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Collective and single-particle contributions to transverse form factors of rotational nuclei have been computed in
the projected Hartree-Fock approach using the density matrix expansion effective Hamiltonian. Results on several
odd-A rare earth nuclei ("*'Ta, '*Ho, '*"Tb) are presented and compared to the available experimental data.
Theoretical predictions for transverse electric form factors of '*Er are also presented. A comparison is made of the
resulting form factors as ¢ — O with those extracted from measured transition probabilities B(E(M)A; I, — I )

NUCLEAR STRUCTURE !®Tb, 1°Ho, gy, 181Ta; calculated elastic and in-
elastic transverse form factors. Angular momentum projected Hartree- Fock
approximation.

I. INTRODUCTION

Electron scattering experiments on *®Ta at 180°
are now being performed! at the Bates Linear Ac-
celerator Center and experiments on other rare
earth rotational nuclei are planned for the near fu-
ture. It is well known? that such experiments mea-
sure transverse form factors and in turn provide
information on nuclear currents,

The transverse form factors for elastic and in-
elastic scattering within a given rotational band
can be written in terms of intrinsic current den-
sity multipoles® which contain the information on
the intrinsic structure of the band. The limited
experimental information presently available! does
not make it possible to extract detailed information
about the rotational current. From a theoretical
point of view the projected Hartree-Fock ap-
proach®* (PHF) provides a plausible first step for
investigating these properties for the first few
states in the ground-state rotational band. In this
case, the intrinsic structure is not expected to be
drastically modified by the rotation, as confirmed
by experimental information® on charge distribu-
tions of rare earth nuclei.

Although the projection after variation method
does not in general lead to the right inertial pa-
rameters® and its description of rotational prop-
erties is questionable, it has been shown,” how-
ever, that it leads to collective gyromagnetic ra-
tios in good agreement with experimental ones.
One may therefore expect that it would give a rea-
sonable description of the collective current dis-
tribution,

To first order in 1/(J,? the PHF approach leads
to a decomposition of the transverse form factors
in terms of single particle and collective form
factors.* This decomposition is analogous to the
one obtained® by keeping first order terms in I,
in the general transformation® of tensor operators
into the intrinsic coordinate system. This is
briefly discussed in Sec. II where a summary of
the theory is presented. The calculations were
done in plane wave Born approximation (PWBA),
details given in Appendix A, with the results pre-
sented in Sec. III. A detailed discussion of the re-
sults on *®Er and '*'Ta is given in Secs. IIIA and
IIIB, respectively. The calculated transverse
form factors for **°Tb, '®Ho, and ***Er and '®!Ta
are presented in Sec. IIIC where a comparison is
made with available experimental data from elec-
tron scattering as well as from y transitions
(extrapolated to ¢=10"° fm"?),

II. SUMMARY OF THEORY

Following the notation of DeForest and Walecka®
we write the differential cross section at 180° for
elastic and inelastic scattering within the ground-
state rotational band (K) as

do(E, 0=m)
dﬂ IiK—>IfK
ZZQZ

T4E?

(1+ ZE/Mtarg)-l‘ FTz(q) 'I,vK—»IfK ’
(2.1)
where the transverse form factor squared is given

by
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The one body transverse electric and magnetic
operators are defined as in Ref. 9 with a factor 4*
so that the relevant reduced matrix elements in
(2.3) are real. The latter can be written as linear
combinations of intrinsic matrix elements weighted
by different angular momentum dependent coeffi-
cients. As in the case of M1 and E2 y transitions,
a “model independent”® decomposition of the form
factors can be made into intrinsic ones based on
general symmetry principles. It can also be
shown?® that, to first order in I,,® such an analysis
leads to the results summarized below for the
cases of interest here, I,> ;=K.

Odd-A nuclei

(2.3)

Z
NeT
Z
——F

:‘é

(K —KN2K | I;K)

FiND = (k100|110 [P 40) + P i
X F‘z",’;(q)]

A+ 1)+ K(K+1) = IAI;+1)]
2Aa(r+1)]*/2

X Fgl(Q) ’ (2.4)

+{(KKX0 |I,K)

FiXq)= <1§ - KX2K |1, K)F5){q) + (KKXO |1, K)
X [ILI,+1) =K(K+1)]FEMq). (2.5)

Even-even nuclei (K=0)
Fr(q) l00—>1f0= 61f, FE"(q) 1[I+ 1)FE’“(q)6,f'l,

(2.6)

