end of Appendix A shows that the
results at the first peak of the E2 are similar when
using Eqs. (A'l) and (Bl). The value of the moment
of inertia for the model was chosen so that at
qhc= 0.2 MeV the result from (A'I) was twice that
from (Bl}as in the realistic cases of Table I.

form factors (E»', E"„', and F~s') with those de-
rived from experimental g~, g~ ratios' ' and quad-
rupole moments [E~'(exp), Ez'(exp), F (exp)];
see Eqs. (2.V)-(2.10). The moments of inertia
have been extracted from experimental energies
of first excited states. " The agreement between
E"„' and E"„'(exp) is quite good, as was to be ex-
pected from the agreement of theoretical and ex-
perimental g„values' and can be considered as an

IV. CONCLUSIONS AND FINAL REMARKS

We have investigated the predictions of the PHF
approach on transverse form factors of rotational
nuclei ('"Er, '"Ta, '"Ho, '"Tb} for elastic and
inelastic electron scattering within the ground-
state rotational band.

From the results in Sec. III it can be concluded
that the dominant contribution to transverse form

TABLE I. Comparison of theoretical and "experimental" intrinsic form factors (as defined in text) at ac= 0.2 MeV.
Theoretical E~ (q=10 fm ) values corresponding to g,' /g~' =0.48, 0.69, and 0.67 for Ta, Ho, and Tb, respective-
ly (Ref. 7) are within parentheses. The lower and upper entries in columns two and six correspond to results with and

without pairing, respectively. The experimental values have been deduced from Eqs. (2.7)-(2.12) as explained in the
text. The experimental intrinsic quadrupole moments used are those quoted in Refs. 10, 5, 21, and 22 for Er, Ta, Ho,
and Tb, respectively.

i88Er
68

i81Ta
73 a

165IIo

i59Tb
65

-4.64
-5.26
-4.17
-4.33
-4.58
-5.23
-5.14
-5.21

x 1p-'

x10 ~

x 10-'
x 1Q-7

x 10-'
x 10-7

x 10-'
x 1p-'

(exp)

-4.22 (+0.38) x 10-'

3.81(y0.24) x 10

-5.71(+0.52) x 10

-5.62 (+0.54) x 10-'

1.54 x 10
(-3.21x10 )

7.17 x 10
(-6.18 x10 )
-4.80 x 10

( 3.68 x10 )

E& (exp)

3.21 (+0.04) x10~

6.04(+0.14) x 10

-3.67(+0.10) x 1p

1.37 x10 '
1.71 x 10
1.40 x10 '
1.60 x10 '
1.32 x 10
1.65 x10
1.37 x 1p-
1.65 x10

~~ (exp)

7.06(+0.06) x 10

7 17(y0.13) x 1P

5.75(+0.05) x 10

5.80(+p.48) x 10
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factors of odd-A nuclei comes from the odd nu-
cleon, except for. inelastic scattering at low mo-
mentum transfers where the collective transverse
electric form factor dominates the picture for 4 I
= 2. In addition, cross sections at 180' for inelas-
tic scattering on doubly even nuclei can be ex-
pected to be at least one order of magnitude lower
than those for elastic scattering in odd-A nuclei.
Little can be said about the validity of the different
approximations until more extensive and accurate
experimental data are available.

A comparison of the results on '"Ta,, '"Ho and
'"Tb illustrates the kind of changes to be expected
in the transverse form factors for different odd-A
rotators. These changes are for the most part
due to the different orbitals occupied by the odd
nucleon and/or the different K value for the
ground-state rotational band in these cases.

A serious shortcoming of the PHF approach has
been found (see Table I) by a comparison at very
low q of rotational transverse electric form fac-
tors in this approach with those deduced from the
continuity e(luation. We observe a factor of 2 be-
tween the predicted and deduced values of F~' at
low 9'.

As pointed out in Ref. 4 a better approximation
to the form factors would be provided by solving
the variation after projection equations of Villars
and Schmeing-Rogerson. ' Implementing the self
consistency required by those equations may be
difficult, but a good approximation to the trans-
verse form factors of rotational nuclei can be ob-
tained by a consistent first order expansion in I,.'
In this approximation the calculations of F~' and
F~~ are analogous' to those of gyromagnetic ratios
in the cranking model by Prior et at. '0 These cal-
culations require simple modifications in our

present computer codes and will be done in the
near future.

