Parametrization of the Paris N-N potential

M. Lacombe, B. Loiseau, J. M. Richard, and R. Vinh Mau

Division de Physique Théorique, Institut de Physique Nucléaire, Orsay 91406, France and LPTPE, Université Pierre et Marie Curie, Paris 75230, France

J. Côté, P. Pirès, and R. de Tourreil

Division de Physique Théorique, Institut Physique de Nucléaire, Orsay 91406, France (Received 27 July 1979)

In view of practical nuclear structure calculations the Paris N-N potential is parametrized in a simple analytical form. This parametrization consists of a regularized discrete superposition of Yukawa-type terms. Results for phase shifts and deuteron parameters are presented as well as nuclear matter binding energy obtained with this potential.

NUCLEAR REACTIONS Nucleon-nucleon interaction, parametrization of the Paris N-N potential. 0 to 330 MeV N-N phase shifts.

Some years ago, we derived¹ a nucleon-nucleon interaction from πN and $\pi \pi$ interactions, which includes the one-pion-exchange (OPE), correlated and uncorrelated two-pion-exchange, and ω -exchange contributions. These theoretical contributions give a fairly realistic description of the long and medium range (LR+MR) N-N forces since

(i) the peripheral (J>2) phase shifts calculated from these contributions are in good agreement with the experimental ones,²

(ii) an equivalent potential derived from this $(\pi+2\pi+\omega)$ exchange interaction compares very well with the phenomenological potentials of Yale and of Hamada-Johnston down to internucleon distances $r \sim 0.6$ fm for the spin-spin and tensor components and $r \sim 0.8$ fm for the central and spin-or-bit components.¹

Although in some cases (e.g., the isotriplet spinspin component) the agreement extends to very small values of r, there is no compelling theoretical reason to believe the validity of our potential in the region $r \leq 0.8$ fm since the short range (SR) part of the interaction is related to exchange of heavier systems and/or to effects of subhadronic constituents such as quarks, gluons, etc. At present, no reliable calculations of this SR part are available. Thus, we provisionally take the viewpoint that the SR part should be determined phenomenologically, with the hope that our accurately determined LR+MR interaction will provide strong constraints on this SR part, leaving us with only a few degrees of freedom. Along this line, we proposed³ to describe the core with a very simple phenomenological model; namely, the long and intermediate range $(\pi + 2\pi + \omega)$ potential is cut off rather sharply at internucleon distance $r \sim 0.8$ fm and the short range ($r \leq 0.8$ fm) is described simply by a constant soft core. This introduces the

minimum number (five) of adjustable parameters corresponding to the five components (central, spin-spin, tensor, spin-orbit, and quadratic spinorbit) of the potential for each isospin state. On the other hand it was found that the central component of the theoretical LR+MR potential has a weak but significant energy dependence and that this energy dependence is, in a very good approximation, linear. As an energy dependence appears already in the LR+MR potential, one expects also an energy dependence in the SR part. Indeed, fitting the data required an energy dependent core for the central potential, the energy dependence being again linear and introducing therefore one additional parameter, the slope of the energy dependence. The proposed SR part is then determined by fitting all the known phase shifts $(J \leq 6)$ up to 330 MeV and the deuteron parameters. Although the number of free parameters is small (six in total for each isospin state) the quality of the fit is very good. The χ^2 /data are as good as the ones given by the best phenomenological potentials which contain many more free parameters.

The previous model (referred to, in the literature, as the Paris N-N potential) was purposely chosen in its simplest form to demonstrate that, once the LR+MR forces are accurately determined, the SR forces can be described by a model with few parameters that does not affect the LR +MR part. This simple model in which a definite separation between the theoretical and phenomenological parts is made, is designed for providing a clear physical insight into the problem. However, the explicit expression of the resulting potential is not very convenient for practical use in many-body calculations:

(i) the energy dependence of the potential which can be treated naturally in the two-body scattering

21

861

© 1980 The American Physical Society

TABLE I. The T = 1 Potential parameters. The notation $a \pm n$ stands for $a \times 10^{\pm n}$.

