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Fission in a wall-and-window one-body-dissipation model
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We calculate the fission of idealized nuclei in a modified liquid-drop model. The potential energy is taken
to be a combination of Coulomb energy and nuclear energy obtained by double folding a Yukawa-plus-
exponential two-body potential. The collective nuclear kinetic energy is calculated by use of the Werner-
Wheeler approximation to incompressible, irrotational flow. The dissipation of collective energy into internal
energy is calculated from the one-body wall formula until the neck decreases to a critical size, at which
point a transition is made to a combination of the one-body wall form, ula relative to the centers of mass of
the two nascent fragments and the one-body window formula. Experimental fission-fragment kinetic
energies for the fission of nuclei throughout the Periodic Table are reproduced optimally when the neck
radius at the transition point is 2.5 fm. For the alternative dissipation mechanism of ordinary two-body
viscosity, the experimental fission-fragment kinetic energies are reproduced equally well when the viscosity
coefficient is 0.015 TP.

NUCLEAR REACTIONS, FISSION U, nuclei throughout Periodic Table; cal-
culated most probable fission-fragment kinetic energies. Modified liquid-drop
model, Yukawa-plus-exponential potential, one-body dissipation, wall formula,

window formula, two-body viscosity.

I. INTRODUCTION

One of the interesting questions in nuclear
physics is the dynamical nature of l.arge-scale
collective motions, such as those that occur during
fission and nonperipheral heavy-ion collisions.
%bile it is possible to explain some of the obser-
ved features of such reactions using a viscous
liquid-drop model, "there is strong reason to
believe that a hydrodynamical model, based on the
assumption of a short mean free path between two-
nucleon collisions, is inappropriate for nuclei.
Because the Pauli exclusion principle forbids
scattering into occupied states, the mean free
path between two-nucleon collisions is expected
to be larger than the size of the nucleus. There-
fore, there is some reason to expect that the dom-
inant process in collective motion of nuclei is
one-body dynamics, or the interactions between
individual nucleons and the mean field created by
all the other nucleons. ' However, the apparent
dominance of one-body effects does not necessarily
imply that two-body collis'ions should be totally
ignored, as they can still significantly perturb the
situation from an ideal one-body limit.

One macroscopic approximation to the one-body
dynamical problem is to use the wall formula to
describe the dissipation. 3 If one assumes that the
particles hitting the boundaries of the mean field
have velocities isotropically distributed around
an average drift velocity of the nucleus, then any
motion of the mean-, field wall relative to the drift
velocity leads to a loss of energy to the particles
inside the mean field at the rate'

where p is the mass density of the nucleus, v is
the average nucleon speed relative to the drift
velocity, n is the relative normal velocity of the
wall with respect to the drift velocity of the sys-
tem, and the integral is over the entire boundary
or wall of the system. This wall formula, with
values of p and v appropriate to nuclei, implies
such a high rate of dissipation that inertial effects
are unimportant, and a creepy type of motion re-
sults. '

An important difficulty in applying Eq. (1) to
nuclei is the assumption of isotropy of particle
motion with respect to the drift velocity of the
nucleus. There are at least two distinct problems
to consider. First, the assumption is obviously
not satisfied for a nucleus during fission just after
scission, where a blind application of the wall
formula would predict that the fragment separa-
tion would be strongly damped, leading to no
fragment kinetic energy. In the case of separated
fragments, one should obviously apply the wall
formula to each fragment individually. ' However,
it is more difficult to decide how to make the tran-
sition before scission, when the nucleus is highly
deformed and the particles striking the walls are
not moving isotropically with respect to the center
of mass of the nucleus. 4

The second problem is related to the question of
reversibility. The energy dissipated through the
wall formula is actually into zero-sound energy
(distortion of the Fermi surface). Thus, the
velocity distribution striking some portion of the
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wall at a given time will not be isotropic due to
wal1. motion at other places at earlier times.
This change in shape of the velocity distribution
of particles hitting the wall will lead to a very
different dissipation rate and in some cases will
couple energy from zero sound back to collective
or wall motion. In a highly symmetric situation,
the net rate of energy loss may be drastically
reduced' ' from that predicted by Eq. (1).

