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We present a new method for defining axially symmetric shapes which is particularly appropriate for describing
elongated and multineck configuratioris. This shape parametrization is. used to describe the static properties of
incompressible, charged liquid drops. In particular, we calculate the properties of binary-fission saddle points and
compare these with results using other methods. We also present the geometrical properties and normal mode
analyses of the two- and three-necked saddle-point families.
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I. INTRODUCTION

The liquid-drop picture is a useful conceptual
framework for discussing nuclear collective
motion. ' ' The three key quantities in this con-
text are the potential energy, rate of energy dis-
sipation, and collective kinetic energy, all ex-
pressed as functionals of the nuclear shape and
its time derivatives. Although a finite-difference
treatment of the problem is possible, ' most pre-
vious studies have resorted to the far simpler
approach of parametrizing the nuclear shape in
terms of a few dynamical variables and making
assumptions about the flow of matter in the
nuclear interior. The utility of a given paramet-
rization depends on both how closely it can approx-
imate the shapes through which the real system
evolves and on how conveniently the three key
quantities can be evaluated for any given shape.
Most previous parametrizations are able to
describe accurately the static properties of
binary (single-necked) configurations. However,
many suffer from the defect of being difficult to
generalize (i.e., add more parameters), and all
are restricted to only binary shapes. This last
feature eliminates the possibility of studying
ternary fission, which might be the preferred
mode of breakup for very heavy systems. In
addition to these static limitations, certain para-
metrizations are known to lead to unphysical
shapes in dynamical studies of heavy-ion collis-
ions.""

This paper is the first in a series reporting
studies with a new pararnetrization of axially
symmetric shapes designed to at least partly
resolve some of the problems mentioned above.

By expanding the square of the drop's cylindrical
radius in Legendre polynomials of the dimension-
less distance along the symmetry axis, we obtain
a flexible, easily generalizable parametrization
in which the potential energy and inertial coeffi-
cients are comparatively easy to evaluate. In
this report, we focus on the static properties of
nonrotating, mass- symmetric systems. Section
II presents our new parametrization, and its
relation to those used previously. Section III is
a discussion of the static equations of the nuclear
liquid drop. We compare the properties of binary-
fission saddle points calculated with our new
parametrization to those of earlier studies in
Sec. IV, and consider the properties of two less
familiar families of saddle points, those with two
and three degrees of instability. In Sec. V we dis-
cuss our results and present our conclusions.
Subsequent papers will deal with fission and heavy-
ion collisions and an extension to mass-asym-
metric systems.

II. SHAPE PARAMETRIZATIONS

For shapes not too different from a sphere, a
spherical-harmonic expansion of the radius
vector i3~4~ 3

provides a good representation. Here Y„ is a
spherical harmonic, Ro is the radius of the un-
perturbed sphere, X(P) is a normalization con-
stant which ensures volume conservation, and
the Q„g are the parameters describing the shape.
(This function is often used in the axially sym-
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metric form where P„„=Ofor mWO. ) This para-
metrization has the advantage of allowing a
simple check of convergence properties by varying
the maximum value of n included in the truncated
sum. However, it is not able to adequately repre-
sent the more deformed saddle-point shapes of
light nuelci, or a more complex shape whose
radius may be a double-valued function of 8. A
generalization of Eq. (1) which allows accurate
description of somewhat more elongated config-
urations is an expansion about spheroidal
shapes ""

The deficiencies of Eq. (1) make it attractive
to use an alternative description in terms of
cylindrical coordinates. Thus, the cylindrical
radius of the surface p, is expressed as a func-
tion of z and p, the remaining two coordinates.
Most studies using parametrization of this type
have been confined to axially symmetric shapes,
so that p, is independent of y. One example of
these i.s '

u(x) -=p,'(z)/R, ' = Q a„P„(x),
n=0

even

(4)

where x=- z/z, varies from -1 to 1, and 2N is the
maximum order of Legendre polynomial consid-
ered. Figure 1 illustrates how u(x) is related to
the shape it describes.

