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In the analysis of time-reversal and. Mossbauer absorption experiments, it is important to consider atomic
i)

processes which interfere with the dir'ect nuclear transition. Interaction of the photon with the atomic electrons
causes the radiation to acquire a phase shift, specified by the interference parameter g(Lrr). We present theoretical
expressions for g' and compare our calculated values with experiment. Satisfactory agreement is obtained. In
particular, an apparent violation of time-reversal invariance in the 129-keV transition of "'Ir is fully explained by
these effects.

RADIOACTIVITY Atomic effects on nuclear electromagnetic transitions; time-
reversal violation; dispersion of Mossbauer lines.

I. INTRODUCTION

Photons emitted or absorbed in a nuclear transi-
tion may interact with the atomic electrons. Such
processes will interfere with direct photon emis-
sion or absorption if the final states are indis-
tinguishable from each other . In this paper, we
consider processes which shift the photon phase
by an amount of the order of the fine structure
constant. This phase shift, $(L, tr=& or M),
depends upon both the multipolarity (Lit) and the
energy of the nuclear transition, and has been
called the "screening" or "interference" param-
eter. '

There are two types of experiments for which a
knowledge of $ is important. The first of these
tests time-reversal invariance in a mixed-multi-
pole (Ltr and L'ti') electromagnetic decay of an
excited nucleus. One seeks to measure a relative
phase between the transition matrix elements of
the two competing multipoles. This phase, q
—= tl(Lit) —rl(L'tt'), makes the mixing ratio 5 com-
plex:

n =~fnfe'" .
A nonvanishing value of g would be evidence for
time- reversal violation. However, the mixing
ratio can acquire a spurious phase resembling g
through the interaction of the radiated photon with
the surrounding atomic electrons. This process,
also sometimes called the "final state interaction, "
is shown schematically in Fig. 1. Diagram (a)
represents the amplitude for direct emission of a
photon of multipolarity (Lit) as the nucleus changes
from initial state i to final state f. We denote
this transition amplitude as Tz, (Lit). Diagrams

(b) and (c) portray the elastic interaction of the
photon with each of the bound electrons; they differ
only in the relative time ordering. The initial
and final state "0" of the electron are identical,
with the photon again emitted with multipolarity
(Ln) The n'u. clear radiation induces currents in
the atomic electrons, which then also radiate.
The sum of the transition amplitudes for graphs
(b) and (c) is denoted by &Tz;(Lit), and, as will be
shown later, the total transition amplitude for the
deexcitation can be written as

'0

0

Ep -(d

(b) (c)

FIG. 1. Diagrammatic contributions to the amplitude
for photon emission in a nuclear transition. The ex-
ternal wavy lines represent the emitted photon and the
internal lines indicate virtual photon exchange. The
single straight lines represent the electron, and the
double lines the nucleus.

Tg;(Lit)+ &Tr, (Ltr) = Tr, (Lit)[1+p(Lit) +i)(Lit)] (2a)

= Tr, (Lrr)e'"~", (»)
with both p and $ «1. This modifies the observed
mixing ratio for the transition to

~
~

g
~
~ i(v+t& (3)

with $ = $(Ltr) —$(L'ti'), so that the relative phase
measured in these experiments is actually tl+ $.
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(yp(1 —2@)
+Oe ~1+X (4)

where a0 is the nuclear absorption cross section
on resonance, and x is the deviation of the photon
energy from the resonance energy in units of the
transition half-width. The quantity a, is the slow-
ly varying total cross section for photoelectric ab-
sorption and elastic plus inelastic scattering from
atomic electrons.

Equation (4) shows that the interference param-
eter produces an asymmetry in the absorption line
shape. Such an asymmetry was first observed by
Sauer, Matthia, s, and Mossbauer, and has been
treated theoretically by Trammel and Hannon '

and Eagan et al. It is also possible to measure

Consequently, the knowledge of the. interference
parameter $ is essential for determining the true
magnitude of the time-reversal violation, g.

Gimlett et a/. have recently measured q+ $
= (-4.7 + 0.3) && 10 for the 129.5 keV &2-MI tran-
sition in Ir. Their result is tobe compared with
the theoretical value (=-3.7&10 calculated by
Goldwire and Hannon, including an estimate of
the ~-shell contributions. This significant dis-
crepancy between experiment and theory, or in
other words an apparent evidence for time-rever-
sal violation, was the primary motivation for the
present work.