Equations (2.4)—(2.6) are model independent in
the sense that they do not depend on the particular
model used to describe the rotational band—pro-
vided that a first order expansion in angular mo-
mentum is valid—nor do they depend on the par-
ticular approximation to the operators T4
(whether they are the usual one body operators or
include terms coming from exchange currents).
These characteristics will only be reflected in the
predictions of different models to the intrinsic
multipoles.® The intrinsic form factors F¥Xq),
FHENq), and F4EN%(g) are to this order indepen-
dent of initial and final spins and depend only on

the intrinsic structure of the (ground state) band.
They could, at least in principle, be determined
by an analysis of precise experimental data on
transverse form factors. This renders the situa-
tion analogous to the analyses of y transitions in
terms of the familiar gyromagnetic ratios and
quadrupole moments.® To establish this analogy
in a more explicit way we notice that in the long-
wavelength limit the intrinsic form factors de-
fined above are given by

F0 =7 (o) O K, (27)
) = 3 (-) 3 %, (2.8
Fi0) = 3 (- a) 6 () st

for K=3%, (2.9)
FPO = 5 o

1/2 1/2
y (%) (2"; 1) @, (210
where g, gg, and b (the magnetic decoupling pa-
rameter) are defined in Ref. 8. The last relation
(2.10) follows from the continuity equation.® Con-
sistent with the expressions (2.5) and (2.6) only
the lowest order terms in angular momentum have
been kept for the longitudinal form factor and for
the energy difference. 9 is the moment of inertia
(in units of #>MeV ~!) and the @, multipoles are,
as defined in Refs. 8 and 10,

o [ 16w \*/? oA B
Q= (2M1> [adERyvippE). (@1
Finally FE} is proportional, in the long-wave-

length 11m1t to the signature dependent term in
B(E)) (Ref. 8) (and to the decoupling parameter a
in bands with K=%). This relation—as well as
those corresponding to higher magnetic multi-
poles —is not so useful and has been omitted here.

The relations (2.7)-(2.10) are interesting for
two reasons.

(1) They serve to estimate the transverse form
factors at low ¢ (¢<1/R) from experimentally
known gyromagnetic ratios and quadrupole mo-
ments.

(2) For theoretical calculations of the intrinsic
form factors within a model, they serve to check
the validity of the model as well as the internal
consistency of the model calculations. We will
come back to this point at the end of Sec. III where
our PHF results are discussed.

In the PHF approach the intrinsic form factors
defined above are given®* by
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P =2 (o | T [0, (2,12
F’é’}(q)-‘/_<¢xl Ty¥q) |¢x> (2.13)
FiMq )—“_(Q,z> Repx | TIMg). |4 , (2.14)
F?é(q)=—“§——’_’ G| 720 0%) (2.15)
P = RO peto, 1000 0.

(2.16)

F¥(g) also contains a term proportional to 1/{J,?.
The contribution of this term to g, was calculated
in Ref, 7 and shown to be negligible; we have
therefore omitted it in the present calculations.
The notation used here follows that of Refs. 4 and
7. 3=23 Ji is the total angular momentum operator
divided by 7. In particular, these calculations have
been done with the same Hartree-Fock wave func-
tions (¢y) as used in Ref. 7. These wave functions
have the property that the even-even core is time
reversal invariant and only the odd nucleon contri-
butes to F#* and F#{¥’*, On the other hand, F4®»
receives equal contributions from time reversed
orbitals. We refer to the first term in Eqs. (2.4)
and (2.5) as the single particle contribution and to
the second term as the collective contribution.

For even-even nuclei the matrix elements
(TJ_) (with o= E, M) are given by
B)

Re(T™J)= ), 0,,((A|T [ BY(A ],
4,B

+3(A|T|B)(A|j,|B)), (2.17)

Je
“ZnA<A|T1 o+ (=124, |A)

B)

— D 0L (AT |BY(Aj,
A,B

+(A|T|BXAlj, |B)).
(2.17")
For odd-A nuclei, corrections similar to those in
Ref. 7 must be applied to Egs. (2.17) and (2.17/)
[with s,, s_ replaced by T, (-1)*T9, respective-
ly; also see Appendix A]. In the previous equa-
tions A and B denote single particle HF states

(with m>0), and 6, and 6,,, as shown below, de-
pend on the occupation numbers n, and #z:

(2.18)
(2.19)

The collective form factors for **Er and '®'Ta
were computed using both expressions (2.17) and

Ohp=nang+ [n,(1 —ny)ng(l —ng)]*/2,

- ’
Oap=ng+ng—20,5.

(2.17) (or their equivalents for odd-A nuclei).

As in the case of collective gyromagnetic ratios”
the results were almost identical. The calcula-
tions on **Ho and *°Tb were performed using Eq.
(2.17), since this saved a considerable amount of
computation time. The explicit expressions used
in the computer codes as well as other details of
the calculation can be found in Appendix A. They
apply to calculations with and without pairing. In
the case of no pairing, 6,,=1 for A occupied and
B unoccupied (or vice versa), and zero otherwise.

III. DISCUSSION OF RESULTS AND COMPARISON
WITH EXPERIMENT

An interesting aspect of electron scattering at
-180° on rotational nuclei is that one can extract in-
formation on the distribution of the collective ro-
tational current density.