The parameters a„and z, of Eq. (4) are not all
independent. Requiring that u(x) =0 at x=+1
(z

=bozo,

the ends of the drop) implies that
2N

a =—
0

fl-2
even

a„y (5)

while volume conservation requires

erties of the Legendre functions. For the re-
mainder of this paper, we consider only reflection-
symmetric shapes, for which z = 0, and a„=0 for
n odd. (The more general case of asymmetric
shapes will be discussed in a. later paper. ) Thus
we define the dimensionless function

2N

p,'(z) =(c' —z')(o, , + o,,z+ n,z'), (2) z~ =2RO/3ao.

where c and the {o,,}are the parameters. The
form of Eq. (2) emphasizes its relation to a
spheroid. This parametrization is quite useful,
but is somewhat restricted in its ability to de-
scribe shapes near scission and near the contact
point in heavy-ion collisions.

Another method of describing elongated shapes
is to use two spheroids, either separated, over-
lapping, or smoothly joined, with a function
describing a neck region between them. One
parametrization of this sort uses separated
spheroids with a fourth order polynomial in z for
the region between their centers. A parametriz-
ation extensively used which is able to describe
two spheroids separated or in contact as well as
fissioning nuclei is the three-quadratic-surface
parametrization. ' Here the ends of the shape
are spheroids, joined smoothly by a third spher-
oid or by a hyperboloid of one or (for separated
systems) two sheets. Again, this parametriza-
tion is rather difficult to generalize.

One attractive possibility which has not been
explored is to generalize Eq. (2) to an arbitrary
number of parameters {n,.}. Equivalently, we
propose a truncated Legendre-polynomial expan-
sion for the axially symmetric shapes

N'

(3)

where z is the coordinate of the midpoint between
the two ends and 2zo is the distance between the
end points. Since the arguments of the Legendre
polynomials vary between -1 and I, we are able
to take advantage of orthogonality and other prop-

Equations (5) and (6) eliminate ao and zo as inde-
pendent variables, leaving N separate parameters
{a„a4,. . . , a»} describing a reflection-symmetric
shape. Note that because of Eq. (5), Eq. (4) may
be rewritten as

u(x) = Qa„[P„(x)—1],

where the shorthand notation g„ indicates P»,
with n even.

I
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FIG. 1. Upper portion: Intersection of the surface de-
fining the x= 0.5 binary saddle-point shape with a plane
through the axis of symmetry. Lower portion: I (x) for
the same shape with the x scale magnified to align +=+1
with the ends of the shape above.
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Since the vibrational normal modes of the
spherical nonrotating drop are pure spherical-
harmonic distortions, " it is of interest to ex-
press the relation between the {P„gof Eq. (1) and
the {a„}of Eq. (4) for axially symmetric shapes
not greatly distorted from a sphere. If we ex-
press Eq. (1) for an axially symmetric and mass-
symmetric shape in terms of Legendre polynom-
ials of polar angle instead of spherical harmonics,
we may write

R(8) =&) 1+ pb„P„(c os8)
8 '

L n ~I

where t&„=(2n + I/4 v)'~'p„, . If we assume b„«1
for all n, using

(8)

. p,'(z) =R'(8)(I —cos'8)

and cos8 = z/R(8), we find to first order in the

2 +Zf, (10a)

a„=2b„ for n& 2. (10b)

Thus, an interesting property of our parametriza-
tion is that any small distortion of a sphere in-
volves a change in a„while a normal-mode dis-
tortion of higher order than quadrupole involves
only one other nonzero a„.

III. STATIC EQUATIONS FOR THE NUCLEAR
LIQUID DROP

~) 3Ze
5 Ro

is the Coulomb energy of a spherical nucleus with
charge Ze. Similarly, the dimensionless rota-
tional energy parameter y is defined as

y = E&0)/E &&) &

where

(12)

5E(0)
2Io 4 M+o

is the rotational energy of a rigidly rotating

We work in dimensionless units, where the
unit of length is Ao, the radius of the spherical
nucleus; the unit of mass is M„ the mass of the
nucleus; and the unit of energy is E('), the surface
energy of the spherical nucleus.