In this paper we consider only the first problem,
modifying the wall formula for fissioning nuclei
when their shapes become highly deformed. We
discuss the model that we use in Sec. II and pre-
sent our calculated results in Sec. III. In Sec. IV
we give a summary and discussion of our results.

II. WALI AND-WINDOW MODEL

Another simplification of one-body dynamics
arises when there are two almost separate sys-
tems connected by a small window, such as nascent
fission fragments or colliding ions. ' If the two
systems are in relative motion, any particles
passing through the window will damp the motion
because of the momentum transferred between
the systems. If we define the relative velocity of
the two systems as u and the area of the window
between them as Ao, then the dissipation rate is'

dt
= 4pvho'(2u

)[
+u~ ), (2)

where u
~~

is the component of u along the normal
to the window and u, is the component of u in the
plane of the window.

Since we are unable to calculate the velocity
distribution on the entire wall as a function of
time, we investigate a much simpler model. We
assume wall-formula dissipation until the neck is
smaller than a critical size, at which point we
switch to window dissipation for the relative mo-
tion of the two ends, with wall dissipation applying
for motions of the fragment walls relative to
their respective centers of mass.

We consider axially symmetric shapes des-
cribed in cylindrical coordinates by a surface
function

where q =lq,}denotes a set of collective coordin-
ates. The quantity n entering the wall formula is
then
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where n is the outward unit normal to the surface
and v, is the velocity on the surface.

The dissipation tensor g, &
is defined by

dE
'g)yq]qg .

For the wall formula, it is therefore given by
I
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For wall-and-window dissipation applied to a
reflection-symmetric shape, we must replace n
in Eq. (1) by n ~ (v, ——,'RB,), where 8, is the unit
vector along the axis of symmetry and R is the
relative velocity of the centers of mass of the
two halves of the fissioning drop. In addition,
we must add to dE/d& a term of the form q~~,~',
which can be calculated from Eq. (2). This leads
to
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for the wall-and-window model.
The Rayleigh dissipation function F is defined

by
1dE
24 f.f

and the collective kinetic energy P is defined by

1
M)gq]qy

where I,&
is the inertia tensor. With the collec-

tive potential energy denoted by V(q) and the
Lagrangian defined by 1.=7'. —V, the modified
Lagrange equations of motion'

d (BL) BL BE
df laqg) Bq( Bq)

then determine classically the dynamical evolu-
tion of the nuclear shape.

We parametrize our shapes as two end spheroids
smoothly joined to a third spheriod or to a hyper-
boloid of revolution of one sheet. ' For reflection-
symmetric shapes this parametrization has three
independent collective coordinates. The colle c-
tive potential energy is taken to be the sum of the
Coulomb electrostatic energy of a uniform-charge-
density drop and a nuclear macroscopic energy
obtained by double folding a Yukawa-plus-expon-
ential two-body potential over the volume of the
drop. " This form of nuclear macroscopic
energy, while exhibiting some of the same prop-
erties as that calculated by double folding a single
Yukawa function, ' is better because it exhibits
saturation and properly represents the tail of the
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where the brackets ( ) denote an average over the
half volume to the right of the midplane of the re-
flection-symmetric shape.

IH. CALCULATED RESULTS

We solve Eq. (5) for initial conditions corres-
ponding to the most probable path, in which the
nucleus is started from rest an infinitesimal dis-
tance in the fission direction beyond the fission
saddle point. The calculation proceeds until a
shape with zero neck radius is reached, at which
point the postscission motion of the fragments is
approximated by constraining them to be spher-
oids with aligned symmetry axes. '

In Fig. 1 we show the projection onto the space
of central moments x and o of the most probable
fission paths for '"U for various dissipation rno-
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FIG. 1. Most probable dynamical trajectories in x-o.
space for the fission of ~36U for various types of dissi-
pation. The dashed curves are trajectories for either
no dissipation or two-body viscosity, whereas the solid
curves are trajectories for one-body wall-formula dis-
sipation with a transition to wall-and-window dissipation
at the indicated neck radii.

internuclear potential measured in heavy-ion
elastic scattering experiments. ' The collective
kinetic energy is calculated by use of the Werner-
Wheeler approximation" to incompressible, ir-
rotational flow.