The parameter f is also important for measure-
ments of dispersion in Mossbauer absorption
spectra. In transmission experiments, the total
attenuation of the beam is due to the absorptive
parts of scattering diagrams (a) through (d) in Fig.
2. Diagram (a) shows the direct nuclear resonant
scattering, diagrams (b) and (c) represent the
interaction of the radiation with atomic electrons
either preceding or following the nuclear resonant
scattering, and diagram (d) shows direct scatter-
ing of photons by the electrons. Using the optical
theorem, one can verify that the interference
between the nuclear resonant absorption and the
interaction with the atomic electrons yields an
attenuation cross section

contributions to the interference parameter by
observing either ejected electrons (which reflect
interference between photoelectrons and conver-
sion electrons) or scattered r rays (which reflect
interference between resonant scattering from
the nucleus and nonresonant scattering from the
electrons}. In comparing calculated and measured
values of $ for these experiments, it is necessary
to properly take into account the effect of absorber
thickness. This will be discussed in more detail
below.

As pointed out earlier, the primary motivation
of our present study was the apparent time-re-
versal violation observed by Gimlett et al. We
have rederived the formulas for the phase shift
without approximations, particularly for the scat-
tering part of $. Our numerical calculation is
also more careful than that of Ref. 1; in particu-
lar, we use the more precise Hartree-Pock treat-
ment of the bound and continuum electron wave
functions. The more accurate handling of the
electron wave functions enabled us to extend the
calculations of g to low energies, inaccessible in
Ref. 1. It is with these low energy nuclear tran-
sitions that many of the precise Mossbauer mea-
surements of $ are conducted. In addition, our
exact treatment of the scattering part of g is ap-
plicable at energies well above 200 keV, where
atomic interference effects least obscure any
possible time-reversal violation. In general, we
find very good agreement with experiment, not
only for the 129.5-keV transition in Ir where
our calculated phase shift fully explains the ob-
servations, but also in numerous Mossbauer tran-
sitions.

In Sec. II we present theoretical expressions for
the interference parameter $. A description of
our calculation together with numerical results is
given in Sec. III. We compare our results for $

with several time-reversal violation and Moss-
bauer absorption experiments in Sec. IV. The
Appendix outlines the derivation of the formulas
presented in Sec. II.

II. EXPRESSIONS FOR THE INTERFERENCE
PARAMETER

(a) (c) (d)

We begin by considering the contribution to the
amplitude for nuclear deexcitation by diagrams (a}
through (c) in Fig. 1. The direct emission of a
photon of wave vector k, frequency &u = ~k ~, nor-
malization A, and polarization & induced by the
nuclear electromagnetic transition current j„(x)
is

FIG. 2. Diagrams contributing to the scattering of a
photonby a Mossbauer nucleus and its atomic electrons. where i and f are the initial and final states of the
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i u) ly-x I

x[I'„( ) j,(y) p„( )p, (y)]. (6)

The electron current and density are defined as

j,(y, (k)) = —e A dz (pf (z)e '"'E ' aG~,„(z,y)
0

q o(y)

—e'A Jt dz q 0 (y) o(G~ „(yy z)

nucleus, respectively, and (d=E,. -E& is the en-
ergy of the transition.

We represent the sum of diagrams (b) and-(c)
as 6T«, where in order for the processes to be
indistinguishable from direct emission, the initial
and final electron bound states are identical and
the emitted photon is still described as above.
Thus,

p, (y, (u) =Q —e A )I dz q 0 (z)8 "'~ nG, .„(z,y)
0

x%0 y)

—e AJ dz yf(y}G~ „(y, z)

xe '""~ ' ufo(z)

Here the summation is over all bound electron
wave functions q0 which satisfy the Dirac equa-
tion [& ' p+ Pm+ eV(r)](po(r) =@Ofpp(r). The elec-
tron charge is e, GE&„ is the electron Green s
function of energy &0+ ~' in the potential V(r) of
the nucleus and the remaining electrons, and
p„(x) is the nuclear electromagnetic transition
density. Equation (6) expresses 5T&; in a form
very similar to that of internal conversion, but
with j, and p, having more complicated forms.

In the Appendix we outline the multipole decom-
position of the photon plane wave and Green's
function, and the construction of the electron
propagators +@0 The total transition ampli-
tude T«+&T&; can be written as a sum of ampli-
tudes for the emission of photons of specific multi-
polarities:

X 8 E ' Q+0(z) (7)

Ty ) + 5T« — Tf i + ~ Tf f &,g ~

& ee'

where for the magnetic case we obtain

(6)

(TZ, +IlT&', I, =+kms .dx) (x)'ka)0„'"(X) A[k Y „+'(k)]+,. dy), (y)'k'„'(y)I,
M 167t

and for the electric case
I

(Tz, + 5 T&, )y ...=g 2xi, dx j„(x) ' ay&*(x)
N Issue

1/2

x~ A[~ &E'N'(&}]+
'

dy j.(y) bYM(y}+ AM'(y)

—p, (y) L 1 0'sky(y) (10)

Here the Y&&'s are the vector spherical harmon-
ics, the al,&'s and bl, &'s are the vector multipole
fields, and the q&&'s are the scalar multipole
fields as defined in Akhiezer and Berestetskii.
In Eq. (A14) we show that the total transition amp-
litude T«+ 5T&, for each multipolarity (Lm) given
in Eqs. (9) and (10) can be expressed as Eq. (2a}.
This defines f and p.