Experiments on even-even nuclei would provide
this information in a direct way. Inelastic scat-
tering experiments'? have recently begun on **Er
to measure transverse electric form factors [see
Eq. (2.6)]. Transverse magnetic form factors
could in principle be measured directly by elastic
scattering on excited states. Therefore the only
experimentally available information on them will
be from static moments.

In the case of odd-A nuclei a model is needed to
separate single particle contributions from collec-
tive ones. Even in the case that Eqgs. (2.4) and
(2.5) represent a good approximation, it is clear
that very precise data (on scattering to several
levels) are required to disentangle the different
contributions to the various electric and magnetic
multipoles. However, it is important to have an
estimate of the relative magnitude of single parti-
cle and collective form factors in a model that has
been previously tested for static moments and
longitudinal form factors. The PHF approach, to
first order in 1/¢J,,""**** is such a model.

With this objective we present the details of the
PHF results for '**Er and *®Ta in Secs. IIIA and
III B, respectively. In order to facilitate the com-
parison with other theoretical calculations, cor-
rections due to nucleon finite size and center of
mass effects are not included. These effects have
only been included in the total transverse form
factors presented in Sec. IIIC in order to compare
with experimental data. For purposes of clarity,
form factors maxima below ~2.5 x 107*° are not
shown in the figures.

An important question in assessing the validity
of these results is that of numerical accuracy and
convergence of the PHF solutions. The numerical
procedure that was used is similar to that devel-
oped by Negele and Rinker'? in the calculation of
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transition charge densities p,(») for deformed nu-
clei. In their work it was shown that the conver-
gence of p,(r) degrades with increasing I. To min-
imize these effects, a large oscillator basis N,
=12 was used and the number of HF iterations was
increased beyond the point where the hexadecapole
moment (Q4) converged to within a few percent of
its projected asymptotic value., Approximately
100 iterations were required. Our results for the
transverse form factors showed no appreciable
(<5%) change as we further doubled the number of
HF iterations.

A. Results on 16Er

The transverse form factors for inelastic scat-
tering on ***Er are plotted in Fig. 1 for I,=2,4,6
[see Eq. (2.6)]. The solid curve shows the results
corresponding to occupation numbers 0 or 1 (no
pairing) and the dashed curves are the results
with pairing. The main effect of pairing is to in-
crease the maxima below g~ 1 fm™ and to decrease
those at higher momentum transfer. The first can
be associated with the fact that pairing brings
more contributions from outer shells into FE
Itis interesting, however, to note that the increase
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FIG. 1. Calculated transverse form factors for *Er.
Results corresponding to pairing (P) and no pairing (NP)
are represented by dashed and full lines, respectively.

in the first peak of the E2 is approximately equal
to the ratio ((J,2)""/(J,%)")?= 1.6 [see Eq. (2.16)
and Ref. 7]. The decrease of the E6 and second
peaks of E2 and E4 is mainly due to a decrease in
the magnetization contribution [terms in Ly in Eq.
(A7)]. The magnetization contribution—which is
negligible at low g—plays an important role in the
formation of the peaks at g>1 fm™ where it is 3
to 4 times larger than the convection contribution.

B. Results on 181Ta

For odd-A nuclei the transverse electric and
magnetic form factors separate into single particle
and collective contributions [see Egs. (2.4), (2.5),
and (2.12)-(2.16)],

F""(q) (F,,)s o +(F,f)col, o=E,M (3.1)
with
(F1s.p. = KKXO|1,K)F 3Nq)
+{K -KX2K |I,K)F¥¥q) , (3.2)
DA+ +K(K+1) - TAIs+ 1)]
(FIDcor= (KENO | I,K) BXSEE
X FiNq), (3.3)
(F2))s.p. = (K —EX2K | I, K)F }}q) , (3.4)
(FENeor = (KEXO | ILEO[I {1+ 1) -K(K + 1) ] F 2X(q) .
(3.5)

In order to show the relative intensity of single
particle and collective contributions for elastic
and inelastic scattering on !®Ta, (F";) and

F"")w1 are plotted separately in Figs. 2-6 and

-Sf respectively. The relative sign of (F}: ) cot
to (F“)s.m for identical multipoles is also indi-
cated in Figs. 7-9.

In Figs. 2 and 3 the HF results for single parti-
cle form factors are compared to the results with
Nilsson wave functions in a spherical basis.*®
The difference between them is due to the fact that
the HF single particle wave function contains many
small admixtures of higher N shells. As a conse-
quence, the strength of the M1, M7 (E8) peaks is
slightly reduced (enhanced) and the peak of the M7
is moved to lower momentum transfer. As pointed
out in Ref. 4, the suppression of the intermediate
multipoles (M3, M5) is due to angular momentum
coupling in the intrinsic system. The reduction of
the single particle form factors in rotational nuclei
(as compared to spherical ones)* can be under-
stood from the fact that the total strength is shared
by elastic and inelastic form factors [see Eq. (3.2)
and Figs. 2-6].

