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A band-crossing model that has been proposed as a possible mechanism for resonances in heavy ion reactions is
applied to energy dependent structure in the "0+"0system. The recently observed intermediate-width structure
in the 6.13 MeV gamma-radiation yield can be well understood in terms of the band-crossing model, assuming
the crossing of the elastic potential resonance band and an aligned rotational band in which the intrinsic spin
(3') and the relative angular momenta are coupled to their maximum value. Numerical calculations based on this
model reproduce all of the observed energy dependent structure of the cross section in the "0+"0 interaction, i.e.,
the gamma-radiation yield from the 3, state of "0, as well as the total fusion and elastic scattering data. Each
oscillation in the fusion excitation function is interpreted as reflecting a shape resonance of each new grazing
partial wave in the entrance channel as it becomes active with increasing energy. The observed anticorrelation of
the total fusion and the 90' excitation function of elastic scattering data is reproduced naturally by the model. It is
concluded that these data support the existence of nuclear molecular resonances in the "0+"0system.

NUCLEAH BEACTIGNS ' 0+ 0 scattering, 10 ~E, I ~41 MeV; calculated
elastic scattering excitation functions, fusion cross sections, and 3& inelastic

cross sections. Hesonance mechanism for heavy ion reactions.

I. INTRODUCTION

Since the observation of three resonances' cor-
related in different cross sections in the sub-Cou-
lomb "C+"C reaction, it has been recognized'
that resonant phenomena in heavy ion reactions
provide an interesting problem involving both the
interaction between composite nuclei and the nu-
clear structure of the composite system in highly
excited states. One of the long standing questions
in the study of these quasimolecular phenomena
was the apparent absence' of resonant states in the
Coulomb barrier region in the ' 0+"0 system
when they appear in others, particularly in "C
+ 12C

The recent total fusion cross section measure-
ments of Fernandez et al.' and measurements of
Kolata et gl. on gamma radiation deexciting the
6. 13 MeV 3, state of "0, in addition to the much
olde& elastic scattering data of Maher et al. ,

'
reveal the existence of pronounced energy de-
pendent structure in the corresponding "0+"0
system excitiation functions at energies well above
the Coulomb barrier. As we shall demonstrate in
the present paper, our examination of these data
suggests that nuclear molecular resonances are
responsible for the observed structure in the "0
+' 0 system. The absence of resonant states in
the Coulomb barrier region in the ' 0+'80 system
reflects not the absence of nuclear molecular phe-

nomena but rather their being masked by a great
many nonresonant amplitudes.

Scheid et al.' suggested that the intermediate-
width structure in the elastic scattering excitation
functions reflected a double resonance mechanism
involving both a virtual resonance in the entrance
channel and resonant excitation of one —or both —of
the "0nuclei. More recently, Phillips et al.'
have shown that the structure in the inelastic scat-
tering excitation function in the 0+' 0 data in-
volving the lowest 3, excitation can be reproduced
using Hahne's' modified Austern-Blair formalism;
such a model includes no explicit resonance mech-
anisms, and the structure reflects overlap of angu-
lar momentum windows in the entrance and the
exit channels. Friedman et a/. ' have, however,
suggested a reinterpretation of these angular mo-
mentum window effects as reflecting the presence
of ion-ion barrier top resonances and have shown
that similar results can be obtained based on the
Born appr oximation. However, these appr oaches,
except for that of Scheid et al. , are approximations
to the coupled-channel formalism and they have an
inherent difficulty. Since the excited state of the"0nucleus has a strongly collective nature, the
Born approximation would not be expected to pro-
vide a good approximation for the description of
inelastic scattering to this state. This is also
true for Hahne's approximation, which is essen-
tially based on the same approximation as does
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the distorted wave Born approximation (DWBA).
There is an example" in which the cross section
for collective 2; inelastic scattering —calculated
with the DVfBA —is compared with that predicted
in a coupled-channel calculation for the "C+"C
system. At an energy where the angle integrated
cross section of the 2,' inelastic scattering shows
a peak, E, =25 MeV, the former gives a cross
section four to five times larger than the latter
and the calculated angular distributions are quite
different in the two approaches. This strongly
suggests the importance of higher order effects.
In this respect, it is interesting to perform nu-
merical calculations based on a coupled-channel
formalism, in which these higher order effects
are taken into account.