As is clear from Fig. 1 and Eqs. (7), we have
only considered processes contributing to order
e in the amplitude. Neglecting even higher order
diagrams is justified by the smallness of the fine
structure constant. The parameter p is in gen-
eral much less than one, and is of little signifi-
cance because it occurs in the combination 1+p.

In contrast, the interference parameter $(«),
although small, plays an important role because
of its imaginary character.

It has been shown previously that $(Lv) is a
sum of two terms: the conversion phase $, and
the scattering phase $,. These imaginary parts
of the transition amplitude arise from the singu-
larities of the electron and photon Green's func-
tions, respectively. We now discuss each of
these contributions in greater detail.

A. $~—the conversion phase

The electron propagator has a sxngularzty when
its energy equals that of a bound or free energy
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eigenstate. As indicated in Eqs. (7), we evaluate
the Green's function t" for energies &0+ ~ and
Ep —~, where &0 is the energy of each bound elec-
tron. For the transition energies which we con-
sider here (+ & 2m), pair production is forbidden
and only &0+ ~ can coincide with the energy of a
continuum eigenstate. This is by definition when
~p + is greater than the electron rest mass.
Note that we neglect terms where &0+ ~ coincides
exactly with an unoccupied bound state, Thus,
the only contributions to the conversion phase come
from diagram (b) of Fig. 1. This is shown sche-
matically in Fig. 3(a), suggesting that E may be
written as a product of two electron matrix ele-
ments: internal conversion followed by the in-
verse photoeffect. As is well known, the process
of internal conversion is strongly energy depen-
dent with those states just above threshold of
greatest importance. We expect this same be-
havior for the conversion phase.

We define the solutions of the Dirac equation
for the combined nuclear and atomic potential to
be

(-) g.,(y)x...,(y)'
(11.pf.p(y)x-. ~,(y).

where g„and f„are the regular solutions to the
K0 K0

radial Dirac equation.

g"' + tg„=+[Z, + m —eV(y)]f„,
dy y K0 Kp P

dy y p

"P —-if„=-[Ep—m —8 V(y)]g„,Kp P

and the X's are angular momentum spinors with
total angular momentum

~
Kp

~ p and the magnetic
quantum number pp.

For the magnetic multipoles, the conversion
phase can be written, as

Q(L, r =mag) =- g A«(m)R«(m)S«(m),

(13)
where the summation over Kp includes all fully
occupied subshells (the role of valence electrons
is not significant for this problem), and the sum-
mation over & represents all the final continuum

(b) (c)

FIG. 3. Contributions to the interference parameter $.
Diagram (a) represents the conversion contribution, and

diagrams (b) and (c) the scattering portion of the phase.

A„„(m)=wnv
( )

(tc+ Kp) (2j +1)(2jp+ 1)

6 jL)'
0)

R„„(m)= dry, ((ur)[f„g„,+g„f„,], (14)

S„„(m)= t drj ~ (~r)[f„g„+g„f„].

Here, &=e /4p' is the fine structure constant, j~
and y& are the regular and irregular spherical
Bessel functions, jp and j are the angular momen-
ta for the initial and final electron states respec-
tively, f„and g„are the bound state radial wave
functions, and f„,g„are the continuum wave func-
tions which are regular at the origin. The nor-
malization of the continuum states is defined in
Egs. (A9) of the Appendix. For comparison, the
internal conversion coefficient is given by Rosel
et al. as

n„= g A„„(m)[R„„(m)+S„„(m)]. (15)
Kp pK

Similarly, for electric transitions one obtains

8 (L, v= elec) =- g A„p„(e)R„„(e)S„„(e),(16)
Kp ply'

where

A„,„(e)=
( )p

A. .(m)
1

states which are accessible to the initial state by
the multipole selection rules. The other quantities
appearing in Eq. (13) are