For displaying the dynamical paths of fissioning
nuclei it is convenient to project the results out
of the multidimensional space spanned by the (q,)
onto the subspace spanned by the two most impor-
tant symmetric degrees of freedom. These are
defined in terms of the central moments'

r =-2(z)

and

dels. The lowest dashed curve gives the trajec-
tory for no dissipation. Increasing ordinary hy-
drodynamical shear viscosity results in a more
elongated scission configuration, since elongation
is damped less than neck formation with this type
of dissipation. ' The lowest solid curve gives the
trajectory for the wall-formula one-body dissipa-
tion. The motion leads to a more compact con-
figuration, since wall-formula dissipation hinders
elongation more strongly than it does neck forma-
tion. ' The motion is so strongly damped that the
scission point is reached with less than 1 MeV of
translational kinetic energy in the system. The
Coulomb energy of the compact configuration is
high enough to lead to a final fragment kinetic
energy that is approximately equal to that for the
p. =o.o15 TP two-body-viscosity case. In this
latter case, the scission shape is more elongated,
but it also has about 20 MeV of translational
kinetic energy.

When implementing the wall-and-window ap-
proach, we follow the wall-formula dynamical
path to a point where the radius of the neck is less
than a critical value. We then switch from Eq. (3)
to Eq. (4) to describe the dissipation tensor, using
this latter form until the neck radius goes to zero.
The postscission model in both cases is the wall
formula applied to each fragment, since the win-
dow friction is zero between the fragments. Be-
cause the wall-and-window model damps elonga-
tion much less strongly than does the pure wall
formula, the prescission trajectories extend to
larger values of r and g. If the transition is made
when the neck is cylindrical, which is very nearly
at the saddle point for '"U, the shape of the tra-
jectory in r-0 space is almost the same as for the
case of no dissipation. However, the dynamical
evolution is substantially different in these two
cases. For example, there is about 10 MeV of
kinetic energy at scission for the case of wall-
and-window dissipation, whereas there is about
30 MeV with no dissipation.

As the transition is made for successively
smaller necks, the trajectories branch off from
the wall-formula trajectory farther along, leading
to increasingly less elongation at scission. We
show in Fig. 2 how the calculated fission-fragment
kinetic energy varies with the radius of the neck
at which the transition is made. For the pure wall
formula the kinetic energy is about 170 MeV,
which is nearly all Coulomb-plus-nuclear interac-
tion energy of the fragments at scission. For a
small value of the transition neck radius, the
system begins to acquire some translational kine-
tic energy at scission without becoming so elong-
ated as to lose much Coulomb energy. Therefore,
the initial effect of incr easing the trans ition neck
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FIG. 2. Calculated fission-fragment kinetic energy
for the fission of 3 U as a function of the neck radius at
which a transition is made between the waQ formula and
the wall-and-window formula.

radius is to increase the kinetic energy somewhat.
However, as the transition neck radius is increased
further, the scission shape becomes more elonga-
ted, leading to a decrease in Coulomb interaction
energy that is no longer totally compensated for by
increased translational kinetic energy at scission.
The calculated fragment kinetic energy decreases
to 157 MeV when the wall-and-window dissipation
is used for the entire dynamical evolution. These
energies are to be compared to the experimental
most probable fission-fragment kinetic energy"
of 168.0+ 4.5 MeV for the fission of '"U at high
excitation energy, where single-particle effects
are substantially reduced.