It is our purpose in this paper to attempt to
clarify the underlying mechanism of the structure
in the energy dependence of '60+'~0 cross sec-
tions by applying a band-crossing model~2' (BCM)
in a consistent fashion to all the available data on
the "0+' 0 interaction. The BCM has been pro-
posed as a possible mechanism for resonances in
heavy ion reactions by Matsuse and two of the pre-
sent authors (Y.K. and Y.A. ) and has beendemon-
strated to reproduce characteristic features of
elastic and inelastic scattering data for both the
"C+"C and ~C+ "0systems in which prominent
resonant phenomena have been observed. As we
shall demonstrate herein, a simple coupled-chan-
nel calculation, based on the BCM, in which only
elastic and aligned 3, inelastic channels are in-
cluded provides a quite reasonable reproduction of
the inelastic scattering, fusion cross sections, and
elastic excitation functions of the ' 0+'80 system
at the same time.

It should be noted that although some of the data
have been reproduced by previous models, ""'
this is the first consistent reproduction of all
available data on the energy dependence of the
0+ '80 system. The structure observed in the

3, gamma-radiation yield can be understood as a
consequence of strong mixing of wave functions in
the elastic and the aligned inelastic molecular
bands, in the energy region where the two bands
approach and cross. The structure in the fusion
excitation function' and the structure in the elastic
scattering excitation functions' can be understood
as entrance channel phenomena, which reQect
shape resonances for individual grazing partial
waves in the entrance channel. Our results also
suggest that the deep minima in the elastic 90'
excitation function result from destructive inter-
ference between resonant and background ampli-
tudes and explains the anticorrelation between
these and the fusion data in natural fashion.

In Sec. II of this paper, a schematic illustration

of the BCM is given. The formalism of the BCM
using a coupled-channel approach is introduced in
See. III. Results and discussion are presented in
Sec. IV. A summary and concluding discussion
comprise Sec. V.

II. THE BAND-CROSSING MODEL

E" != (8'/2s)L, (L, +1)+E' '+ &, , (2)

where I„L„and e, are the channel spin, the rel-
ative angular momentum, and the internal excita-
tion energy (6. 13 MeV in this ease), respectively.
The energies of these states are shifted from the
elastic ones by the excitation energy e,. Although
they have the same level spacing as the elastic
band, their relative angular momenta L, are
shifted from the total angular momenta Jbecause
of the coupling with the channel spin I,. As a con-
sequence of the angular momentum coupling and
the parity selection rule, bands having total angu-
lar momenta J=L, —3, L, —1, L,+1, L,+3 are
produced. These inelastic molecular bands are
illustrated in Fig. 1 together with the elastic one.
The fact that the four inelastic bands have different

In this section we review briefly the salient fea-
tures of the band-crossing model as it applies to
the ' 0+ '80 system. In this model we assume the
existence of a series of bound or quasibound states
in the elastic channel. These are readily obtained
with any reasonable choice of the interaction poten-
tial between the two interacting nuclei. Existence
pf an elastic molecular band jn the 80+ 0 system
was predicted by Scheid et al. , and by Arima
et al. ,

2 on the basis of the Gpbbi potential, 3

evolved empirically to fit elastic scattering data,
and alsp from microscopic studied''~" of interac-
tions between composite particles. In this elastic
molecular band the two "0clusters are assumed
to remain in their respective ground state. The
energies of states in the band are simply approxi-
mated by a rotational expression,

E'" = (e'/28)J(J+1)+E,"'.
In our case we have adjusted the band head energy
Eo" to yield an 18' resonance at an energy E, „
=26. 5 MeV where the "0("0,"C) Ne reaction '
provides strong evidence for it. a and J are the
moment of inertia and the total angular momentum
of the system, respectively.

Invoking an excitation of one of the "0ions to
its 3, state (E,= 6. 13 MeV) during the interac-
tion —as originally suggested in the Nogami-Irnan-
ishi model t~ —yields a set of four additional ex-
cited molecular bands. In zeroth order approxi-
mation, the energies of states in these bands are
givenby Eq. (2):
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FIG. l. illustration of the band-crossing model for
the 0+ 60 system. The elastic rotational band and in-
elastic 3& bands are included. The band head energy of
the elastic band is adjusted to reproduce an 18' reso-
nance at an energy E, m =26.5 MeV, as experimental
data (Ref. 27) suggested. The dotted line shows the
height of the potential barrier in the elastic channel.

slopes in this figure reQects the shifts of the rela-
tive angular momenta L, in Eq. (2) rather than a
change in the moment of inertia. However, these
states in the inelastic molecular bands are not
always observed as resonances. Whether they are
observed as prominent resonances or not depends
crucially upon coupling between relevant channels.
If a state has significant partial widths for both
the entrance (I;,) and exit (I",„,) channels, the
state will be observed as a resonance state in the
relevant processes, as expected from a simple
Breit-Wigner expression:

E —E„+I' t, 2 4'

where E~, l„„I"„, and I",„, are the r'.esonance
energy, total width, and partial widths for the en-
trance and exit channels, respectively. In this
equation the additional factor of 2 reQects the fact
that we are dealing with an identical particle sys-
tem. Obviously the magnitude of the partial widths
participating in a given resonance depends upon the
strength of the coupling interaction. At the same
time, however, it also depends upon the energy
separation (as in Fig. 1) of the pertinent molecu-
lar band states, and thus upon the extent to which
these states mix.