I

(e) dr[ LyL (&r)(g.pg. +f, f.) —Lyl i(&r)(f. g. g' f.)-—
0

+(~- ~p)yi-i( r)(f.,g'+g. ,f.)l
L+1

S„„(e)= Jl dr —Ljl, ,q(vr)(f„g„—g„ f„)—Lj~ q((ur)(f„g„- g„ f„)

1(~- ~p)j&,~(~r)(f,,g, +g.,f.)
+ (K Kp)j I, ~(~ )(fr„g„—+g„ f„)

(17)
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B. $,—the scattering phase

This contribution to the imaginary part of the
transition amplitude for photon emission occurs
when the photon Green's function is singular.
This corresponds to the photon being real as fol-
lows from the expression for the propagator'.

exp(i~ I y - x I ) 4m
(

- exp[i' (y - x)]
ly-x[ (2v)' J q'-aP-i~

Diagrams (b) and (c) of Fig. 3 show the emission
of a real photon by the nucleus, which then scat-
ters from all the bound atomic electrons. This
scattering is elastic with the photon and electron
states being unchanged by the interaction. The
following expressions can be derived exactly using
r elativistic electron theory.

For the magnetic case we obtained

&,(I., ~= mag)

=- Q A„„(m)[T„,„(Z, +(u) — „7„(&,-(u)],
Ko ek

(20)

with

+

gkk+Kgk y (21)

As before, ~0 labels the initial bound electron
states, ~ labels the intermediate states of ener-

gies ~0+ co and ~0- ~ which can be connected to
the initial state via the selection rules, and the
subscript y or z denotes the argument of the radial
wave functions. The intermediate electron states
can either be continuum wave functions with ener-
gy greater than the electron mass or quasibound
wave functions with energy less than the electron
mass. A.„„(m) is the angular factor given in Eq.
(14), f„and g„, are again the bound state wave

The electric conversion coefficient is given by

o, = Q A„,„(e)[R„,„'(e) +S„„'(e)].
kook

In comparing our expression for the electric con-
version phase with the formula of Hannon and
Trammell, we have found an apparent error in
their result. Their Eqs. (19) or (21) should con-
tain an additional factor of (2I +2/2I +1}. The
formula for the electric conversion phase in the
more recent Ref. 1 can be shown to be equivalent
to our expression.

functions, f„and g„are the wave functions which
are irregular at the origin, and f„and g„are
regular at the origin.

The analogous expression for the electric scat-
tering phase is rather lengthy and is presented
elsewhere. 11

Goldwire and Hannon have approximated the
scattering phase as a sum of terms due to Thom-
son scattering (resulting from the & interaction
in the nonrelativistic reduction} and anomalous
scattering (arising from the j 'A interaction).
They state that the Thomson term is dominant
unless the transition is within a few eV of an ab-
sorption edge. We have found this to be true
numerically even at higher energies where the
approximation is no longer valid.

III. NUMERICAL RESULTS

In our calculations of the conversion and scat-
tering phases, the potential V(x) was taken to be
the appropriate Dirac-Hartree-plater potential
for each atom. The potential also included a
simple correction for finite nuclear size. A fifth-
order pr edictor- corrector integration method was
used to solve the coupled differential Eqs. (12).
The bound state eigenfunctions were obtained by
choosing &p so that two solutions matched at some
intermediate radius. a regular one integrated out-
ward from the origin and an exponentially decaying
one, integrated inward from a very large radius.
For the continuum and quasibound wave functions,
we integrated the regular function outward from
the origin, normalized at a distant point, and then
integrated inward to obtain the irregular wave
function.

In Ref. 1, the conversion phases were calculated
for the & and ~ shells only. Unscreened, point
nucleus, relativistic wave functions were used for
the K shell, while a table of screened internal
conversion matrix elements was employed for the
J- shell. The Thomson contribution to the scatter-
ing phase in Ref. '1 was calculated using published
relativistic radial densities.

The major part of the conversion phase comes
from those innermost bound states above conver-
sion threshold. The outer shells also contribute,
but in a rapidly decreasing manner. This behavior
is demonstrated in Fig. 4 where the contributions
of various shells to the conversion phase for two
representative transitions are graphed. The vari-
ation of the scattering phase with shell is much
slower with no threshold behavior. We used the
exact relativistic expression fear those states pro-
viding most (V0-90%}of the scattering phase.
For the remaining states, we employed the much

simpler Thomson approximation of Ref. 1. In
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Z = 74, Lvr = E2
cu = 46.5 keV
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FIG. 4. Phase $ for two representative 82 transitions
in tUngsten. Contributions of different electron shells
are shown for the 46.5 and 122.5 keV transitions in (a)
and (b), respectively. Full histogram —conversion
phase; dashed histogram —scatter ing phase.