		Central Singlet Pot	ential V_0^a					
<i>ia</i> -1								
$m_j(\text{fm}^{-1})$	0.68402600+00	0.16000000+01	0.23000000+01	0.30000000+01				
g _j (MeV)	-0.10077427+02	-0.120 495 64 + 03	-0.21236460+03	-0.871 741 98 + 04				
m_{j}	0.37000000+01	0.44000000+01	0.51000000+01	0.58000000+01				
8 j	0.54383377+05	-0.21342147+06	0.49458357+06	-0.66715334+06				
m_{j}	0.65000000+01	0.82000000+01	$0.990\ 000\ 00+01$	0.11300000 + 02				
g,	0.52957598+06	-0.13703412 + 06	-0.346 971 94 + 06	see Eq. (9)				
-,								
		Central 1 riplet Pot	ential v ₁					
m_i (fm ⁻¹)	0.68402600+00	$0.160\ 000\ 00+01$	0.23000000+01	$0.300\ 000\ 00+01$				
g (MeV)	0.33591422+01	-0.86479568+02	-0.46593111+03	0.18673085+04				
<i>m</i> ;	0.37000000+01	0.44000000+01	0.51000000+01	0.58000000+01				
g.	0.38509213 + 04	-0.19674338+05	0.12323140 ± 06	-0.31449361+06				
m_{i}	0.65000000 + 01	0.82000000 + 01	0.99000000+01	0.11300000 + 02				
g,	0.24242440 + 06	0.16690404 + 06	-0.48534364 + 06	see Eq. (9)				
61	0.010 101 10 . 00	Control Charlet Det		500 114. (0)				
		Central Singlet Pot	ential V ₀					
m_j (fm ⁻¹)	0.68402600+00	0.16000000+01	0.23000000+01	$0.300\ 000\ 00+01$				
g i	0.26851393 - 02	0.51092455 - 01	-0.84264258+00	0.14736312+02				
m;	0.37000000+01	0.44000000+01	$0.510\ 000\ 00+01$	0.58000000+01				
g,	-0.14521993+03	0.84158389 + 03	-0.27861170+04	0.50564510+04				
m_{i}	0.65000000 + 01	0.82000000+01	0.99000000+01	0.11300000 + 02				
Ø.	-0.33674205+04	-0.17845529+04	0.53548266 + 04	see Eq. (9)				
81				200 774. (0)				
		Central Triplet Pot	ential V ₁					
$m_j(\mathrm{fm}^{-1})$	0.68402600+00	$0.160\ 000\ 00+01$	$0.230\ 000\ 00+01$	0.300 000 00 + 01				
8j	-0.89504644 - 03	0.37488481 - 01	-0.893 730 89 + 00	0.14123475+02				
m i	0.37000000+01	0.44000000+01	0.51000000+01	0.58000000+01				
g.	-0.14660152+03	0.84191462+03	-0.28394273+04	0.52653427 + 04				
<i>m</i> ;	0.65000000+01	0.82000000+01	0.99000000+01	0.11300000 + 02				
g j	-0.35000430+04	-0.24879479+04	$0.730\ 681\ 21+04$	see Eq. (9)				
		Spin-Orbit Potenti	al V_{LS}					
$m_i(\text{fm}^{-1})$		0.16000000+01	0.23000000+01	0.30000000+01				
g.(MeV)		-0.42600359+03	0.26279517 + 05	-0.57557033+06				
m_{i}	0.37000000+01	0.44000000+01	0.51000000+01	0.58000000+01				
. g.	0.60033934 + 07	-0.34519443 + 08	0.11355459 + 09	-0.20729209+09				
<i>m</i> :	0.65000000 + 01	0.82000000+01	0.99000000+01	0.11300000 + 02				
<i>B</i> i	0.17131548+09	-0.86418222+08	see Eq. (9)	see Eq. (9)				
		Tensor Potentia	1 V _T					
$m_{d}(\mathrm{fm}^{-1})$	0.68402600 + 00	0.16000000+01	0.23000000+01	0.30000000+01				
g (MeV)	0.33591422 ± 01	-0.85945824 ± 00	-0.10476340+03	0.12629465 + 04				
SJUNEV	0.00001422+01	-0.00040024+00	$-0.10 \pm 100 \pm 01$	$0.580.000.00 \pm 01$				
<i>m</i> j		0.10612246106	-0.22211010+01	0.555.85762 + 06				
8 j				0.11200000.102				
m _j	0.05000000+01	0.02000000 ± 01	0.990 000 00 + 01	0.11300000 + 02				
8 j	-0.349 100 04 + 00	-0.119 450 13 + 06	see Eq. (9)	see Eq. (9)				
Quadratic Spin-Orbit V_{SO2}								
$m_i(\text{fm}^{-1})$		0.16000000+01	0.230 000 00 + 01	0.30000000+01				
g (MeV)		-0.52218640+00	0.18644558+03	-0.37091115+04				
m.	0.37000000 + 01	0.44000000+01	0.51000000+01	0.58000000 + 01				
g.	0.55913117 + 05	-0.36998560 + 06	0.14537543 ± 07	-0.31352471 ± 07				
0j m.	0.65000000 ± 01	0.82000000 ± 01	0.990 000 00 ± 01	0.113.000.00 ± 09				
σ.	0.24330081 ± 07	500 Tr (0)	300 Tr (0)	See Fr (0)				
Ъj	0.21000001 + 01	200 174. (2)	566 Eq. (5)	200 174. (2)				