For odd-A nuclei, the limitations imposed by
the pair filling approximation used to solve the
HF equations may be more important than those
due to projection after variation. As discussed
in Sec. III B the use of effective g, values" has
very little effect on the results for single particle
form factors. However, the q dependence of spin
polarization effects may not be well simulated by
modifying the g, (or g, ) value. Experimental data
on elastic scattering at low q (0.3 ~ q ~ 0."t) would
be of great interest in order to clarify this ques-
tion.
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APPENDIX A

In the HF codes for axially symmetric deformed nuclei"" the single particle states are characterized
by the (luantum numbers v (parity) and m (angular momentum component along the symmetry axis J,), and
the (Zl2) (N/2) pairs of protons (neutrons) fill conjugate orbitals (A, A):

y+(r +)ei(m-)/2)y~ + y- (r &)e((m+)/2)y~

The spin up and down functions ((t)„,())„) in the r, z plane —given as linear combinations of products of
Laguerre and Hermite polynomials" —are determined by iterating to self-consistency and then used to
compute the form factors (2.12) to (2.16) a,s described below.

For odd-A nuclei the orbital of the odd nucleon is selected in the last iteration according to the experi-
mental m and K numbers, among the last occupied orbitals. Denoting its spin up and down amplitudes by
pz and (t)z the intrinsic form factors [(2.12), (2.13), (2.15)j are given by



CURRENT DKNSITIKS IN THE PROJECTED. . . . II.

P»'(q) = ~(qi~'" e ~ ~ 1 i,P.' —
2

(4'»)'+ (e»)'

X(X+1), 0 . 0 y +

F "(q)=~(q)""
(~ 2 ) ( 1) j

~(~ + 1) '&'
& . „q —2'+ 1 . „~ + 2AI~+ q& 2„,1 I&a, P,& ~+1 j, ,P,';

+ ' p2E 1„,(~ - 2@+1)(X—2'+ 2)
2(~+ 1)

, , (~+2'' 1)(~+2K)&, „,
jX-1 2X

j ' P2»+1 P2»+1 1 ~I f h2

2(X 1) (A2)

., (~-2') t(m+1)~'~'
Z", (q)= C(q)j'

( ),„( 1) pqq, [2fCP„'»y y-+ ,'(X+ 2ff)(X--2ff+1)P',»-'(y')'--,'P,' "(y-)']

IPP

+
' j,p,'»X(X+1)2y„'V„y»+ [(&+1)j,, —&j„,]2m+1

x P'» (. ,
'

y» -»+ [(~+ 2K)(~ -2f~+1)P'»-'
sin'

-P~
'

]g»Veg» (As}

with p= 2.79 ( 1.91), e= 1 (0) for odd Z(p/). The following abbreviations are used:

(f fa d~ f='dcose,

&(q)=
& I, f(q), f(q)=«p —

6 +~&lq'
4~ n (OS)'

(A5)

where f (q) is the product of the nucleon and (inverse) center of mass form factors. Note that w=R sin8,
& =R cos8, j~ =- j,(qR), and P", = P, (cos8). The—collective form factors (2.14) and (2.16) are given by

qp~ . , X+1 . 0
2 x 1j„,P„, + j, ,p, , SR', + -Aj„,p„,+ A+1j, ,p„xK

L +

~ ~+ —
~ ~ j~ P, + —j)„„1P)„%QL (A6)

1 ~+ 1 . 1 1 g(jX+&+j) 1)
e y g j)t+1 &+1 +

y j)t-1 & 1 1+ Sin8
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The densities 9R( ", , 3RK, , S(', , SK",. in Eqs. (A6} and (A7) are given below:

(A8)

6~ 2 Q IABABAA 2 Q IABAAAB+ Z(N), odd2 [ E( 8 ~ZI }4E ((t K) ((t'K} ]

Q IABAB4'A 2 Q, IABAA4'B+ Z(N), odd 2 [ K( 8 +Zi+}4K] t (A10)

with p, v8(t&, = (t&,v—8(t), —(t),v8$, ,

~~i~ Q IAB(AB 84 A+ AB 84A} 2 Q IAB(AB 84 A 4 A. 84B} Z(N), odd

x [y»v8(t)» —I'(I8(t) K I' —
I
v8

g IA K~ 2}4BeA+ (m+ 2}eB (A]

+ 6„„,.„((A+-.')I(t 'y- -(z/~) [(z —l)'(&t ')'+ Ã+-')'(P )']),

~8}Ii —Q IAB(4 BAA —ABACA)+ 2 Q IAB(QAQB+ QAQB)