Fig. 4 we display for the same transitions the con-
tributions to the scattering phase for various
atomic shells.

In general, our calculations agree with the con-
version and scattering phases of Goldwire and
Hannon. ' However, there are instances of dis-
agreement, particularly for some & shell con-
version phases. These must be considered in the
comparison with experiments in Sec. IV, particu-
larly regarding the time-reversal violation test in

Ir. Tables I-IV of Ref. 1 include nuclear tran-
sition energies up to 200 keV. Because both con-
version and scattering phases decrease with in-
creasing gamma energy, it may be desirable to
perform time-reversal experiments at higher en-
ergies. Therefore, we have calculated the phases
at energies of 200, 500, and 800 keV, and for
nuclear charges 50, 70, and 90. Figures
5(a)-5(c) present these results for &1, ~1, and
&2 type transitions, respectively. These figures
together with Tables I-97 of Ref. 1, should give

adequate estimates of $ for any proposed experi-
ments. However, in comparing theory with ex-
periment, a more careful treatment of each tran-
sition is necessary. This is given in the next
section for the existing experimental results.

There are several independent checks of our
numerical work. These include comparisons with

(a) experimental electron binding energies, (b)
tabulated internal conversion coefficients, and (c)
experimental photoelectric cross sections.

(a) Binding energies A. comparison of bound
state energy eigenvalues tests both the quality
of these wave functions and that of the potential
used to calculate the continuum and quasibound
wave functions. The maximum difference we ob-
served between the experimental and our calculated
binding energies is of the order 1% for K, L, and
M shells. This comparison is quite satisfactory
considering that higher-order effects such as vir-
tual pair production are not included in the atomic
potential.

(5) Internal conversion coefficients. There is
some similarity between the expressions for con-
version phase and internal conversion coefficients,
as will be noted in comparing Eqs. (13) and (15) or
Eqs. (16) and (18). We have found that R„„„is in
general greater than S„„by two or three orders
of magnitude in the region where the internal con-
version coefficient and conversion phase are lar-
gest. Therefore, the internal conversion coeffi-
ci'ent is effectively a measure of R„„in Eqs. (14)

JC()K

and (17). A comparison of our calculated coeffi-
cients with tabulated values strongly tests one
factor in the conversion phase expression, and
the results of this check are quite satisfactory.
Table I compares the total &1 internal conversion
coefficients for the K, ~, and M shells of selected
97.4, 25.6, and 6.21 keV transitions, respectively,
with the tabulated values of Rosel et al.

(c) Photoelectric cross sections. As was men-
tioned in the discussion of the conversion phase,
the second matrix element S„„is effectively the
amplitude for photoelectric absorption of photons
of multipolarity (I v). This can also be seen in
Eqs. (Al) and (A2) of Ref. 1 for absorption cross
sections. In the energy region of interest, the
experimental photoelectric cross section is domi-
nated by the E1 contribution. Thus, by comparing
our theoretical results for the photoelectric ab-
sorption cross section (calculated via the expres-
sions of Ref. 1) with experimental data or extra-
polated values, we are only able to check the ac-
curacy of S„o„for &1 transitions. This compari-
son is presented for three selected &1 transitions
in Table I, showing our calculated values to lie
within the quoted error bars. (We note that the
82 contribution to absorption for the 97.4 keV
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(b)

L7r = Ml

(c)
L7T = E2

200
l

500
~(keV}

I

800
lo-4

200
I

500
cu (keV)

I

800
lo-4

200
I

500
cu (keV)

I

800

FIG. 5. Phase g for transition energies between 200 and 800 keV in nuclei of charge 50, 70, and 90. (a), (b), and (c)
present results of calculation for E1, ~, and Ep type transitions, respectively. Interference parameters for energies
less than 200 keV can be found in Ref. 1. Full curve-conversion phase; dashed curve-scattering phase.

transition, 1.04&& 10 b/atom, is included in our
calculated value. )

We estimate the uncertainty in our values for
the interference parameter g(&&) to be of the or-
der of 1-2%. This takes into account, as best as
possible, numerical aspects of the calculation and
comparison with other relevant physical quantities.
It must be noted, however, that due to subtraction
there can be greater relative uncertainty in $
= &(&v) —&(I 'm ') measured in time-reversal viola-
tion experiments. The uncertainty in the scatter-
ing phase $, plotted in Fig. 5 is somewhat larger.
Because Fig. 5 is meant mostly for orientation,
we included only contributions of the E, L, and
M shells. This results in an underestimate of $,
in Fig. 5 by about 10% at 200 keV, decreasing at
higher energies.