$ \begin{array}{c} m_{f}(\mathbf{m}^{-1}) & 0.69953600+00 & 0.16000000+01 & 0.23000000+01 & 0.165000000+01 \\ g_{f}(\mathbf{m}(\mathbf{v}) & 0.32290874+02 & -0.82465631+02 & 0.12329384+04 & -0.16559879+05 \\ m_{f} & 0.37000000+01 & 0.44000000+01 & 0.51000000+01 & 0.13000000+01 \\ g_{f} & 0.17292683+06 & -0.76835277+06 & 0.21899475+07 & -0.38447287+07 \\ m_{f}(\mathbf{m}^{-1}) & 0.69953600+00 & 0.50000000+01 & 0.29000000+01 & 0.13000000+01 \\ g_{f} & 0.27990559+07 & 0.50251828+06 & -0.2800000+01 & 0.30000000+01 \\ g_{f}(\mathbf{m}(\mathbf{r})^{-1}) & 0.69953600+00 & 0.1600000+01 & 0.51000000+01 & 0.52600000+01 \\ g_{f} & -0.374574024+05 & 0.12873669+02 & -0.42973669+02 & -0.71856864+03 & 0.42469120+04 \\ m_{f} & 0.37000000+01 & 0.5200000+01 & 0.59000000+01 & 0.59000000+01 \\ g_{f} & -0.365000000+01 & 0.5200000+01 & 0.59000000+01 \\ g_{f} & -0.85980096-02 & 0.2681335-01 & -0.332000000+01 & 0.5000000+01 \\ g_{f} & -0.85980096-02 & 0.2681335-01 & -0.23800351460 & 0.528000000+01 \\ g_{f} & -0.85980096-02 & 0.26813355-01 & -0.238001200000+01 & 0.50000000+01 \\ g_{f} & -0.859800960-2 & 0.26813355-01 & -0.238011+04 \\ m_{f} & 0.65000000+01 & 0.52000000+01 & 0.530145000000+01 \\ g_{f} & -0.24521604+04 & -0.1512821+04 & 0.4180116004 & seeEq.(9) \\ \hline \end{tabular} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$			Central Singlet Pot	ential V_0^a					
$ \begin{split} g_1(\mathbf{MeV}) & 0.3222983^{+}4^{+}02 & -0.82466631+02 & 0.12323284+04 & -0.16859879+05 \\ \hline m_1 & 0.500000^{+}01 & 0.500000^{+}01 & 0.500000^{+}01 & 0.500000^{+}01 \\ g_1 & 0.17292683+06 & -0.76835277+06 & 0.21899475+07 & -0.38447287+07 \\ \hline m_2 & 0.6500000^{+}01 & 0.8200000^{+}01 & 0.9900000^{+}01 & 0.1300000^{+}02 \\ g_1 & 0.27990559+07 & 0.50251828^{+}06 & -0.26006124+07 & see Eq.(9) \\ \hline m_1 & 0.59953600+00 & 0.1600000^{+}1 & 0.23000000+11 & 0.30000000+01 \\ g_1 & -0.37000000+10 & 0.44000000+11 & 0.5100000000+1 & 0.52960724+06 \\ \hline m_1 & 0.5500000^{+}01 & 0.420230573^{+}60 & -0.27416841+06 & 0.52960724+06 \\ \hline m_1 & 0.5500000^{+}01 & 0.4200000^{+}11 & 0.5000000^{+}11 & 0.13000000+01 \\ g_1 & -0.36500713+06 & -0.22303573+60 & -0.4283833460 & see Eq.(9) \\ \hline Central Singlet Potential V_g^3 \\ \hline m_j(\mathbf{fm}^{-1}) & 0.69953600+00 & 0.16000000+11 & 0.23000000+11 & 0.13000000+01 \\ g_1 & -0.3890096-02 & 0.28613355-01 & -0.238733355+04 & 0.42388011+04 \\ m_1 & 0.65000000+10 & 0.42000000+11 & 0.51000000+10 & 0.55000000+11 \\ g_1 & -0.24521604+04 & -0.151221404 & 0.41801160+04 & see Eq.(9) \\ \hline Central Triplet Potential V_g^4 \\ \hline m_j(\mathbf{fm}^{-1}) & 0.69953600+00 & 0.16000000+1 & 0.23000000+11 & 0.30000000+10 \\ g_1 & -0.24521604+04 & -0.1512821+04 & 0.41801160+04 & see Eq.