%e have performed similar calculations for
nuclei along Green's approximation to the valley
of ti stability. " We compare these calculated fis-
sion-fragment kinetic energies to experimental
data in Fig. 3. The simple wall formula, with no
adjustable parameters, satisfactorily reproduces
the experimental data. However, as seen from
the figure, the experimental data are reproduced
slightly better when the transition to wall-and-win-
dow dissipation occurs at a neck radius of about
2.5 fm.

We present in the Appendix similar calculations
using ordinary two-body viscosity, which differ
from the calculations in Ref. 1 by including the
nuclear macroscopic energy calculated using the
Yukawa-plus-exponential two-body potential. "

0 I + i- t- 4-

0 500 IOOO I500 2000
z'/AI"

FIG. 3. Comparison of experimental most probable
fission-fragment kinetic energies with results calcu-
lated for wall-and-window dissipation with different
transition neck radii. The experimental data are for
the fission of nuclei at high excitation energies, where
the most probable fission-fragment mass distribution is
into two equal fragments. The open symbols represent
values for equal mass divisions only, whereas the solid
symbols represent values averaged over all mass divi-
sions. The origins of the experimental data are given
in Ref. 1. The dashed curves give the calculated trans-
lational kinetic energies at the scission point.

IV. SUMMARY AND CONCLUSIONS

%e have calculated the fission of nuclei through-
out the Periodic Table by use of a modified-liquid-
drop model, with dissipation included by means of
two approximations to the extreme one-body-dy-
namics limit. The mall-formula approximation,
in which the collective energy is assumed to be
dissipated irreversibly into distortions of the
Fermi surface, predicts correctly the observed
most probable fission-fragment kinetic energies.
Modification of the assumption of isotropic par-
ticle velocities leads to another approximate mo-
del of one-body dynamics. In the wall-and-window
approximation, the motion of the centers of mass
of two ions or nascent fission fragments is damped
by the momentum transfer caused by single par-
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ticles passing through the window between the two
fragments. Distortions of the fragments are
damped by applying the wall formula relative to
the centers of mass of the fragments. This model
reproduces the experimentally observed fission-
fragment kinetic energies slightly better when the
transition from wall to wall-and-window dissipa-
tion occurs at a neck radius of about 2.5 fm.

By making this abrupt transition, we hope to
crudely approximate the continuous transition
from an isotropic velocity ddistgibution to one in
which the particles in one 'fragment have an
average velocity different from that of the particles
in the other fragment. These two models, although
giving similar results for fission-fragment kinetic
energies, should give very different predictions
for angular distributions and possibly for final
kinetic energies in heavy-ion collisions.

Both of these models, however, neglect one
effect that can be extremely important for collec-
tive motions with high symmetry. In a realistic
model of one-body dynamics, some of the energy
coupled to zero sound will reappear in the collec-
tive motion, leading to a very different dynamical
picture than that presented here. For example,
in one model of giant multipole resonances, the
one-body dynamics, instead of giving an extremely
large damping, provides the basic restoring force
which makes the resonances possible. " " The
forces due to one-body effects are large in both
pictures, but a difference in phase changes a
large dissipative force into a large conservative
force. ' Therefore, we feel that one should be very
cautious about interpreting results of calculations
using very simplified approximations to one-body-
dominated collective dynamics.

We are grateful to W. J. Swiatecki for conver-
sations that stimulated the calculations reported
in this paper.
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FIG. 4. Similar to Fig. 3, with the dissipation given
by ordinary two-body viscosity.

viscosity as the dissipation mechanism. These
calculations are similar to those in Ref. 1, but
differ by the use here of the Yukawa-plus-expon-
ential nuclear macroscopic energy. "We show
in Fig. 4 the calculated fission-fragment kinetic
energies for nuclei throughout the Periodic Table
for several values of the two-body viscosity co-
efficient. A value of p. =0.015 TP satisfactorily
reproduces the experimental data. The unit of
viscosity is the terapoise, which is given by

APPENDIX: FISSION CALCULATED WITH
TWO-BODY VISCOSITY

We present here the results of calculations of
fission-fragment kinetic energies using two-body

dyn s/cm'

=6.24x10 "MeV s/fm3=0. 948 k/fm'.
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