IV. COMPARISON WITH EXPERIMENT

In this section we compare our calculated values
for the interference parameter with results of
both time-reversal violation and Mossb'auer ab-
sorption experiments. The computed phases $

include both conversion and scattering contribu-
tions as described in the preceding section. The

only difference is that the scattering phase for
some outer electron states was calculated accord-
ing to the approximate expressions (16) and (17) of
Ref. 1. These formulas require substantially less
time for numerical computation and, as remarked
earlier, generally give values close to those re-
sulting from the exact expressions.

In Table D we present the experimentally mea-
sured values of $ together with their literature
references. For Mossbauer experiments, it is
necessary to correct the experimental results for
absorber thickness. This effect, which causes
the measured dispersion of absorption spectra to
increase with absorber thickness, has been dis-
cussedby several authors; see, for example,
Refs. 13, 14. An extrapolation to zero thickness
is required for accurate comparison with our
values. This correction can be significant, as
demonstrated by the phase $ for the 6.21 keV El
transition of &3Ta which was revised in Ref. 15
from the value (-15.5+ 0.5) &&10 given in Ref. 7
to (-11+1) &&10 . A review of the literature has
shown that most experimentalists have considered
this effect and, when possible, corrected their
values accordingly. A possible exception to this
were Wagner et a/. , who alleged that their use
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TABLE I. Comparison of tabulated internal conversion coefficients and photoelectric ab-
sorption cross sections for selected E1 transitions with results of the present calculation.

Nuclear
charge

Energy
(keV) +TAB o. (b/atom) ' oT~ (b/atom)

63
66
73

97.4
25.6
6.21

&g = 2.56 (-1)
ng= 1.82 (0)
u„=2.45(1)

2.56(-1)
1.s3(o)
2.55(1)

7.49(2)
5.94 (3)
8.98 (4)

(7.57 + O.38)(2)
(6.36 + 0,64)(3)
(9.31+O.93)(4)

Calculated total conversion coefficients for first contributing shell; 2.56(-1) denotes 2.56
x10 ~.

Tabulated values from Ref. 10.
'Calculated cross section for photoelectric absorption.

Tabulated values with uncertainties from Ref. 12.

of absorbers of thickness t & 2 required no correc-
tion (where t is a dimensionless measure of thick-
ness as defined, for example, in Ref. 14). How-

ever, finite thickness corrections to measure-
ments performed at f =2 can be as large as 50%.14

For transitions of mixed ~2-M1 multipolarity,
the relevant phase measured in time-reversal ex-
periments is $= $(E2) —$(M1), and the phase de-
termined by Mossbauer experiments is $=[$(Ml)
+ & $(E2)]/(1+ & ). We have used the mixing ratios
& given in the experimental references.

The agreement between calculated and measured
values ' ' is quite good, as portrayed graphi-
cally in Fig. 6. The largest discrepancies occur
in the 46.5, 100.1, and 122.5 keV transitions of
tungsten measured by Wagner et a/. Their fail-
ure to correct for nonzero thickness possibly ex-
plains this larger experimental values for the
100.1 and 122.5 keV transitions. One would also
have expected that the measured phases for the
99.1 and 100.1 keV ~2 transitions in tungsten to
be nearly equal, as there are no threshold effects
at this energy to cause such a difference. In both
the 25.6 keV transition of Dy and the 97.4 keV
transition of Eu we are in satisfactory agree-
ment with one experimental result while differing
significantly from the other. We include both
measurements of each transition in Table II and
Fig. 6. For the majority of these transitions,
our values are quite close to those of Ref. 1.
Those authors, however, were unable to calculate
the interference parameter for the lowest energy
transition-the 6.21 keV line in tantalum. Our
value for this Mossbauer transition is in excellent
accord with experiment.

We have also computed phases arising from final
state atomic effects in two recent time-reversal
violation experiments. There is agreement with
the 122.1 keV mixed &2-M1 transition in, 67Fe,"
and the experimental value for the. 364.5 keV
transition in xenon will be published in the near
future, ' indicating no violation of time reversal

at the level of the experimental uncertainty. We
note that the near equality of E2 and M1 phases for
the xenon transition causes the theoretical uncer-
tainty (0.01x 10 ) to be the same magnitude as the
expected phase difference.