The calculations were done (see Appendix A) us-
ing nucleon charges (e i) and magnetic moments
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FIG. 2. Single particle contributions (squared) to
transverse form factors (as defined in text) for elastic
scattering on !¥!Ta. The various multipole distributions
corresponding to HF and Nilsson wave functions are rep-
resented, respectively, by full and dashed curves. The
Nilsson results correspond to an oscillator range param-
eter b=2,2 fm.

(u,) corresponding to free nucleons. As discussed
in Ref. 7 the lack of spin polarization in the HF
wave functions leads to g, values significantly dif-
ferent from experimental ones. This effect is usu-
ally® accounted for by introducing effective values
for the odd nucleon magnetic moment. A calcula-
tion of the single particle M1 form factor was per-
formed using g f'f=0.48g fr*¢,” It was found that the
main effect was to lower the first peak of the M1
from 8.4(10"7) to 7.8(10"7) and to displace it slight-
ly to lower ¢ (from ¢~ 0.62 fm™ to g~ 0.53 fm™).
The small size of this effect is due to the fact that
at the peak of the M1 the convection part is ap-
proximately 4 times larger than the magnetization
part and both add coherently. This is in contrast
to what happens as ¢~ 0. As an alternative, ef-
fective g, values can be used. To fit the experi-
mental g, value’” one can also choose g $f= g free
+0g, with 6g,=0.36 and g =gfr*. This leads to an
enhancement in the M1 form factor at g~ 0.62 fm™
by a factor of 1.7. However the ¢ dependence of
spin polarization effects—as well as those due to

22
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FIG. 3. Same as Fig. 2 for the transition g—»g in
the ground-state band.
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FIG. 4. Same as Fig. 2 for the transition { — 1 in
the ground-state band. Only results corresponding to HF
wave functions are shown.
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FIG. 6. Same as Fig. 4 for the transition ;»%
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FIG. 7. Collective contributions (squared) to trans-
verse magnetic multipoles (see text) for elastic scatter-
ing on 181Ta, Results corresponding to pairing (P) and no
pairing (NP) are represented by dashed and full lines,
respectively. The multipole distributions with A>3 are
less than 10 %, 'The sign in the first peak of the M1 re-
fers to the relative sign of collective and single particle
amplitudes in the ¢ region from 0 to ~0.75 fm™.

exchange currents'*—can be important and may
not be well simulated by introducing effective g,, g,
values. We leave this question open for further
investigation.

The results for collective form factors are
shown in Figs. 7-9. The peaks of the form factors
with A= 3, are less than 2.5 % 107° in all transi-
tions and have not been plotted. As can be seen
the results for the form factors corresponding to
pairing (dashed curves) and no pairing (full curves)
are similar. For elastic scattering the collective
and single particle contributions add coherently
from ¢=0 to ¢~ 0.75 [this is indicated by a (+) sign
in Fig. 7]. The first is about 24 times smaller
than the second at ¢~ 0.62 and its main effect is to
increase the first peak of the M1 from 8.4 X 10"7 to
9.1x10"7 (see Fig. 10). On the contrary, for in-
elastic scattering (I,= %) the sign of single particle
and collective contributions is opposite [indicated
by (-) in Fig. 8] in the above mentioned ¢ region;
furthermore the collective contribution is only 7
times smaller than the single particle at ¢~ 0.62.
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FIG. 8. Collective contributions (squared) to trans-
verse electric and magnetic multipoles for the transition

I —2 in the ground-state band in 8Ta. Results cor-

responding to pairing (P) and no pairing (NP) are repre-
sented by dashed and full lines, respectively. The mul-
tipole distributions and with A>3 are less than 100,

The sign in the first peak of the M1 refers to the relative
sign of collective and single particle amplitudes in the ¢

region from 0 to ~0. 75 fm ',

This results in a shift of the first peak of the M1
to a larger g (g~ 0.7 fm™) and reduces its ampli-
tude by 16%. The reason for this difference be-
tween M1 elastic and inelastic form factors is that
F¥(g) and F%'(q) combine differently [see Eq.
(2.4)].

A more significant collective effect is the E2
contribution to inelastic scattering in the transi-
tion 22-» i (see Figs. 4 and 9), where the single
particle form factor at low ¢ is negligible. The
effect of pairing in this case is analogous to that
in '%Er but somewhat smaller due in part to the
odd nucleon and in part to the smaller gap param-
eters.” The strong suppression of the higher
multipoles is also due to angular momentum cou-
pling in the intrinsic frame.