Crucial to the BCM is the fact that the elastic
and one of the inelastic bands cross in the region
of interest; this lowest of the inelastic bands is al-
ways the aligned one in which the orbital angular

FIG. 2. Band crossing diagram for aligned bands in the
' 0+ 0 system. Aligned rotational bands corresponding
to excitations of the 02 state (6.05 MeV), the 3q state
(6.13 MeV), the 4t' state (10.35 MeV), and mutual excita-
tion of the 3t state are plotted together with the elastic
one. These aligned bands, except for the 02 excitation,
cross the elastic one at relatively low total angular mo-
me nta.

momentum L, and the channel spin I, are additive,
i.e., J=L,+I,. The energy and total angular mo-
mentum at, or nearest to, the crossing point can
be estimated by equating Eqs. (1) and (2). The
wave functions of states in the two bands would be
expected to mix strongly in the crossing region,
thus providing a mechanism whereby the unex-
cited ions in the entrance channel can couple read-
ily to an exit channel in which one of the ions is
left in its 3, state, i.e., to an inelastic channel.
Thus the BCM predicts enhanced 3~ inelastic cross
sections at the band crossing region. This is the
excitation mechanism that the BCM predict.

In Fig. 2, some of aligned molecular bands in
the "0+"0system which cross the elastic band
at relatively low total angular momentum are
plotted together with the elastic one. The excita-
tions included are the 0; state (6.05 MeV), the 3,
state (6. 13 MeV), the 4; state (10.35 MeV), and
mutual excitation involving the 3, state. The 0,
and 4; states have well-developed n-cluster. struc-
ture. " The 3y state has a strongly collective na-
ture with strong inelastic matrix element connect-
ing it to the ground state. As is clear from this
figure, different excitations lead to different cros-
sing points depending upon both internal excita-
tion energies and intrinsic angular momenta; in
simplest approximation the inelastic band eo»e-
sponding to the 0; state never crosses the elastic
one. In other words, the BCM predicts a syste-
matic change in the dominant inelastic excitation
component of the interaction as the incident ener-
gy, hence angular momentum, increases. This
prediction of the BCM was studied in detail in the
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"C+'2C system, "and has been confirmed in re-
cent experiments. 3~ This prediction is also use-
ful as a guide in selecting the model space for nu-
merical calculations at any given energy.

As shown in Fig. 2, the lowest energy crossings
occur between the elastic band and aligned bands
corresponding to the single and mutual excitation
of the 3, state at center of mass energies near 30
MeV and with total angular momenta in the 18
-228 range. It bears emphasis that the observed
structure in the 3, gamma-radiation yield data
corresponds to this energy region.

Another important question that can be addressed
within the framework of the BCM concerns the
widths of the resonances. X'hese can be estimated
roughly by comparing the resonance energies with
the height of the relevant potential barrier, al-
though they are also influenced by flux flow to
other channels, i.e., by the imaginary part of the
optical potential.

Following our discussion of Eq. (1) above, the
barrier heights (BP') of the potential in the en-
trance channel are approximately given as follows
[Eq. (4)] and as illustrated in Hg. 1:

N2
B~~ '=,J(J+1)+ Vc,„|(R~) + C»,2 @BE

where the Coulomb potential Vc,„(r)is

gg e2
for r) R

y
y (~)=

2R

(4)

p, and R„are the reduced mass of the system and

the radius at which the barrier has its maximum,
respectively. C„presents the contribution from
the nuclear potential at this distance R,. If the
energies of the resonances in the band crossing
region are well below the barriers in both chan-
nels, penetrability arguments suggest that the
resonance midths mould be expected to be very nar-
row and as expected from the Breit-Wigner ex-
pression, Eq. (3), the corresponding inelastic
yields would be very small. Under such circum-
stances, it may be dif5cult to find the resonances
experimentally. On the other hand, if the reso-
nances are located at energies well above the bar-
rier in both channels, resonances in adjacent par-
tial waves overlap, and it again may be diff|cult to
recognize resonances in the experimental inte-
grated cross section. In this respect, study of
collisions of identical spinless particles has an
advantage, since only even values of the total an-
gular momentum J' can contribute to the reaction
and the energy spacing between adjacent partial
wave effects is correspondingly increased. In

our case, as shown in H.g. 1, the anticipated
resonances —in the band crossing region —are
located at energies near the top of the correspond-
ing barrier and would therefore be expected to
have an intermediate width that should make them
observable in experimental data.