Of greatest significance is our agreement with
the observed phase shift for the 129.5 keV transi-
tion of gIr. The calculated value of (-4.3+0.4}
x10 (the indicated limits reflect the 2% uncer-
tainty in both &2 and Ml phases) shows no discrep-
ancy with the experimental value of (-4.V + 0.3)
X10 '.' This removes the apparent evidence for
time-reversal violation, which originated in a
comparison with the values presented in Ref. 1.
We differ with Goldwire and Hannon primarily in
the E-shell conversion phase for both multipolari-
ties. Good agreement with binding energies and
tabulated internal conversion coefficients for the
E sheQ verifies the accuracy of our calculations.
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APPENDIX: DERIVATION OF EXPRESSIONS FOR
INTERFERENCE PARAMETER (

This appendix outlines the steps taken to obtain
the formulas for conversion and scattering phases
in Sec. II. The method is in many respects simi-
lar to that used by Rose in discussing the pro-
cess of internal conversion. One initially per-
forms a multipole decomposition of the photon
plane wave and photon Green's function which
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TABLE II. Comparison of experimental interference parameters $ with results of the
present calculation.

Isotope

26Fe57

32Ge
73

44Ru
99

iiixe
54

i53Eu
63 u

i55Gd

i61.D66

i66Er
68

izO
70

iziYb
70

i8oH
72

18)Ta

182~
74

'"w
74

i84yy
74

i86~
74

i86OS
76

i88Os
76

i9iIr

i93I
77

195pt
78

i97Au
79

236U
92

23 7Np

(keV)

122.1

13.3

90.0

364.5

97.4

86.5

105.3

25.6

74.5

80.6

84.3

66.7

93.3

6.21

100.1

99.1

46.5

111.1

122.5

137.2

155.0

129.5

73.1

98.7

77.3

45.3

59,6

Multipolarity

M1+ 1.4%E2

E2+ 37%M1

E2+ 4.6%M1

M1+ 49%E2

E1

M1+ o.6%E2

E2

Ml + 14%E2

M1+ 31%E2

M1

M1+ 12.1%E2

100$ '
$= oo6

-3.24

-0.60

$ =-0.57

( = -0.01'

-2.03

-2.48

-1.85

-3.97

-3.40

-1.37

-1.33

-0.75

-1.27

-12.3
-1.22

-1.22

-0.28

-1.17

-1.10

-1.02

-0.93

-0.69

& =-o.43'

$ =-0.12'

-0.70

-0.40

+0.31

-3.18

100)EXPT

$ = -0.03 + 0.07

M.7 + 1.0
-0.33 + 0.32

( = -0.43 + 0.50

-1.1 + 0.3

-1.4 + 0.3
-2.5 + 0.5
-1.8 + 0,5

-3.5 + 0.5
-3.2 + 0.3
-3.0 + 0.5

-1.60 + 0.19

, -1.70 + 0.38

-1.00 + 0.14

-1.82 + 0.48

-1.71 + 0.14

-1.25 + 0.17

-0.05 + 0.06

-1.53 + 0.29

-2.09 + 0.36

-1.02 + 0.25

-1.51 + 0.49

-0.50 +0.12

(=-0.47 +0.03

0.11 + 0.38

-1.1 + 0.3

-0.414 + 0.017

+0.25 + 0.75

-3.4 + 0.2

Ref.

20

18

18

18

16

15

16

22

23

19

16

Calculated interference parameters $. Both conversion and scattering contributions in-
cluded.

"Measured values of $, together with experimental references.' For time-reversal violation experiments, ( = $ (E2) —& (M1).
d Experimental value to be published in the near future (Ref. 25).

occur in Eqs. (5) and (6), respectively:

ee '"'*=Q [~ Y,"„'g)aP„'*(x)+~ Y"'(u)a'"*(x)],
L,N

(Al)

cia) I y-x~

j,(y) j „(x)=—' Z (i.(x) 'ai~*(x)1
~y-X~ ' " 4&L N &=0 i "i

x
r.j,(y) ~ b,",'(y)],

(A2)
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- p. (y)p. (x) =4»~ g [p.(xbi(~x)I'4(x}]
Iy XI LgM

x [p.(R4(~y»i~(y}] .
(AS)

The expansions in Eqs. (A2) and (AS) are valid
for x &y, where x and y are the magnitudes of

(D)position vectors x and y, respectively. The Y»
and YLM are vector spherical harmonics of mag-
netic and electric type, respectively, the a~e„'s

and bLM's are the vector multipole fields of type
magnetic, electric, and longitudinal for t = 0, 1,

-1, respectively, as defined in Akhiezer and
Berestetskii, and the FLM's are scalar spherical
harmonics. These expressions lead immediately
to the results for T«+ eT«given in Eqs. (9) and
(lo).

The other important element of the derivation in-
volves construction of the Dirac propagator for
the electron, which satisfies

[E- & p- pm —ev(x)]Gz(x, y) =Ie(x- j), (A4)

where & is the 4x4 unit matrix. We write Ge(x„y)
in the following form.'