The dimensionless fissility parameter x which
measures the relative importance of the Coulomb
energy in a given system, is defined as

g(o)
x-=

2g(o) '
S

where

sphere with angular momentum L and moment
of inertia I, = —,MQ, '. With these definitions, we
may express the deformation potential energy
relative to that of the nonrotating sphere as

(E E&0 & E&0))/E&o)

=B, —1 + 2x(B,—1) + yBs, (14)

where B,=EJE, ', B,=E,/E,' &, and B„=E„/E„' '
are all functionals of the nuclear shape, and
hence depend upon the parameters {a„}.Appen-
dix A contains explicit formulas for B„B„B„
and their derivatives with respect to the {a„}.

The conditions for an equilibrium shape are

a„'=a„— K ' „a,
fn

7$ttt Pa
(16)

where Z„„=8'P'8a„Ba„is the symmetric curva-
ture matrix. In practice we use the coordinates
of a known equilibrium shape as starting values
for a drop with an incremented value of x or y.

To determine the degree of instability of a
saddle-point shape, we found the normal-mode
frequencies {&uJ; These are solutions to the
eigenvalue problem'

g (K„„—&o'M„)V =0, n=2, 4, . . . , 2N (17)

where V is the normal-mode eigenvector, M is
the inertia tensor, and both M and K are evaluated
at the saddle point. We therefore find the {&d„}as
the eigenvalues of the matrix M 'K. Appendix A
contains the expressions we use to compute the
inertia tensor in the Werner-Wheeler approxima-
tion to incompressible, irrotational flow.

IV. SADDLE-POINT SHAPES

For the nonrotating liquid drop (Y=O), the
simplest family of equilibrium shapes is the
spherical ground state. This shape is a local
minimum in the potential-energy surface for
x&1, and is therefore stable. The familiar
binary saddle-point family exists at a higher
energy than the ground state. The saddle-point
shape for x=0 is two tangent spheres. As x in-
creases, a neck forms and the shape becomes
progressively more cylinderlike, spheroidal, and
spherical, where it crosses the end point of the
spherical ground-state family at x=1 and the

8g 8B ~B /BRBa„Ba„Ba„aa„'=0= '+2x '+y R,

n=2, 4, . . . , 2X. (15)

We solve these equations iteratively with a vector
version of Newton's method. Given a set of co-
ordinates {a„},a new set {a„'}is computed from
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TABIZ I. Binary saddle-point properties. Maximum and minimum extension and energy in
natural units for selected binary saddle points calculated using three different parametrisa-
tions. The left-hand column contains the results of a nine-term spherical harmonic expansion
{Ref.4), the center column gives the results of the three-quadratic-surface shape description
(Ref. 6), and the right-hand column gives the results of the present work using Eq. (4) with
N= 8.

Cohen and Swiatecki
(9 parameters)

&mm &ma

Three quadratic surfaces
(3 parameters)

&mm

Present work
(8 parameters)

&mm

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1.9624
2.0016
2.0623
2.09VV

1.8906
1.5025
1.2353

0.0730
0.1286
0.2013
0.2993
0.5352
0.7493
0.8831

0.16924
0.132 84
0.095 35
0.056 95
0.022 36
0.005 91
0.000 Vl

1..7602
1.8576
1.9320
1.9972
2.0567
2.1003
1.9142
1.5185
1.2411

0.0253
0.0778
0.1275
0.1781
0.2357
0.3167
0.5368
0.7490
0.8825

0.233 63
0.202 17
0.168 14
0.132 36
0.095 27
0.05747
0.022 93
0.006 05
0.000 73

1.7610
1.8544
1.9306
1.9931
2.0493

. 2.0890
1.8893
1.5023
1.2354

0.0218
0.0637
0.1184
0.1715
0.2291
0.3094
0.5354
0.7540
0.8829

0.233 Vl
0.202 14
0.167 91
0.13190
0.094 64
0.056 74
0.022 37
0.005 91
0.000 Vl

binary-fission barrier disappears. (The binary
saddle-point continues as an increasingly oblate
shape for x & 1.) For x & 1 this family has one
degree of instability corresponding to the fission
degree of freedom. For x «0.396 there is a
second instability corresponding to a mass-
asymmetric motion. ~ " In the present study,
we consider only reflection-symmetric modes.