C. Total form factors. Comparison with experiment

Results for elastic and inelastic transverse form
factors of '**Er, '®'Ta, '%Ho, and '*°Tb are shown

10-7 T T

-~ E2 ©1Ta (72 = We)

T 1111
L gl

|

]

i
-
|

I

Ll

|

Ll

10-10 |
10 .20 30
g(fm™)

FIG. 9. Collective contributions (squared) to trans-
verse electric multipoles for the transition L — 1 in
the ground-state band of '8! Ta. Both peaks correspond
to the A=2 multipole (see text).

in Figs. 11-16. Corrections for nucleon finite
size'® and center of mass effects have been in-
cluded (see Appendix A)., The usual correction'®
corresponding to spherical oscillator wave func-
tions has been used for the center of mass effect.
It has been pointed out'” that when projecting states
of good angular momentum from an axially sym-
metric HF wave function one picks up nonspherical
components of the center of mass wave function
and therefore one may get additional unphysical
contributions to the form factors. A schematic
calculation shows that under the factorization as-
sumptions in Ref. 17 these additional corrections
are to leading order proportional to (bg/2)2 /A,
and can therefore be neglected in our case (5~ 0.3,
A>160).

In Fig. 11 we show the predictions for the total
inelastic transverse form factors of '**Er. As
already pointed out, such an even-even rotator
provides a direct measure of the core contribution
to the nuclear current distribution. Each transi-
tion only depends on a single multipole. How-
ever, the predicted form factors are small and
may be difficult to isolate experimentally. An ex-
periment'? to measure these effects is currently in
progress at Bates.
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FIG. 10. Comparison of single particle (s.p.) and to-
tal (s.p. +col) transverse form factor squared for elas-
tic scattering on !8!Ta corresponding to no pairing. Sim-
ilar results are obtained in the case of pairing (see Figs.
7 and 12).

In Figs. 12-14 the results on '®'Ta are com-
pared with the experimental data of Rad et al.*
Since these calculations are based on the PWBA,
in order to account for distortions the data have
been plotted as a function of the momentum trans-
fer g,,,.° These few data points over a very lim-
ited region of momentum transfer do not allow for

“any quantitative conclusions to be drawn at this
time. What may be concluded, however, is that
such measurements of transverse form factors
are very sensitive to the exact nature of the wave
function of the odd nucleon and, in turn, to the
exact nature of the deformed core.

The effect of the strong coupling of the wave
function for the odd proton to the deformed nuclear
potential is clearly observed experimentally. Al-
though the predictions are close, the data appear
to require that the M7 multipole is shifted to peak
at higher momentum transfers than the calcula-
tions. More extensive and accurate data is clearly
required in order to correctly limit the shape and
extent of this multipole.

In Figs. 15 and 16 we show the results for ®*Ho
and '*°Tb. The predictions for **Ho, which also
has I,=K= %, are quite different when compared
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|
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|
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*
]
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FIG. 11. Total transverse form factors for inelastic
scattering on '%6Er (0*— 2*, 4*, 6*). Results corre-
sponding to pairing (P) and no pairing (NP) are repre-
sented by dashed and full lines, respectively. These re-
sults contain corrections for nucleon finite size and cen-
ter of mass effects (see text).

with those for '®'Ta. In the case of elastic scat-
tering (as well as in the £~ 2 transition) this dif-
ference comes entirely from the intrinsic multi-
poles F4Xgq) and F¥2(g). The odd proton HF states
are approximately given by the Nilsson orbitals
[404+] and [5234] in the cases of '*Ta and '®*Ho,’
respectively. The difference in the strengths,
shapes, and locations of the peaks in Figs. 12 and
15 are almost entirely due to the different proper-
ties of those orbitals. For the I~ 2 transition,
the effect of the M9 multipole may be seen at high
momentum transfer (¢= 1.5), whereas in ®'Ta it
is dominated by the M1,

1%%Tb with I,=K= £, has contributions from M1
and M3 multipoles in elastic scattering. Single
particle effects are again most important, with
the M1 multipole being dominant at low momentum
transfer. The subsidiary maxima at high momen-
tum transfer arise from secondary peaks in the
contributions from M1 and M3. For the $~1
transition, where the M1 no longer contributes,
the high momentum transfer region is mainly due
to E4 and M5 single particle contributions.

In Table I we give a comparison of the results
at g7ic=0.2 MeV for single particle and rotational
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See caption to Fig., 11,

FIG. 13. Same as Fig. 12 for inelastic scattering %
—£ in the ground-state band.
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form factors (F4', F¥'  and FE?) with those de-

rived from experimental g, g, ratios

7,8

and quad-

rupole moments [F4'(exp), F¥'(exp), FEXexp)];
see Eqgs. (2.7)=(2.10). The moments of inertia
have been extracted from experimental energies
of first excited states.'® The agreement between
FH# and F¥(exp) is quite good, as was to be ex-
pected from the agreement of theoretical and ex-
perimental g, values’ and can be considered as an
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additional check of our form factor calculations.
Similarly, the discrepancies between theoretical
and “experimental” F4! values is analogous to
those of g, values’ and are removed by using the
effective g, values given in Table IV of Ref. 7.