(9) \\ \hline Central Triplet Potential V_L^5 \\ \hline m_j (\mathbf{fm}^{-1}) & 0.69953600+00 & 0.16000000+1 & 0.510000000+1 & 0.510000000+1 \\ g_1 & 0.2860032-22 & -0.81798046-3 & -0.23314560+00 & 0.33182030+00 \\ m_1 & 0.370000000+1 & 0.42000000+1 & 0.510000000+1 & 0.510000000+1 \\ g_1 & 0.510000000+1 & 0.510000000+1 & 0.510000000+1 \\ g_1 & 0.51000000+1 & 0.510000000+1 & 0.510000000+1 \\ g_1 & 0.650000000+1 & 0.42000000+1 & 0.510000000+1 \\ g_1 & 0.560000000+1 & 0.560000000+1 & 0.560000000+1 \\ g_1 & 0.560000000+1 & 0.520000$	$m_j (\mathrm{fm}^{-1})$	0.699 536 00 + 00	0.16000000+01	0.230 000 00 + 01	0.30000000+01				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$g_j(MeV)$	0.32290874+02	-0.824 656 31 + 02	0.12329384+04	-0.168 598 79 + 05				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	m_j	0.37000000+01	0.44000000+01	0.51000000+01	0.58000000+01				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	<i>B</i> j	0.17292683+06	-0.76835277+06	0.21890475+07	-0.38447287+07				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	m_{j}	$0.650\ 000\ 00+01$	0.82000000+01	$0.990\ 000\ 00+01$	0.11300000+02				
$\begin{split} Central Triplet Potential V_1^a \\ \hline m_j(\text{fm}^{-1}) & 0.69953600 + 00 \\ \mathcal{E}_j(\text{MeV}) & -0.10763825 + 02 & -0.42973669 + 02 & -0.71856844 + 03 \\ m_j & 0.370000000 + 01 & 0.44000000 + 01 & 0.51000000 + 01 \\ \mathcal{E}_j & -0.34574024 + 05 & 0.12671169 + 06 & -0.27416841 + 06 \\ m_j & 0.65000000 + 01 & 0.82000000 + 01 & 0.59000000 + 01 \\ \mathcal{E}_j & -0.36606713 + 06 & -0.22303673 + 00 & .09000000 + 01 & 0.52960724 + 06 \\ m_j & 0.59960703 + 06 & -0.22303673 + 00 & .09000000 + 01 & 0.59000000 + 01 \\ \mathcal{E}_j & -0.36606713 + 06 & -0.22303673 + 00 & .0466638333 + 06 \\ m_j & 0.37000000 + 01 & 0.46000000 + 11 & 0.23000000 + 01 & 0.58000000 + 01 \\ \mathcal{E}_j & -0.1595360090 - 02 & 0.26814385 - 01 & -0.13280683 + 01 & 0.138200000 + 01 \\ \mathcal{E}_j & -0.24521604 + 04 & -0.1512821 + 04 & 0.41801160 + 04 \\ m_j & 0.65000000 + 01 & 0.82000000 + 11 & 0.23000000 + 01 & 0.42388011 + 04 \\ m_j & 0.65000000 + 01 & 0.40000000 + 01 & 0.52000000 + 01 & 0.42388011 + 04 \\ \mathcal{E}_j & 0.28660032 - 02 & -0.51798046 - 03 & -0.53314560 + 00 & 0.83162030 + 00 \\ m_j & 0.37000000 + 01 & 0.40000000 + 01 & 0.51000000 + 01 & 0.580000000 + 01 \\ \mathcal{E}_j & 0.28660032 - 02 & -0.51798046 - 03 & -0.53314560 + 00 & 0.530000000 + 01 \\ \mathcal{E}_j & 0.36000000 + 01 & 0.40000000 + 1 & 0.51000000 + 01 & 0.580000000 + 01 \\ \mathcal{E}_j & 