III. FORMULATION OF THE BCM

In order to examine the relevance of the BCM to
the above mentioned data, we have carried through
a coupled-channel calculation for the ~ O+ '6O sys-
tem, including the elastic and aligned 3, inelastic
channels as the BCM would suggest. In this sec-
tion we briefly summarize the formalism used.

A. Coupled-channel equation

The total Hamiltonian of the '60+ '6O system
can be written as follows:

II=h, (8,) +h, (8,)+ &(r) + U(~, 8„8,),
where h, (8, ) is the internal Hamiltonian with inter-
nal variable 8, of the ~60 nuclei. T(r) and U(r, 8„
8,) are the kinetic operator and the interaction po-
tential for the relative motion between two oxygen
nuclei, respectively. The coordinate r measures
the separation of the tmo nuclear centers. The in-
ternal wave function ~,„,(8,) for ~60 is an eigen-
function of the internal Hamiltonian h, (8,},

(f)

where I, and I, are the internal spin and its z
component, respectively. The eigenvalue el, is
set equal to the experimental ones, i.e., &&,

—0.0
and 6. 13 MeV for I, = 0 and 3, respectively. Vfe
assume a phonon model for the internal wave func-
tion.

~
0) for the ground state with I, = 0

b~ ~0) for the excited state with I,=3,
(8)

where b» is a standard phonon creation operator.
The total wave function g«of the ~~0+ ~'0 sys-

tem —with a total angular momentum J and its z
component M~ —can be expanded in terms of chan-
nel wave functions, as follows:

(r, 8~, 8~) = g —u~ (r)jj,"& (r, 81, 8~), (9)
C

where

'8', "~ (r, 8„8,)=[2(1+8,,, )] "'S„
x g (I,IPS, M, ~rM, )(II.M,W, ~~, )

x q, „,(8,}}f, ,(8,)y',„(r),
(10)
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and u, (r) and Yz,„~(i) are the radial part of the
relative wave function and a standard spherical
harmonic, respectively. The operator S»
symmetrizes the channel wave function with re-
spect to the exchange of particles 1 and 2. The
symbol c is the channel index representing explicit
quantum numbers, i.e.,

= [(I;,[,')I, I 1=[(Ii,I~)I, L]. (11

Multiply&ng 'g &(r, 6„62) through the Schrodin-
ger equation (H E)gzj—r = 0 and integrating over
r, 6)y and 6„we obtain a set of coupled-channel
equations,

TABLE I. Adopted parameters for our interaction
potential. The part labeled "core" represents a short
range repulsive core reflecting effects of the Pauli
principle. The depth of the real attractive potential
is given by Vp+V~L(L+1), Both the core and attrac-
tive parts are assumed to have Woods-Saxon shape.
The imaginary part of the interaction potential has an
explicit J dependence and is defined by Eqs. (20) and
(21). y measures the strength of the coupling to the
3

&
excitation.

Core part Attractive part
Vcore ~ core +core V

p V~ A g
(MeV) (fm) (fm) (MeV) (MeV) (fm) (fm)

100.0 3.50 0.30 16.0 0.014 6.55 0.50

where

d L (L + 1)
2 p. dr 2

W

(MeV)

-o 30 Ec.m. 7 ~ 7 6.7

Imaginary part

Q 8,
(MeV) (fm)

AJ
(N.D.)

0.4

Coupling

'y

(N.D.)

0.13

Here E, is the energy of relative motion in the
channel c, i.e., E,=E -E~c —&Ic. The total en-
ergy of the system E is measured in the incident
~'0+ "0 channel. U„,(r) is the usual optical po-
tential. The coupling potential V„,(r) is defined
as follows for c4 c':

(+) (~ ZNg
~

U(+ g g ) ~ri)ZMg ) (14)

To solve the coupled-channel equation (12) under
the proper boundary condition, we have adopted an
extended Mito-Kamimura" method based on Kohn
and Hulthhn's variational principle. " This method
was discussed elsewhere" and we shall not repeat
its details here.

B. Interaction potential

The real part of the optical potential U„,(x) is a
.sum of Coulomb [Eq. (5)] and nuclear terms:

ReU„,(r) = V,„,(r) + U„„„(r). (15)

For the nuclear part, we have chosen to use a two
range Woods-Saxon shape as follows:

ccci ('r) = Vcorefws (Rcorct +corer +)

—[Vc+ VzL(L+1)]f~ (R, a, r), (16)

where

f~c (R r Qr t)= 1 + exp'
a

(17)