Besides this well-studied binary sequence,
there exist families of saddle points at higher

Oe
LLI

I

O

C0
0
0)

C3

10 I
I

I

Cohen and Swiatecki~

////
/

6 pararn
~ ~o ~ ~ ~ ~~ ~

~ 0

I

rs

~Three quadratic
~ sur faces

i

I

~ og ~ ~~y ~y ~ "t ~...~
I

0)
C

LJJ

C:
0

CL
I

(U

00
M -10

0.0 04 0.6
Fi ssilit y x

I

0.8 1.0

FIG. 2. Deviation of calculated binary saddle-point
energies from the results using Eq. (4) with N=8.
"Cohen and Swiatecki" refers to Ref. 4 which used a
nine-term expansion in spherical harmonics. "Three
quadratic surfaces" refers to the results of Ref. 6; "N
parameters" refers to the present calculations using dif-
ferent values of N. A positive deviation indicates a
poorer approximation to the correct saddle-point shape.
(See text for explanation. )

energies with greater degrees of instability and
which, for x=0, reduce to a linear array of
tangent spheres. ' In addition, there can be a
variety of relationships among the more complex
shapes. The ternary and quaternary families,
for example, do not cross each other as the sim-
pler shapes do, but exhibit a confluence, or
limitirig point, at a value of x less than 1.

We begin by comparing the properties of the
nonrotating binary saddle points (the so-called
y family of shapes) in various parametrizations,
as calculated by Cohen and Swiatecki using the
spherical harmonic expansion (8) with nine param-
eters, 4 as calculated by Nix with the three-param-
eter three-quadratic-surface parametrization, '
and as calculated using our new parametrization
Eq. (4) with eight parameters (M=8). In Table I
we show the energy and the minimum and maxi-
mum spherical radii of the saddle-point shape
for several values of x. In Fig. 2 we plot the
energies of the spherical-harmonic and three-
quadratic-surface saddle points relative to those
of our Legendre-polynomial expansion with N = 8.
The results using our parametrization with
N = 3, 6, and 12 are also shown. Under certain
conditions, satisfied here, the energy computed
for a. saddle-point shape i.s an upper limit to the
exact solution. These conditions require the
parametrization to be flexible enough to describe
shapes on both sides of the pass in the neighbor-
hood of the true saddle point. In comparing the
N=8 version of our new parametrization to the
earlier calculations, we see that both it and the
nine-parameter spherical-harmonic expansion
are a better representation than the three-pa-
rameter three-quadratic-surface shapes for the
cylinderlike saddle points with x & 0.7. More-
over, it gives the lowest energy for x in the range
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FIG. 4. Binary, ternary, and quaternary saddle-point
shapes for. selected values of x, indicated by the number
inside the shape. Since we could not calculate the ter-
nary-quaternary confluence point directly, the coordi-
nates of this shape at x= 0.769 were found by extrapolat-
ing the shape coordinates of the two- and three-necked
families to where they coincided.

FIG. 3. The energies of the three saddle-point families
as a function of x. The dotted and dashed lines near the
x = 0 axis indicate the known values for two, three, and

four tangent spheres.

0.15-0.70, although the three-quadratic-surface
form is superior for x 0.15. This is so since it
can easily represent a neck with high curvature
and small radius, a situation which requires very
short wavelength (large n) terms in Eq. (4). The
convergence of our parametrization with N illus-
trated in Fig. 2 shows that N = 3 is sufficient for
x ~ 0.8, N = 6 is appropriate for x ~ 0.65, and N
=12 is a substantial improvement over N=8 for
x ~ 0.55.