As discussed in the previous subsection the use

of g does not modify in a significant way the
single particle form factors at higher ¢ values
and has not been enforced here. As for FE? it

can be seen that in all cases it is approximately
twice as large as the “experimental” one. It
could be argued that this is due to the fact that the
PHF moment of inertia is smaller than the ex-
perimental one.®'°, However, one must keep in
mind that the continuity equation is not even satis-
fied within the model.* To remove this discrep-
ancy, the continuity equation may be used before-
hand to relate a part of FE* to F°*/g [see Eq.

(B1) in Appendix B]. This has the disadvantage
that different parts of the current are treated on

a different footing and, although it leads to the
correct result in the low ¢ limit there is no guar-
antee that the results at higher g will be more re-
liable. A calculation for the simple model de-
scribed at the end of Appendix A shows that the
results at the first peak of the E2 are similar when
using Eqs. (A7) and (B1). The value of the moment
of inertia for the model was chosen so that at
gfic=0.2 MeV the result from (A7) was twice that
from (B1) as in the realistic cases of Table I,

IV. CONCLUSIONS AND FINAL REMARKS

We have investigated the predictions of the PHF
approach on transverse form factors of rotational
nuclei (!**Er, '®'Ta, ®Ho, '*°Tb) for elastic and
inelastic electron scattering within the ground-
state rotational band.

From the results in Sec. III it can be concluded
that the dominant contribution to transverse form

TABLE I. Comparison of theoretical and “experimental” intrinsic form factors (as defined in text) at gic=0.2 MeV.

Theoretical F¥ (g=10- fm™) values corresponding to gf/g
S

free— (.48, 0.69, and 0.67 for Ta, Ho, and Tb, respective-

s

ly (Ref. 7) are within parentheses. The lower and upper entries in columns two and six correspond to results with and
without pairing, respectively. The experimental values have been deduced from Egs. (2.7)—(2.12) as explained in the
text. The experimental intrinsic quadrupole moments used are those quoted in Refs. 10, 5, 21, and 22 for Er, Ta, Ho,

and Th, respectively.

Fft FA (exp) Fit Flf!(exp) Fg? FE(exp)

Er  —4.64 X107  -4.22(+0.38) X107 1.37 X 10'1 7.06(+0.06) x 107
—5.26 1077 1.71 X 10~

BTy 417x107  -3.81(x0.24) X107  —1.54x 1oj —3.21(+0.04) 10  1.40 x 10"'; 7.17(x0.13) X107
—4.33 x107 (~3.21 x10%) 1.60 X 10~

5o  —4.58 X107  —5.71(x0.52) x 107  —7.17X mj —6.04(+0.,14)x10%  1.32 % 10-: 5.75(0.05) x107
5,23 X107 (~6.18 x10%) 1.65 X 10"

197 _5.14 X107 -5.62(x0.54) X107  —4,80x10%  —3.67(+0.10) x10%  1.37x107  5.80(+0.48) X107
—5.21 X107 (~3.68 x 10%) 1.65 x107
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factors of odd-A nuclei comes from the odd nu-
cleon, except for inelastic scattering at low mo-
mentum transfers where the collective transverse
electric form factor dominates the picture for &1
=2. In addition, cross sections at 180° for inelas-
tic scattering on doubly even nuclei can be ex-
pected to be at least one order of magnitude lower
than those for elastic scattering in odd-A nuclei.
Little can be said about the validity of the different
approximations until more extensive and accurate
experimental data are available.

A comparison of the results on '®Ta, '**Ho, and
19T illustrates the kind of changes to be expected
in the transverse form factors for different odd-A
rotators. These changes are for the most part
due to the different orbitals occupied by the odd
nucleon and/or the different K value for the
ground -state rotational band in these cases.

A serious shortcoming of the PHF approach has
been found (see Table I) by a comparison at very
low ¢ of rotational transverse electric form fac-
tors in this approach with those deduced from the
continuity equation. We observe a factor of 2 be-
tween the predicted and deduced values of FE£? at
low q.

As pointed out in Ref. 4 a better approximation
to the form factors would be provided by solving
the variation after projection equations of Villars
and Schmeing-Rogerson.® Implementing the self
consistency required by those equations may be
difficult, but a good approximation to the trans-
verse form factors of rotational nuclei can be ob-
tained by a consistent first order expansion in I,.%
In this approximation the calculations of F‘Q and
FZE* are analogous® to those of gyromagnetic ratios
in the cranking model by Prior et al.?° These cal-
culations require simple modifications in our

present computer codes and will be done in the
near future.