(A11)

(A12)

Z(E), odd ~ & K K E (A13)

~6}12 QIAB4 B4 A 2 Q ABC PAB + 6Z(N)odd2 [ »~8(t K 2 (4»} 2 ((t K} ] (A14)

~ail 3 Q IA ABBAA 2Q IAB4 A4 B + 6Z(N), odd 2 [ t&»~8 t E 2 (4K) 2 (4») ] & (A15)

(8C| " =Q IAB((t&BV8(t&A+ PBV8(t&A) -2+' IAB(QAV8(t&B —QAV8(t&B)

~ z(N), :d[l&8&K I

+ l&8&K
' e'&8e»]-,

2 Q IA(B4' B 4'A+ AB 4A} 2 Q IAB(4 A+ AB QA+pQB)

+6„,„,[(V„y')(V,(t, )+(V„(t„)(V,(t,„)--y" V„y--],

2 ZiAB[(~ 2}ABACA+ (~+~2}AB A(t] 2 Q

(A16)

(A 17)

+ Z(N) odd ~ E + ++2 E ++& It,
' g (A18)

In Eqs. (A8)-(A18) the following abreviated nota-
tion has been used:

+IAB+AB(~ z}=-Q Q eAB(B., lj, I&.)
A 0 B~+g

x FAB(r, z),
(A19)

JAB +AB ~ ~Ay +y/2 2+ y/2
Ai/2 Bl/2

with |)AB as given in Eq. (2.19) and (B lj, I&),
(A

Ij, IB) (as well as (J,')) as calculated in Ref. 7.
The sums on A, B run over proton (neutron) states
of equal parity, and in the case of odd Z (N), A
and B must be different from the state of the odd
proton (neutron).

Equations (A8}-(A20) correspond to Eq. (2.17).
I'he use of Eq. (2.17)') leads to more involved ex-
pressions for the densities that can be derived
from Eqs. (A8)-(A18) by replacing eAB by -28„'B
[see Eq. (2.18)] and the term 5z&N&, dd. f((t&K, (t&K) by

x I AB(8., z),
(A20) Q (~A+ (~Z ~A}6A,K}2f(yA, yA)

"mo
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p,(r,.z)=e c ' e ~ "f,(r, z)P. ,(r',.z'), (A21)

wheref, .(r, z)=r "j'z "i with n, =0 (n',.=.0) if p, (r, z')

(see also the Appendix to Ref. 7).
The numerical calculations were performed ac-

cording to the following scheme: (1) The densities
(A8)-(A18) as well as the single particle densities
in Eqs. (Al)-(AS) were calculated at the mesh
points. (2) For every density p,(r, z) a polynomial
P,(r', z'.) of degree N, in both r' and z' is found"
that satisfies

is an even function of r(z), and n,. = 1 (n', =1). if
p,(r, z) is an odd function of r(z). (S) The numeri-
cal integrations on 8 and 8 (in that order) were
performed using the densities (A21). (4) The re-
sulting form factors Ez~(q), E",~~(q), E"„'(q),
EBB~(q), and FB2z~(q) were combined according to
Eq. (2.4) [(2.5) or (2.6)] for a given transition.
Multipolarities A, ~ 10 have been neglected.

The computer codes were tested with a model
of 12 protons and 12 neutrons (6 deformed orbi-
tals in all) for which the form factors were calcu-
lated analytically.

APPENDIX B

An alternative expression for TB~ (see p. 51 of Ref. 9) can be used to relate part of the transverse elec-
tric form factor to the experimental energy difference. This leads to the following alternative expression
for EB"(q):

y+ 1 1/2 Ec)((q)
eeq(28/a ')

g( ))(

[(2A. + 1)X(X+1)]' '(J,'')

A. +1 ~" y ' sj.n8 ' g+1 xsing

+ ' -j [P,'hl(; —Xh+))P SK, +P 'hK(;] I,gp, ~ 2K+1

where 8 is the experimental moment of inertia and

F*'(q)= z j(q)i'(2&+()" Jfjq q, . , ', (B2)

p~ is the proton density

p,(r, .)=2 Q ..(~yA'~'+ ~y. ~').
"m&O

The densities $8, , SSR,. (i=1, 2, S) are as defined in Appendix A, and $('.4 is given by

4 Q AB(AAAB 4A4B) ' (B4)
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