Multi-necked families of equilibrium shapes
were first considered in some detail by Ref. 19,
in which axially symmetric, but otherwise uncon-
strained, shapes were used. In Fig. 3, we show
our results as a function of x, for the binary,
ternary, and quaternary saddle-point energies.
Our results agree with those of Ref. 19 to the
extent to which they can be compared, although
the calculated energies are somewhat higher
than the known values for very small x because
of the difficulty in representing tangent spheres
by means of the Legendre-polynomial expansion
with small ¹

The shapes of the three saddle-point sequences
are shown in Fig. 4 for selected values of x. The

evolution of the ternary familty is similar in many
respect to that of the binary (y) family. As x in-
creases from 0, the necks grow and the shape
elongates, raeching a maximum extension at
about x =0.45, after which it becomes more com-
pact. The end lobes lose mass monotonically
with increasing x as the middle lobe becomes
larger and more cylinderlike; at the confluence
with the quaternary family, it is nearly cylindri-
cal. The evolution of the four-lobed shapes fol-
lows similar trends, although they reach a maxi-
mum elongation for x =0.67. The central neck
grows monotonically with increasing x, but re-
mains relatively small before growing rapidly
between x=0.7 and the confluence point at x
=0.769. This rapid growth occurs simultaneously
with a rapid decrease of the maximum extension
of the shape. The neck radii and maximum ex-
tension of the ternary and quaternary saddle
points are plotted as functions of x in Fig. 5.
The deviation of the calculated results in Figs.
3 and 5 from the known values at x=0 and the
wiggles in the curves for ternary shapes near
x=0.2 are a further indication that eight param-
eters are not a sufficient number to accurately
represent the geometry of shapes which are near-
ly tangent spheres with small necks.

For any of the binary saddle-point shapes, the
single unstable normal mode is either an elonga-
ti.on or a combination of an elongation with neck
shrinkage, depending on the value of x. ' In Fig.
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FIG. 6. Unstable normal modes for the x=0.5 ternary
and quaternary saddle points. The solid lines show the
saddle-point shapes while the dashed lines show the
shapes when displaced an arbitrary amount along the
eigenvector corresponding to the frequency indicated be-
low each shape. The frequencies of the mass-symmetric
normal modes are ordered algebraically and labeled in
order with even integers.
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FIG. 5. Half-length, outer neck radius, and central
radius as functions of the fissility for the ternary and

quaternary saddle points. P ~ is one-half the maximum
length of the shape. &~is the cylindrical radius at the
center of the shape, and R

&
is the radius of the outer

necks. The dots on the x = 0 axis indicate the properties
of three and four equal tangent spheres.

6, we illustrate the unstable normal modes for the
x=0.5 ternary and quaternary saddle points. The
most unstable mode for both shapes corresponds
to a growth or shrinkage of the outside necks and
results in little mass transfer between the lobes.
The second-most unstable mode of the quaternary
shape is a growth or shrinkage of the central
neck. The mode is less unstable than the previ-
ous mode because the central neck is thicker
than the outside ones. For both shapes the least
unstable mode corresponds to mass transfer
across the outside necks toward or away from
the outside lobes.

V. SUMMARY AND CONCLUSION

We have introduced a new parametrization for
axially symmetric liquid-drop shapes which is
both flexible and easily generalizable. This pa-
rametrization is suitable for spherical and nearly
spherical shapes, as well as more highly de-
formed and multi-necked configurations. How-
ever, it is somewhat poorer in representing
shapes with high-curvature necks, such as tangent
spheroids. With this parametrization, we are
able to reproduce or improve upon earlier caIcu-

lations of the properties of binary saddle-point
shapes for uniformly charged liquid drops. We
are also able to calculate the properties of ternary
and quaternary saddle points, which have higher
energies and more degrees of instability than the
usual binary saddle points.