For odd-A nuclei, the limitations imposed by
the pair filling approximation used to solve the
HF equations may be more important than those
due to projection after variation. As discussed
in Sec. I B the use of effective g, values™® has
very little effect on the results for single particle
form factors. However, the q dependence of spin
polarization effects may not be well simulated by
modifying the g, (or g,) value. Experimental data
on elastic scattering at low ¢ (0.3< ¢< 0.7) would
be of great interest in order to clarify this ques-
tion.
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APPENDIX A

In the HF codes for axially symmetric deformed nuclei*®!! the single particle states are characterized
by the quantum numbers 7 (parity) and m (angular momentum componfnt along the symmetry axis J,), and
the (Z/2) (N/2) pairs of protons (neutrons) fill conjugate orbitals (4,4 ):

¢‘A1'Tn= ¢alr, z)ei(m-l/z)wx1/2+ ¢alr, z)ei(m+1/2)wx_1/ 29

by = —0a(r, 2)e DN, 1 9 (r,2)e B0y o, m> 0.

The spin up and down functions (¢3, ¢3) in the 7,z plane—given as linear combinations of products of
Laguerre and Hermite polynomials’*—are determined by iterating to self -consistency and then used to
compute the form factors (2.12) to (2.16) as described below.

For odd-A nuclei the orbital of the odd nucleon is selected in the last iteration according to the experi-
mental 7 and K numbers, among the last occupied orbitals. Denoting its spin up and down amplitudes by
¢ and ¢ the intrinsic form factors [(2.12), (2.13), (2.15)] are given by
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Fg=clor [f {e[;?-?fi—)]uzjm;[g—%;—l(m)z Bt (03]

A+ 1)]2/2
22 +1

{(jA+IPg+1+jx-1Pg-1)% [(¢');)2 "(4);)2]

+ [haPra'/ (A +1) —A-IPA-I‘/A]M@}}, (A1)
e [0 =2K) 1)1/ 2 22 +1 )4/2 2K -1

Pia= o (S [ o[l pas(m 49,05 - Vo)

AMA+D)T2(/ . A=2K+1 7\+2K
“[—25\—:1-.-] P ifl_m— I Pi—— ) ox%%

(j peK-1 (A =2K+1)(A = 2K + 2)
rabh 20+ 1)

2K -1 2K
P QPO HO)

1
(]xupiaﬂm ]x-lP;.-L 2)\)(91’;() ]} (A2)
(A =2K)1(2xr+1)

1/2
F3¥q) = C(g)i* [m] ff {qux[MP§K¢k¢} +3(A+ 2K)(\ = 2K + 1) PN 1) =3 P2 3)?]

e |. . - . .
+EI_2 []hpfffx(m 1)2¢KVR¢K+'2TLII [(A+1)j,., —Ajm]

x (p2x 2K(2K + 1)
sinZ6

OxPx+ [(X+2K)(X - 2K + 1) p2K~t
- P:"“mw;f)] } (A3)
with u=2.79 (-1.91), e=1 (0) for odd Z(N). The following abbreviations are used:

J-f= fdeRj:dcosB, (A4)

=L @), o= (-C )¢, (a5)

Z Mc

where f(q) is the product of the nucleon and (inverse) center of mass form factors. Note that » =R sing,
z=Rcosb, j; =j,(gR), and Pp=P7(cosf). The collective form factors (2.14) and (2.16) are given by

Clg)i*(=V2) 2+1 . L 0 _ p2loanee
F¥g)= @ T ff E{ .,MMUJM,{P mes+z A0+ 1) - P,*lanes}

I . A+1 . . . «
+4 2“ [(m ]A+1Px+1l+Th-1Px-1l)mm1a+ [—7\]7«+1Pg§1+ A+ l)h-l.P:—l]mzz

1 1.
+ (‘mhupulz*“xhqu-xz) smsmg]} ’ (A6)

Ex( \_ C(q)i* qle 22+1 L 0 vara . 1 2oama
F3 (q)_[(2)\+1)>\(7\+1)]1/2(le) ff 2;,"{ 3 wwl)yh[P EME = AN +1)PYEIM S + P,28M ]

) U A+1 o1+ Jrm
+ ea[(ﬁ%&lphﬂl’*’T]x-lPh-l ) é’e“ P 1(_])‘11n+") seg

P L (———j —_
o fsine( A+1]**1+A]“1)geg]j' (AT)
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The densities Me ¥, MM, Se?, §M? in Egs. (A6) and (A7) are given below:

mf(n)= —ZIAB(¢+B¢):1 "'¢B¢;4) + %Zl IA§(¢4+4¢—B + ¢;1¢B)+ GZ(N),oddg [(K —%)2((13;{)2 ..(K+%)2(¢;{)2] s (A8)
MM 5™ = —Z I,50502 —%Z' T459405+ 920wy, 0ad® [¢;{(€9+ 2Kz/7)¢p% - (05)" = (63)°], (A9)