G ( )
~ 1 '

X„,(x)X.', (y)G.,(x, y) -iX„.(x)X'„.(y)G, (x, y)'

.fX „.(x)X„'.(y)G (x, y) X-..(x)X'„„(y)G (x, y).

-[E-m-eV(x)G. ,]- G', --G, ~=&(x-y),x ]

G,', + —G„—[E+ m —e V(x)]G = 0,x

[z m-ev(x)]G. -I G' --G I=o,x )

(A6)

as is possible for a spherically-symmetric poten-
tial V(x). The radial Green's functions G„, G, ,

depend on & and x (but not P), and satisfy
the following coupled differential equations:

the variable x. For the energies relevant to our
calculations (E &-m) these equations are solved
by

G.,(x, y) go(x)g, (y) g, (x)g, (y)

G, (x, y) 1 fo(x)g. (y) f.(x)go(y)

G. (x, y) go(x)f. (y) g, (x)fo(y)
W

G—(x, y) fo(x)f+(y) f+(x)fo(y)

G,' + —G, —[8+m-ev(x)]G =e(x-y).x

In the continuum case (E & m)

p =(&'- m')'", W=fp/(Z+m} (Ae)

Here the primes denote derivatives with respect to

I.5—

I.O—

and the "large" radial wave functions go (regular},
g (irregular), and g, (outgoing) solve equations
(12) with the asymptotic forms as y-~:

go-, y[ cosei't (py) »ne'yl (py}],—
p(&+m) '~

p(8+m) '"
0.5—

I

X -0.5 -.
0

-I.O-

-I 5-.

20
I

60
u& (kev)

80 IOO I 20

FIG. 6. Comparison of calculation with experiment for
the time-reversal violation and Mossbauer absorption
measurements listed in Table 11. The energy of transi-
tion is plotted horizontally; the difference between the
calculated and experimentally measured phase shifts
Q' —$~), in units of 10, is plotted vertically. The
error bars include only those of the experiment.

g'+=go+ig .
(Ao)

The orbital angular momentum I is given by

~

~

~

K for K&0E= -K-1 for K&0.

The parameter &' is related to the conventional
phase shift e by e'=0+7|'(1+1)/2. This latter
phase is defined by the asymptotic form for the
regular wave function gD.'

(Alo)

8+m
g, - — cos(py + &) .

wp
(A11)

The asymptotic forms for the "small" radial func-
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p=(m'-E')'", W=-pl(E+m) (A12)

tions fo, f, f. are obtained from go, g, g, by the
coupled differential equations (12) with the poten-
tial V set equal to zero. It is usual in atomic cal-
culations to employ the asymptotic forms of the
radial wave functions represented by Eq. (A11).
However, this assumes that both the potential and
centrifugal barrier are very small at the radius
of normalization. In our case the centrifugal bar-
rier was not in general negligible, and thus, we
used these more appropriate asymptotic expres-
sions (A9).

For the quasibound case (-m «& m):

and the radial wave functions ga (regular) and g,
(irregular) have the asymptotic forms

e " &()(' + 1) 1 ( 1

(A13)".-" 1+ '"')-'+0' —"~'~
Py

The small functions fo and f. are obtained from go
and g, as described above.

When the solutions for G~(x, y) given by Eqs.
(A5) and (A7) are inserted into Eqs. (9) and (10),
with the angular parts coupled correctly to those
coming from the photon, the resulting expr ession
for the magnetic case is

(Tff + 6Tf')J

2zz'(
J

dxi(x) z'„' (x)) 'A(z 'Y'„'()'z)]

x 1-i &„„m dk dyh~ y jl. co&

k0 yk 0 0

"((f.,&)[f.,(y)G-(, y) +z.,(y)G.-(,y)]+g, ( )[f. (y)G-. (~, y) +g,,(y)G-(, y)]j

+(f„( )(f.z(z)G..(x, z)+g. (x)G:.(x, z)]+z;. (z)(f. (x)z:..(x, z)+);. ())z::-(x,z)l))). (A14)

)

The superscripts + or —on the 6's refer to ener-
gies &0+ co or &0- co, respectively. The imagin-
ary part of the above expression gives the magnet-
ic interference parameter $(«) as the sum of two
parts: the conversion phase of Eq. (13) and the
scattering phase of Eq. (20).

A similar procedure applies for the electric
interference parameter; however, space does not
permit the reproduction here of the lengthy scat-
tering formula [analog of Eq. (20)]. The reader
is referred to Ref. 11 for further details.
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