This parametrization allows, for the first time,
a study of the onset of prolate ternary fission in
very large systems. Systematic investigations
of heavy-ion collisions are also possible. Fur-
ther refinements which can be incorporated are
the inclusion of mass-asymmetric distortions,
the effects of various forms of dissipation, '"
and the replacement of the liquid-drop surface
energy with a macroscopic nuclear energy includ-
ing the effects of the finite range of the nuclear
force."
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APPENDIX A: ENERGIES, FORCES,
AND INERTIAS

In this appendix, we present expressions in our
parametrization for the various contributions
to the liquid-drop energy, their derivatives with
respect to the shape parameters, and the elements
of the Werner-Wheeler inertia tensor.
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1. Rotational energy

mp 'o ~

4I, = " dz p, '(z)+ 4z'p, 2(z)
-Z0

where p is the uniform mass density. Utilizing
Eq. (7), we find, in dimensionless units,

(Al)

For a reflection-symmetric drop rotating about
an axis perpendicular to its symmetry axis, the
moment of inerti, a i.s

and

Bu(x) =P (x) —1,
Ra~

u'(x) = Q a„P„'(x),

Su'(x),
( )aa,

(A9a)

(A9b)

(A9c)

I~= + + +.
3 6zp 5 8 „2n+ 1

For rotation about the axis of symmetry, the
moment of inertia is

(A2)
all following from Eq. (7). We evaluate the inte-
grals in Eqs. (A7) and (AS) with Gauss-Legendre
quadrature formulas. Lengthy analytic expres-
sions for the second derivatives O'B,/Ba&Sa„can
also be derived.

I, = dzp4 z,
Zp

which leads to

(A3) 3. Coulomb energy

Using Eq. (3.4) of Ref. 22 we may express the
dimensionless Coulomb energy as

1 3zp a~
+

3z 4 2pg+1'

The dimensionless rotational energy is

(A4)
B,= 4

d d 'I,
where

(A10)

2B 5I' (A5) I,= ([K(k) —2D(k)]F, +K(k)F j/D, ' '

(All�)

so that the computation of the generalized rota-
tional forces requires the derivatives D(k) = [K(i'o) E(k)]/k'—, (A12)

8IL 3 zpak 3 1 9 4 11+~o (1+ o5ao)+ motto +o ca~ +

K(k) and E(k) are complete elliptic integrals of the
first and second kinds, respectively, and where

and

2

+ 9z2 n

2n+1
n

Ba~ 2 20+1 2 8 0 ~ 2n+1' (ASb)
and

k' = 4G,/D, ,

G, = [u(x)u(x')]' ',

D, = z,'~x'+ u(x)+ u(x')+ 2G„

(A13a)

(A13b)

(A13c)

&x=x —x'. (A13d)
2. Surface energy

The dimensionless surface energy is simply the
surface area of the drop divided by the area of a
sphere having the same volume:

u'(x) 2~1/2
B,= 'dx u(x)—+

1 2zp and

F,= G, L2u(x) + 2u(x')

+ ~ ax[u'(x') —u'(x)] —zo'Sx 'J (A14a)

The two auxiliary functions E, and E, are defined
by

where the prime denotes differentiation with
respect to x. The generalized surface forces are

f3B 3 z'= —zQ +
8 a~ 2 ' 4

F,= 4G, '+ ~o b,x[u(x)u'(x') —u'(x)u(x')

—~ Sxu'(x)u'(x')] .

The generalized Coulomb force is

(A14b)

with

'd„[au/aa, —3u"/4z, +u'(Su'/Sa )/2s, ']
(u + u "/4so')' ~'

(AS)

aa. . 5z f „f„,ai„'''
8a~ 24'7 8a~

(A15)

and analytic formulas for the integrand can be
derived by differentiating Eqs. (All) through
(A14). Although lengthy expression for the second
derivatives of the Coulomb energy O'B,/Sa~Sa„can
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be readily derived, in this work the second deriv-
atives are evaluated by numerically differentiat-
ing (A15). The integrals in (A10) and (A15) are
evaluated by Gauss-Legendre quadrature.