0.37000000 + 01 & 0.82000000 + 1 & 0.23000000 + 01 & 0.580000000 + 01 \\ \mathcal{E}_j & 0.37000000 + 01 & 0.82000000 + 1 & 0.510000000 + 01 & 0.580000000 + 01 \\ \mathcal{E}_j & 0.37000000 + 01 & 0.44000000 + 1 & 0.230000000 + 01 & 0.580000000 + 01 \\ \mathcal{E}_j & 0.37000000 + 01 & 0.44000000 + 1 & 0.510000000 + 01 & 0.580000000 + 01 \\ \mathcal{E}_j & 0.560000000 + 01 & 0.580000000 + 01 & 0.580000000 + 01 \\ \mathcal{E}_j & 0.37000000 + 01 & 0.44000000 + 1 & 0.510000000 + 01 & 0.580000000 + 01 \\ \mathcal{E}_j & 0.37000000 + 01 & 0.44000000 + 1 & 0.530000000 + 01 & 0.580000000 + 01 \\ \mathcal{E}_j & 0.37000000 + 01 & 0.44000000 + 0$	8 j	0.27990559+07	0.50251828+06	-0.260 061 24 + 07	see Eq. (9)				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			Central Triplet Pot	ential V_1^a					
$ \begin{array}{c} g_j({\rm MeV}) & -0.10763625+02 & -0.42973669+02 & -0.71856844+03 & 0.42469120+04 \\ m_j & 0.37000000+01 & 0.44000000+01 & 0.51000000+01 & 0.52000000+01 \\ g_j & -0.34570424+05 & 0.12671169+06 & -0.27416841+06 & 0.52960724+06 \\ m_j & 0.65000000+01 & 0.82000000+01 & 0.99000000+01 & 0.51200000+02 \\ g_j & -0.36606713+06 & -0.22303673+06 & 0.40683833+06 & {\rm see}Eq.(9) \\ \hline \\ m_j(fm^{-1}) & 0.69953600+00 & 0.16000000+01 & 0.23000000+01 & 0.50000000+01 \\ g_j & -0.85980096-02 & 0.26814335-01 & -0.1328063831+00 & 0.42380000000+01 \\ g_j & -0.11527067+03 & 0.6945175+03 & -0.23879335+04 & 0.42388011+04 \\ m_j & 0.57000000+01 & 0.4400000+01 & 0.58000000+01 & 0.11300000+02 \\ g_j & -0.24521604+04 & -0.18512821+04 & 0.41801160+04 & {\rm see}Eq.(9) \\ \hline \\ m_j(fm^{-1}) & 0.69953600+00 & 0.1600000+01 & 0.23000000+01 & 0.58000000+01 \\ g_j & -0.3192395+02 & 0.30041384+03 & -0.12415067+04 & 0.24762241+04 \\ m_j & 0.5700000+01 & 0.4200000+01 & 0.51000000+01 & 0.58000000+01 \\ g_j & -0.3192395+02 & 0.3001384+03 & -0.12415067+04 & 0.24762241+04 \\ m_j & 0.6500000+01 & 0.52000000+01 & 0.52000000+01 \\ g_j & 0.69953600+00 & -0.6810000+01 & 0.52000000+01 & 0.58000000+01 \\ g_j & 0.5904000+01 & 0.52000000+01 & 0.5000000+01 \\ g_j & 0.5900000+01 & 0.4000000+01 & 0.5100000+01 & 0.58000000+01 \\ g_j & 0.69953600+00 & 0.4688029+00 & 0.60147739+02 & 0.35259941+03 \\ m_j & 0.57000000+01 & 0.4400000+01 & 0.5100000+01 & 0.53000000+01 \\ g_j & 0.59953600+00 & 0.4688029+00 & 0.60147739+02 & 0.35259941+03 \\ m_j & 0.57000000+01 & 0.4400000+01 & 0.5100000+01 & 0.53000000+01 \\ g_j & 0.5800000+01 & 0.4400000+01 & 0.5100000+01 & 0.58000000+01 \\ g_j & 0.59953600+00 & 0.11300000+01 & 0.58000000+01 & 0.58000000+01 \\ g_j & 0.5900000+01 & 0.4400000+01 & 0.5100000+01 & 0.58000000+01 \\ g_j & 0.58000000+01 & 