MM =D Tupd50% =5 O L450a05+ Oz, 0aa® [9K(Vy —2K2/7)05%] (A10)
With ¢,Y,0,= 6,Vs¢; = 6, Veba s
ML = =D 15D 5Vp0h+ 05Ve0n) =3 D Lan(@3Vsdh+ 02605)+ 020my,0aa
X [0xVedx = [Vodk|* = [Vod i [*] 5 (A11)
MeL™ =3 Iupllm -3)pp0s+(m+3)307]
+ 020,00l K + )| 030 % — (/P [(K =3)X¢3)?+ (K +5)%07)%]}, (A12)

é’fﬂlf(")= _Z]AB(¢}9¢; —¢);¢:¢)+§ Z' Ii5(dadn+90ads)

+ 6Z(N),odd{K;Z,' [(‘P;{)z —(p%)* - 2% ¢}¢}]}’ (A13)
EME™ = =Y Tapdpda ~2 9 Las®iadh+ Ozam,oait [0xVedk —2(93)* = 3(03)°] (A14)
EME ™ =D 1upd30s 52 Ta5dads+ Ozeny,0at [05Vedk — F(D3) = 5(03)7], (A15)

8ELM =D Tan($5Vabi+ 5V007) =50 Las(d Va5 - 03 V,03)

+0z¢xy,0aal | Yok |* + [ Voo k |* = 05 Vo00%] (Al6)
8€L" =3 Lun(05V,04+ 05Y,03) =3 2 Las(#39,65 - $3,63)
+ 021,00l (Vo (V0 1) + (V,0 (Vo0 1) = 02V, 0% ], (A17)

84 =" 1, [m =) pon+ (m+3)303] =5 D Ligdads

O ased £ (K =B e 63" -+ Dol (a18)
f
In Eqs. (A8)—(A18) the following abreviated nota- with 6, as given in Eq. (2.19) and (B, |A),
tion has been used: (Alj,|B) (as well as (J,%) as calculated in Ref. 7.

The sums on A, B run over proton (neutron) states
ZIABFAB(T,Z) = E Z 045Bny |7, | AL of equal parity, and in the case of odd Z (N), A
A, 50 Bma1 and B must be different from the state of the odd
proton (neutron).
Equations (A8)~(A20) correspond to Eq. (2.17).

X Faplr,2),

(A19) The use of Eq. (2.17)’) leads to more involved ex-
_ pressions for the densities that can be derived
2145 Fap(r,2)= 2. 2 0,454y, 1i. | By from Eqgs. (A8)—(A18) by replacing 6,, by —26/,,
4172 B/2 [see Eq. (2.18)] and the term 8,4, .q4" (05, 65) by

X Fyp(7,2),
st AE (na+ G =200, 21 (03,03

m>0

(A20)



(see also the Appendix to Ref. 7).

The numerical calculations were performed ac-
cording to the following scheme: (1) The densities
(A8)-(A18) as well as the single particle densities
in Egs. (A1)—(A3) were calculated at the mesh
points. (2) For every density p,(r,z) a polynomial
P (7%,2% of degree N, in both #* and z* is found"
that satisfies

pr,2)= e P2 2omB. %y {r,2)P(v*27), (A21)

where 7 (7,2)=7r"i z™"; with n;=0 (n}=0) if p,(r,2)
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is an even function of #(z), and n;=1 (n}=1) if
p{r,2) is an odd function of 7(z). (3) The numeri-
cal integrations on 6 and R (in that order) were
performed using the densities (A21). (4) The re-
sulting form factors FiXq), F4Xq), F¥q),
FEMgq), and FE)Xq) were combined according to
Eq. (2.4) [(2.5) or (2.6)] for a given transition.
Multipolarities A > 10 have been neglected.

The computer codes were tested with a model
of 12 protons and 12 neutrons (6 deformed orbi-
tals in all) for which the form factors were calcu-
lated analytically.

APPENDIX B

An alternative expression for TZ* (see p. 51 of Ref. 9) can be used to relate part of the transverse elec-
tric form factor to the experimental energy difference. This leads to the following alternative expression

for FEXq):

B A+1\1/2 FeXMg)
Fﬁ“‘”“( x ) (@i
Clg)i*

+
[(2x+ DA+ 1) ] %, )

X f[ > {ea[% aiP,tées +(2)\; 2, jm(

a=p,n

qle 2x+1

2 Ax+1)

where 9 is the experimental moment of inertia and

P = @2 107 [ [,

p, is the proton density

Pp(’l’, Z)= ZAZ nA( I(qu

m>0

2 |oal?).

1 p,! 1 P!
—_— 1 a T2 @ by
ATl D ¥ ey ée 7 siné 5eg>]

siné 2 371

———<j, [P EME —A(A + 1)PYEME + P,2EM ¢ ] } ) (B1)

(B2)

(B3)

The densities §€¢, §M%(i=1,2,3) are as defined in Appendix A, and §€¢ is given by

geg = —21A3(¢Z¢B + ¢>;¢;) .

(B4)
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