4. Inertia tensor and

1 ~ (a + 25„J3z,)
u(x) ~ 2m+1A z ='z' x+

~ [&,(x) —I'„„(x)]

(A18)

.In order to calculate the normal-mode frequen-
cies and eigenvectors at an equilibrium shape, we
need the inertia tensor in addition to the second
derivatives of the potential energy. To keep the
calculation of the inertia relatively simple, we
use the Werner-Wheeler approximation to incom-
pressible, irrotational flow to specify the fluid
velocity field in terms of the time derivatives of
the generalized coordinates (a„j.6'8 In this ap-
proximation for axially symmetric systems, the
cylindrical components of the fluid velocity v are .

A„'(x) = BA„ 1

hs

+ ~3 z,u'(x)[x —2A„(x)/3z, ']

(A19)

d'xv'= ' a M. a (A20)

In terms of the (A„j and their derivatives, the
kinetic energy T is

v„=o,

v,(z)= Q a„A„(z,a),

v, (p, z)=--g a„"(z,a),p ~ BA„

(A16a)

(A16b)

(A16c)

and the inertia tensor is

dxu(x) A,.(x)A, (x)
a]

. + A',.(x)A, (x) . (A21)

where

1 8

p (z Ba„

From our expansion (7) we find

(A17)

APPENDIX B: ACCURACY OF THE CALCULATIONS

We evaluate Eqs. (A7), (A8), (A10), (A15), and
and (A21) by means of Gauss-Legendre quadra-
ture. Our standard evaluation uses 32-point
formulas over the interval [—1, 1]. For increased

TABLE II. Convergence of selected quantities with quadrature order. Calculated values
of the surface and Coulomb energies, one element of the inertia tensor, and one component
of the surface and Coulomb force vectors for four different shapes, using different values of
Q, the number of Gaussian quadrature points. The numbers were calculated on a CDC 7600
computer which has a word length corresponding to about 14 digits, and were printed out with
12 figures to the right of the decimal point.

Sphere 32
64

128
256

1.Q+Qx10 &2

1.0+Qx10 "
1.0+Qx10 &2

1.0+Qx10 "

&c

1.0+3x10 ~

1.0 +2 x 10-10

1.0+1 10-"
1.0+1x10

0.675 000. . .
0.675 000. . .
0.675 000. . .
0.675 000. . .

BJP~/Bg 2

&5 x10
&5 x10 i

&5x10 "
&5x10 "

~a, /a2

-3x10 '
-1x10 i

&5x1Q
x 10-12

x =0.3
binary
saddle
point

32 1.274 741 36
64 1.273 628 74

128 1.273 628 74
256 1.273 628 74

0.823 808 45
0.823 806 74
0.823 806 73
0.823 806 73

18.128 305
18.122 580
18.122 580
18.122 580

0,520 312 01 -0.775 901 59
0.465 62784 -0.776 044 55
0.465 627 85 —0.776 044 58
0.465 627 85 -0.776 044 59

x =0.3
ternary
saddle
point

32 1.457 268 13
64 1.456 432 63

128 1.455 857 63
256 1.455 868 97

0.740 856 55 60.819
0.740 848 54 60.192
0.740 848 00 60.323
0.740 847 99 60.333

0.948 058
0.856 167
0.756 781
0.762 278

-1.262 378 5
-1.262 496 6
-1.262 568 5
-1.262 568 6

x =0.3
quaternary
saddle
point

32 1.61543310
64 1.607 639 04

128 1.608 550 04
256 1.608 567 04

0.671 007 30
0.670 946 01
0.670 946 21
0.670 946 21

144.366
148.403
146.454
146.501

1.530 33
0.897 94
0.982 98
0.989 76

-1.611562
-1.613691
-1.613588
-1.613 588
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accuracy, we may divide this interval into 2, 4,
or 8 equal subintervals and use the 32-point for-
mula in each, thus generating 64-, 128-, and
256-point formulas, respectively. For selected
shapes with X=8, we show in Table I how the
energies, one element of the inertia tensor, and
selected force components vary with increasing
quadrature order. (Except for isolated special
cases, all Coulomb or surface force components
for a particular shape are of comparable magni-
tude. )