The short range repulsive component has been in-
cluded to reflect the effects of Pauli exclusion.
The longer range attractive component is chosen
to have an angular momentum dependence, in which
partial waves with higher relative angular momenta
feel a stronger attractive nuclear force. Both of

these features emerge from microscopic stu-
dies" ' of the interaction between composite par-
ticles. The parameters of the interaction potential
used in the present calculation are listed in Table
I. The repulsive core is represented by V„„
=100 MeV, a„„=0.3 fm, and R„„=3.5 fm.
This core radius was estimated from the range of
the outermost node of the microscopic relative
wave function" that is consider ed to be the origin
of the structural core"'" of the interaction between
composite nuclei. The attractive well has parame-
ters V= 16.0+0.014L(L+1) MeV, R=6.55 fm,
and a=0. 5 fm. The real part of these potentials,
including the centrifugal term, is plotted in Fig.
3 for relative angular momenta L=0-30. As is
shown in this figur e, the real potential has a min-
imum for L (24. Barrier heights, energies, , and
widths of potential resonances in the elastic and
aligned 3, inelastic channels are given in Table II.
These values were calculated for the potential of
Fig. 3, i.e., with no coupling and with no imaginary
part. The resonances in each channel form a band
and can be well described as rotational sets-
Eqs. (1) and (2)—as discussed in the previous sec-
tion. Crossing of the two bands takes place at a
spin value between J= 18 and 20. An elastic reso-
nance with J= 18 appears at E, = 26.6 Me V
which satisfies the requirement of the "0("0,' C)"Ne data 7 mentioned in Sec. II. As seen from
Table II, single particle widths I;, of the reso-
nances. are closely related to the energy difference
between the r esonance and the barrier top.

In introducing a coupling potential, we follow
the procedure of Ref. 3V. The effect of the inter-
nal motion of the nuclei is introduced via the range
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symmetry in the entrance channel, expressions
for cross sections for 0+ 0 scattering neces-
sarily differ from those for nonidentical particle
collision. Here we summarize- the expressions
we have used.

The differential cross section for elastic scatter-
ing is given as follows:

do& = f (e)+f,(v —e)+I —
I

0 50—
QJ

o 25
C3

I

I4 16 IS 20 22 24

~ e e-DATA (Kolata etal. )

BCM (5~ inelastic)
~ ~

~ ~ ~
~ ~ ~

~ ~ ~
~ ~

ee

~ eN

' 0+' 0 ' 0 5 —0&,Transition

x Q (2J+ l)em"&(l -S„)P~(cose)
J':even

(22)

whe~e f,(8), o~, S~„, and P~(x) are the Coulomb
scattering amplitude, the Coulomb phase shift,
the elastic scattering S matrix, and the Legendre
polynomial, respectively. The summation in Eq.
(22) covers only even J values.

Angle integrated cross sections for inelastic
scattering are given as follows:

a%ae+
IO 4020 50

Ec n, (MeV)

FIG. 4. Inelastic 3& cross sections in '60+'60 scatter-
ing. The solid line shows the angle integrated inelastic
cross sections predicted by coupled-channel calculations
based on the BCM. Data for gamma radiation deexciting
the 3~ state of ' 0 measured by Kolata ut al. (Ref. 4), are
also indicated. Energies, widths, and total angular mo-
menta of zeroth order resonances in the aligned 3~ ro-
tational band are shown in the upper part of the panel.

(23)

where S &, is the inelastic scattering S matrix and
c' represents inelastic channels. In our case only
the 3, aligned channel is included.

The total reaction cross section is defined in
terms of the Qux removed from the elastic channel
and is given as follows:

(24)

Using these expressions, the total fusion cross
section may reasonably be defined as the difference
between the total reaction cross section and total
cross section for inelastic scattering and is given
simply as

O~m = O~ —
O~ne~ ~

IV. RESULTS AND DISCUSSION

In this section we present the results of our nu-
merical calculations and compare them with ex-
perimental data.

A. 3& inelastic cross section

In Fig. 4 we compare our calculated 3, inelastic
excitation function for F60+ "0scattering with the
gamma-radiation yield data measured by Kolata.
et al. The fact that the measured cross sections
are systematically larger than those calculated
may reGect other contributions to the yield of 3,
gamma radiation in addition-to that from the single
3, inelastic scattering process included in our
calculation. Some of the difference may be at-

tributed to contributions from the mutual 3, inelas-
tic scattering which was not taken into account in
the present calcuLations and whose aligned band
crosses the elastic one at an energy slightly high-
er than that of the single 3, band as is shown in
Fig. 2. Data are not yet available on this mutual
excitation channel. Among other reactions, which
will contribute with increasing intensity to the
gamma-radiation yield as the bombarding energy
is increased, are inelastic scattering to states in
"0higher' than 6. 13 MeV in excitation —which
thereafter deexcite via cascades through that
state —as well as reactions leading to a ~C+ "Ne
final channel, wherein the excited 2 Ne subsequent-
ly decay to excited states in 0 which deexcite
either in cascade or directly from the 6.13 MeV
3, state. Because these noninelastic contributions
to the 6. 13 MeV gamma-radiation yield can include
effects of many partial waves, they might be ex-
pected to increase smoothly as a function of ener-
gy, as does the apparent background underlying
the structure in the data. A good example of such
a background contribution may be found in the '~C

+ C scattering in which gamma- radiation yields"
deexciting the 4.44 MeV 2; state of "C show in-
creasing background when compared with the pure
2; inelastic scattering data. It bears noting that
Hefs. 7 and 10 regarded the 3, gamma-radiation
yield data of the "0+"0system as if they are pure 3y
inelastic cross sections. In this respect, direct
measurements on inelastic cross sections for the
single and mutual 3, inelastic excitations in the
"0+'60 system would be important.