0.62800000+01 & 0.58000000+01 & 0.58000000+01 \\ g_j & 0.58000$	$m_i(\text{fm}^{-1})$	0.699 536 00 + 00	0.16000000+01	0.23000000 + 01	0.30000000 + 01				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	g (MeV)	-0.10763625+02	-0.429 736 69 + 02	-0.71856844+03	0.42469120+01				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	m_{j}	0.37000000+01	0.44000000+01	$0.510\ 000\ 00+01$	0.58000000+01				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	<i>g</i> j	-0.345 740 24 + 05	0.126 711 69 + 06	-0.274 168 41 + 06	0.52960724+06				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	m_j	$0.650\ 000\ 00+01$	0.82000000+01	$0.990\ 000\ 00+01$	0.11300000+02				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	g j	-0.36606713+06	-0.22303673+06	0.40683833 + 06	see Eq. (9)				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			Central Singlet Pote	ential V_0^b					
$ \begin{array}{c} g_{j} & -0.859\ 800\ 96\ -02 & 0.268\ 143\ 85\ -01 & -0.132\ 806\ 93\ +01 & 0.103\ 242\ 89\ +02 \\ m_{j} & 0.370\ 000\ 00\ +01 & 0.440\ 000\ 00\ +01 & 0.510\ 000\ 0\ +01 & 0.580\ 000\ 0\ +01 \\ g_{j} & -0.115\ 270\ 67\ +03 & 0.694\ 561\ 75\ +03 & -0.287\ 793\ 35\ +04 & 0.423\ 800\ 11\ +04 \\ m_{j} & 0.650\ 000\ 0\ +01 & 0.820\ 000\ 0\ +01 & 0.990\ 000\ 00\ +01 & 0.113\ 800\ 00\ +01 \\ g_{j} & -0.245\ 216\ 04\ +04 & -0.195\ 128\ 21\ +04 & 0.418\ 011\ 60\ +04 & see\ Eq.\ (9) \\ \hline \\ Central\ Triplet\ Potential\ V_{1}^{b} \\ \hline \\ m_{j}(fm^{-1}) & 0.699\ 536\ 00\ +00 & 0.160\ 000\ 0\ +01 & 0.230\ 000\ 0\ +01 & 0.300\ 000\ 0\ +01 \\ g_{j} & -0.317\ 935\ +02 & 0.300\ 413\ 84\ +03 & -0.124\ 150\ 67\ +04 & 0.247\ 622\ 41\ +04 \\ m_{j} & 0.650\ 000\ 0\ +01 & 0.820\ 000\ 0\ +01 & 0.990\ 000\ 0\ +01 & 0.113\ 000\ 0\ +02 \\ g_{j} & -0.130\ 430\ 30\ +04 & -0.214\ 965\ 77\ +04 & 0.409\ 969\ 17\ +04 & see\ Eq.\ (9) \\ \hline \\ \hline \\ m_{j}(fm^{-1}) & 0.160\ 000\ 0\ +01 & 0.230\ 000\ 0\ +01 & 0.300\ 000\ 0\ +01 \\ g_{j}\ 0.370\ 000\ 0\ +01 & 0.820\ 000\ 0\ +01 & 0.510\ 000\ 0\ +01 & 0.580\ 000\ 0\ +01 \\ g_{j}\ 0.370\ 000\ 0\ +01 & 0.820\ 000\ 0\ +01 & 0.510\ 000\ 0\ +01 & 0.580\ 000\ 0\ +01 \\ g_{j}\ 0.235\ 114\ 42\ +08 & -0.146\ 884\ 61\ +08 & see\ Eq.\ (9) & see\ Eq.\ (9) \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ \ \ \ \ \ \ \$	$m_{i}(\mathrm{fm}^{-1})$	0.69953600+00	0.16000000+01	0.23000000 + 01	0.30000000 + 01				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	<i>g</i> ₁	-0.85980096 - 02	0.26814385 - 01	-0.13280693+01	0.10324289+02				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	m_i	0.37000000+01	0.44000000+01	0.51000000+01	0.580 000 00 + 01				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	g,	-0.11527067+03	0.694 561 75 + 03	-0.238 793 35 + 04	0.42388011+04				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	m_{i}	0.65000000+01	0.82000000+01	0.990 000 00 + 01	0.11300000+02				