For a sphere, or nearly spherical shape, 32
quadrature points (Q =32) provide sufficient
accuracy (error s 10 '). For a typical, moder-
ately deformed y family shape, such as the x

=0.3 case shown, Q =64 is necessary. For the
more highly deformed ternary and quaternary
shapes, the surface energy, surface forces, and
inertia tensor are the least accurately computed
quantities, despite the fact that only a one-dimen-
sional integral is required for their evaluation.
All the calculations in this paper used Q = 64 for
the Coulomb energy and its derivatives while

Q =128 was used for the inertia tensor elements
and the surface energy and forces. Note that
while the error in the Coulomb derivative for the
quaternary shape is about 1x10 ' for Q =64, the
error in the surface-energy derivative is about
7x10 3 for Q = 128.

*Perxnanent address.
N. Bohr and J. A. Wheeler, Phys. Rev. 56, 426 (1939).
D. L. Hill and J. A. Wheeler, Phys. Rev. 89, 1102
(1953).

3W. J. Swiatecki, Phys. Rev. 104, 993 (1956).
4S. Cohen and W. J. Swiatecki, Ann. Phys. (N.Y.) 22,

406 (1963).
J. N. P. Lawrence, Phys. Rev. 139, B1227 (1965);
Ph.D. thesis, Los Alamos Scientific Laboratory Report
LA-3vv4 (1e6v).

J.R. Nix, Nucl. Phys. A130, 241 (1969); Lawrence
Berkeley Laboratory Report No. UCRL-17958, 1968
(unpublished).

S. Cohen, F. Plasil, and W. J. Swiatecki, Ann. (N.Y.)
82, 562 (1974).

K. T. R. Davies, A. J. Sierk, and J.R. Nix, Phys. Rev.
C 13, 2385 (19V6).

C. T. Alonso, in Proceedings of the International Col-
loquium on DroPs and Bubbles, Pasadena, 1974, edited

by D. J. Collins, M. S. Plesset, and M. M. Saffren
(Cahfornia Institute of Technology, Pasadena, 1976),
Vol. I, p. 139.
A. J. Sierk and J.R. Nix, in Proceedings of the Third
International Atomic Energy Symposium on the Physics
and &hemistry of Eission, Rochester, 2973 (International

Atomic Energy Agency, Vienna, 1974), Vol. II, p. 273.
A. J. Sierk and J.R. Nix, Phys. Rev. C 16, 1048
(19vv).
A. J. Sierk (unpublished).
J.R. Nix, .Ann. Phys. (N.Y.) 41, 52 (1967).

4W. J. Swiatecki, Proceedings of the Second United
Nations International Conference on the Peaceful Uses
of Atomic Energy, paper P/651 (1958), p. 248.

5T. Johansson, S. G. Nilsson, and Z. Szymanski, Ann.
Phys. (Paris) 5, 377 (1970).
R. W. Hasse, Ann. Phys. (N.Y.) 68, 377 (1971).
M. Brack, J. Damgaard, H. C. Pauli, A. S. Jensen,
V. M. Strutinsky, and C. Y. Wong, Rev. Mod. Phys.
44, 320 (1972).
U. Mosel and H. W. Schmitt, Nucl. Phys. A165, 73
(19V1).
V. M. Strutinsky, N. Ya. Lyaschenko, and N. A. Popov,
Zh. Eksp. Teor. Fiz. 43, 584 (1962) [Sov. Phys. —JETP
16, 418 (1963)]; Nucl. Phys. 46, 639 (1963).
J. Blocki, Y. Boneh, J.R. Nix, J.Randrup, M. Robel,
A. J. Sierk, and W. J. Swiatecki, Ann. Phys. (N.Y.) 113,
330 (1978).

~H. J. Krappe, J.R. Nix, and A. J. Sierk, Phys. Rev.
Lett. 42, 215 (1979).