What appears gratifying, however, is that the en-
ergy intervals, widths, and amplitude of the struc-
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ture that appears to be superimposed on a monotoni-
cally increasing background in the experimental data
are reproduced reasonably well by the predicted
curve. Each peak of the calculated cross section
corresponds to each partial wave with subsequent
total angular momentum. It is found that if we al-
low minor changes in the interaction potential for
the inelastic channel, small shifts in the calcu-
lated peak positions can easily be obtained without
significantly reducing the quality of the fits to the
fusion and elastic data. However, we have pre-
ferred to adopt a simple assumption, i.e., the
same interaction for both elastic and inelastic
channels, and to demonstrate how close they come
to reproduce the data without any modification
rather than attempting to fine tune.

In the upper part of Fig. 4, energies, widths,
and total angular momenta of the zeroth order
states in the aligned rotational band are shown. It
is obvious that the energies and widths of the cal-
culated structure correspond reasonably to those
of the original states. This supports the validity
of the schematic discussion of the BCM given in
Sec. II.

120—

40—

30-
20—
IO—

oem 600

=69.8

B. Elastic excitation functions

Elastic "0+' O excitation functions were also
calculated with this model. In Fig. 5 they are
compared with data of Maher et al.' for all five
measured angles; 8, =49.3', 60.0, 69.8',
80.3', and 90.O'. Characteristic gross features
of the data are well reproduced by our couyled-
channel calculation at all angles. These excita-
tion functions are one of the examples which have
been studied by many different approaches. For
example, Maher et al. ,' Gobbi et al. ,2' Chatwin
et al. ,"and Baye et al.' have all reproduced these
data quite well within different frameworks which
take only the elastic channel into account explicit-
ly. The quality of our reproduction of these data
is comparable to that obtained by all of these
groups. The advantage of the BCM is that this
model can reproduce not only the elastic scatter-
ing but also other data, i.e., fusion and inelastic
cross sections at the same time. It should be em-
phasized that Fig. 5 is plotted not on a semilog-
arithmic scale but on a linear one and thus tends
to emphasize discrepancies.

Vfe have also calculated these excitation func-
tions without the coupling potential, i.e., as a
simple optical model calculation with our parame-
ters. Characteristic features of the results are
quite similar to those of H.g. 5. In this respect
the gross oscillatory structure of the elastic '6O

+ 0 excitation functions can be understood as en-
trance channel phenomena.

l5— ec m=~0

lO— ~ ~

Our calculations do not predict the fragmentation
of the gross maxima in the elastic scattering ex-
citation function obtained by Scheid e t al. , and ap-
parent in the experimental data. ' This may re-
flect our use of the same imaginary yotential in
both elastic and inelastic channels whereas Scheid
et al.e used a substantially weaker imaginary po-
tential in the inelastic channel. The widths of the
observed intermediate structure in the elastic ex-
citation function is typically -300 keV, ' while the

20 30
C.M. FNERGY (MeV)

FIG. 5. Elastic scattering excitation functions for the
0+ 0 system. Calculated elastic scattering excitation

functions are compared with data of Maher et al. (Ref.
5) for five measured angles, i.e., 8, =49.3', 60.0',
69.8', 80.3', and 90.0 . Characteristic gross features of
the data are well reproduced by our coupled-channel cal-
culations for all angles. This figure is plotted on a linear

peale.
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C. Fusion cross section

In the middle panel of H.g. 6 we compare our
model prediction with experimental fusion data of
Fernandez et al.' Obviously the magnitude and
oscillatory structure of the data are well repro-
duced. In the center of Hg. 6 we also show the
calculated contribution to the total fusion cross
section from each individual partial wave. The
oscillatory structure in the fusion excitation func-

UJ
CO

CL
&I80.—

~ 90'—
hJ

l.2

Optical Model phase Shjf t ( +=O )

C IO

0+ 0.8

O
~ o.6
U)
V)
O
CCu 0.4
Z0
w 0.2
Ll

characteristic width of the observed structure of
the gamma-radiation data which can be reproduced
by our model is 1-3 MeV. This may suggest dif-
ferent origins for these structure. It would be
very interesting to learn whether the gamma-ra-
diation yield data show structure of few hundred .

keV width or not; currently available data are not
adequate to answer this question.