$\begin{array}{c} \mbox{Central Triplet Potential } V_1^b \\ \mbox{m}_{j}(fm^{-1}) & 0.69953600+00 & 0.16000000+01 & 0.23000000+01 & 0.83162030+00 \\ \mbox{m}_{j} & 0.28660032-02 & -0.81798046-03 & -0.53314560+00 & 0.83162030+00 \\ \mbox{m}_{j} & 0.37000000+01 & 0.44000000+01 & 0.51000000+01 & 0.58000000+01 \\ \mbox{m}_{j} & 0.65000000+01 & 0.82000000+01 & 0.99000000+01 & 0.11300000+02 \\ \mbox{g}_{j} & -0.13043030+04 & -0.21496577+04 & 0.40996917+04 & see Eq.(9) \\ \mbox{see Eq.}(9) \\$	81	-0.24521604+04	-0.19512821+04	0.41801160+04	see Eq. (9)				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			Central Triplet Pote	ential V_1^b					
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	m_{i} (fm ⁻¹)	0.69953600 + 00	0.16000000 + 01	0.23000000 + 01	0.30000000 + 01				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	g	0.28660032-02	-0.81798046-03	-0.53314560+00	0.831 620 30 + 00				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	m_i	0.37000000+01	0.44000000+01	0.51000000+01	$0.580\ 000\ 00+01$				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	g,	-0.311 923 95 + 02	0.30041384+03	-0.12415067+04	0.24762241+04				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	m_j	0.65000000+01	0.82000000+01	0.990 000 00 + 01	0.11300000+02				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	g _j	-0.130 430 30 + 04	-0.214 965 77 + 04	0.40996917+04	see Eq. (9)				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			Spin-Orbit Potenti	ial V_{LS}					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$m_{i}(\mathrm{fm}^{-1})$		0.16000000+01	0.23000000+01	0.30000000+01				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	g (MeV)		-0.661 764 21 + 02	0.28903688+04	-0.62592400+05				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	m'	0.37000000+01	0.44000000+01	$0.510\ 000\ 00+01$	0.58000000+01				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	g j	0.69146141+06	-0.40969146+07	0.140 320 93 + 08	-0.26827468+08				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	m_{j}	0.65000000+01	0.82000000+01	0.990 000 00 + 01	0.11300000+02				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	8 j	0.235 114 42 + 08	-0.146 884 61 + 08	see Eq. (9)	see Eq. (9)				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			Tensor Potentia	l V _T					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$m_i(\mathrm{fm}^{-1})$	0.699 536 00 + 00	0.16000000+01	