(2~+1)T, ,
2m

J even

where the transmission coefficient &~ is

T~= (1 + exp[2'(B~"' —Z)/8'(o~ j) ',

(26)

(2'f)

1 d' 8 Z(J+1)
p. A' „2jLK

Z/2
+ ReU„, (r) . (28)

r~Bg

tion can be identified readily with the contribution
from each new partial wave as it becomes active
with increasing energy. In the top panel of Fig.
6 we show the behavior of the optical model phase
shift (calculated with W set equal to zero for clari-
ty). The resonance energy of each grazing partial
wave, where the real phase shift passes through
90' and has a positive slope, corresponds to the
peak of each partial fusion cross section. As
noted in our preliminary reports, "this fact may
suggest that each oscillation of the fusion data re-
flects the existence of shape resonances of grazing
partial waves in the entrance channel.

Other possible origins for structure in the fusion
excitation function include barrier penetration ef-
fects and a possible energy dependence of the im-
aginary potential depth. To study these effects of
barrier penetration on the fusion cross section,
we have also calculated total, reaction cross sec-
tions using a semiclassical model ' that is intrin-
sically free from resonances. In this model the
potential shape in the region of the outer barrier
is approximated by an inverted parabolic form,
and strong absorption is assumed inside of the po-
tential barrier. Then the total reaction cross sec-
tion, Eq. (24), can be expressed as follows4':

I5—
Elastic Excitation Function

, (Coupled Channel)

8, =so.o.
0 ~ oo Yale ta

B~ ' is the barrier height discussed in Sec. II and
given in Table II. 8 &u~ and ReU„, (r) are the har-
monie oscillator constants of the inverted parabolic
form and the real part of the optical potential adopted

I

40Io 20 50
C.M. ENERGY ( Me&)

FIG. 6. Fusion cross sections for the ' 0+ 60 system.
In the middle panel, calculated total fusion cross sections
are compared with experimental data of Fernandez gt al.
(Bef. 3). The calculated contribution to the total fusion
cross section from each identified partial wave is also
shown in the center of the figure. In the upper panel,
real phase shifts for the elastic 0+ 0 scattering (with-
out absorption) are shown. In the lower panel, the 90
elastic scattering excitation function of Fig. 5 is repro-
duced.

in our coupled-channel calculations, respectively.
In Fig. 7 calculated total reaction cross sections
are shown by the solid line. Fusion data of Fer-
nandez et al. and of Kolata et al. , which were
obtained using different experimental methods,
are also shown. The result shows no oscillatory
structure, except in the higher energy region
where the assumed inverted parabolic form fails
to fit the outer potential barrier for the corre-
sponding partial waves (see Pig. 2). On the other
hand, the total reaction cross sections predicted
by the BCM—which can be given by Eq. (25), i.e.,
a summation of the total fusion cross section o,„,
and the total inelastic cross section v, „—do show
oscillatory structure. Comparison between the
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I

l60+I60 Fusion

I ~ ~~ 0 ~ y ~~ y

c

o 0.8

(0
g06
(3
C,0 04

~ ~ Data of Fernandez etal.
oo Data of Kolata etal.

Inverted Parabola Approx. (w««)—

0.2

IO 20 50 40
E, (Mev)

FIG. 7. Total reaction cross sections in the ' 0+ 0
system. The solid line shows the total reaction cross
section estimated by a strong absorption model described
in the text. Data (Refs. 3, 21) on total fusion cross sec-
tions measured using two different experimental methods
are also shown.

two calculational results may illuminate the effects
of resonances, the existence of which enhances the
absorption at resonance energies. In other words,
the steep increase of the partial fusion cross sec-
tion of H.g. 6 cannot be ascribed to the effects of
bar rier penetr ation.

Although Philbps et al.' obtain a reasonable re-
production of some of the data without explicit use
of resonances, the steep energy dependence of
their parametrized transmission coefficients is not
produced by the strong absorption model described
above, and it may be a concealed effect of under-
lying resonances. This should not be surprising,
because their S matrix simulates that of Gobbi,"
in which resonances play an important role. It
should be noted that the parabolic potential barrier
adopted in this barrier penetration calculation is
not arbitrary, but is a physically reasonable one,
since this barrier simulates our potential, which
can reproduce elastic scattering correctly.

The effects of energy dependence of the imagin-.
ary potential, which is introduced into our calcula-
tion through the energy dependence of the critical
angular momentum J„have also been studied.
Calculations of total reaction cross sections using
an optical model with the same imaginary potential
and changing energies of resonances suggest that
the existence of resonances plays a crucial role in
the reproduction of the fusion structure at energies
of -19, -22, and -26 MeV where both the Pbrnan-
dez' and Kolata" data sets show prominent fusion
oscillation. However, calculated fusion structure
of Fig. 6 at higher energies, i.e., -30, -35, and

8 „=A~ (E)e "~

where

& (E)=f (E,~E,E). (30)

&E is a diffuseness parameter and taken to be
1 MeV for all Jvalues. E~ is the energy where
IS ~ I= 0.5. In their data reproduction, the pa-
rameters E~'s were set of 19.3, 22. 8, 26. 8, 31.2,
36.1, and 43..5 MeV for J=14, 16, 18, 20, 22,
and 24, respectively. These values are very close
to our resonance energies for the elastic band as
listed in Table II, which play a dominant role in
our reproduction of the elastic excitation functions.

Ne have searched for possible inQuence of in-
elastic channels other than the aligned one, by
comparing the results presented herein with those
obtained using a full coupled-channel calculation
including all four inelastic 3~ channels. There ap-
pears to be no meaningful difference for any of the
calculated cross sections that we reported here,
which supports the validity qf our truncation of
the model space suggested by the BCM.

-40 MeV, reflects mainly the effects of the energy
dependence of our imaginary potential. This en-
ergy- and angular momentum dependence of ab-
sorption effects are interesting topics in the study
of heavy ion interactions and we are extending our
studies of them.

Kolata et al. have already noted an anticorrela-
tion between the structure in the fusion data and
that in the 90 .elastic scattering excitation func-
tion for the ' 0+"0 system. As shown in the
lower panel of Fig. 6, the minima in the 90' ex-
citation function correspond to the resonances in
the entrance channel and reflect destructive inter-
ference between the resonance and background
elastic amplitudes. This clearly explains the anti-
correlation between the structure in the fusion data
and that in the 90' elastic scattering excitation
function.

In the past, the gross maxima in the 90' elastic
scattering excitation function for "0+"0scatter-
ing have frequently been taken to present the reso-
nances. Baye et al. ,'~ for example, reported that
this interpretation had been demonstrated explicit-
ly by their satisfactory reproduction of the elastic
excitation functions.

This apparent discrepancy in the identifi. cation of
resonance energies from the elastic scattering data
may be resolved readily. In addition to the real
phase shifts 5& —which are calculated explicitly by
the microscopic R-matrix theory —Baye et al. ~

introduced smooth cutoff coefficients Az (E) into
the S matrix to take absorption effects into ac-
count:
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V. SUMMARY AND CONCLUSION

We have shown that a schematic discussion of a
band-crossing model can explain the existence of
a sequence of resonance-like peaks observed in
the yield of 6. 13 MeV gamma radiation as a con-
sequence of strong mixing of wave functions in the

' elastic and 3, aligned inelastic bands, respective-
ly, in the energy region where these bands ap-
proach and cross. A simple coupled-channel cal-
culation based on the BCM, in which only the elastic
and the 3, aligned inelastic channels are included,
provides a quite reasonable reproduction of all
currently available data on the energy dependence
of crpss sectipns in the &60+ F60 interactions, j.e.,
the 3, gamma radiation yield, ' total fusion, and
elastic scattering' data. The structure in the fu-
sion excitation function and the gross structure in
the elastic scattering excitation functions can be
understood as entrance channel phenomena, which
reflect shape resonances for individual grazing
partial waves in the entrance channel. The reso-
nance energies in the entrance channel were shown
to cor respond not to maxima but to minima in the
90' elastic scattering excitation function. In this
way the observed anticorrelation between fusion
and 90' elastic scattering excitation function was
explained naturally. Qur results for the 3, in-
elastic cross section provide additional support
for the physical validity of the BCM discussed in
Sec. II.

An angular momentum dependent imaginary po-
tential in which the grazing partial wave feels weak

absorption and lower angular momentum partial
waves feel strong absorption plays an important
role in our reproduction of both the widths of
structure in the gamma-radiation yield and the
magnitude of. the fusion cross section. This is a
common feature for all the ' C+ C, ' C+ 0,
and '60+ ' 0 systems which have been studied us-
ing-the BCM. In this respect simple strong ab-
sorption models may not be a good assumption for
these systems.

From these results we are led to conclude that
our examination of all the available data suggests
that nuclear molecular resonances are indeed re-
sponsible for the energy dependent structure in
the 0+ 0 system as well as jn the C+~C
system. The lack of comparable resonant struc-
ture in the total reaction cross sections in the
Cpulpmb barrier regipn in the 0+ "Q system re-
flects not the absence of nuclear molecular phe-
nomena but rather their being masked by a great
many competing nonresonant amplitudes as origi-
nally noted by Hanson et al.
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