0.23000000+01	0.30000000+01				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	g _i (MeV)	-0.10763625+02	-0.46818029+00	0.60147739+02	0.35256941+03				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	m_{j}	0.37000000+01	0.440 000 00 + 01	0.51000000+01	0.58000000+01				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	81	0.51432170+03	0.11637302+05	-0.44595415+05	0.69211738+05				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	m_j	0.65000000+01	0.82000000+01	0.99000000+01	0.11300000+02				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	g j	-0.48127668+05	0.70514008+04	see Eq. (9)	see Eq. (9)				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Quadratic Spin Orbit $V_{\rm SO2}$								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$m_{i}(\mathrm{fm}^{-1})$		$0.160\ 000\ 00+01$	0.23000000+01	$0.300\ 000\ 00+01$				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	g:		-0.628 510 20 + 00	-0.762 901 97 + 02	-0.78827581+03				
g_j -0.649 047 98 + 040.547 343 78 + 04-0.329 419 12 + 050.249 491 32 + 06 m_j 0.650 000 00 + 010.820 000 00 + 010.990 000 00 + 010.113 000 00 + 02 g_j -0.160 129 56 + 05see Eq. (9)see Eq. (9)see Eq. (9)	m;	0.37000000+01	0.44000000+01	0.51000000+01	0.58000000+01				
m_j 0.650 000 00 + 010.820 000 00 + 010.990 000 00 + 010.113 000 00 + 02 g_j -0.160 129 56 + 05see Eq. (9)see Eq. (9)see Eq. (9)	g j	-0.64904798+04	0.54734378+04	-0.32941912+05	0.24949132+06				
g_j -0.160 129 56 + 05 see Eq. (9) see Eq. (9) see Eq. (9)	m_{j}	0.65000000+01	0.82000000+01	$0.990\ 000\ 00+01$	0.11300000+02				
	g j	-0.160 129 56 + 05	see Eq. (9)	see Eq. (9)	see Eq. (9)				

TABLE II. The T = 0 Potential parameters. The notation $a \pm n$ stands for $a \times 10^{\pm n}$.

case, may be ill-defined in many-body systems;

(ii) the theoretical LR+ MR potential presents itself as a dispersion integral;

(iii) the presence of a sharp cutoff function may be troublesome in numerical works.

This note reports a parametrization of the Paris potential which is convenient enough to facilitate its use in the many-body calculations. We adopted a unique analytical expression for the complete potential, namely a discrete sum of Yukawa-type terms which has the advantage that their forms are simple in both configuration and momentum spaces. Concerning the energy dependence of the central potential, it has been shown⁴ that one can transform the linear energy dependence occurring here into a p^2 dependence. In this work we have used this latter form since it can be handled without any amibiguity.

We would like to warn the reader that these forms provide a useful but purely mathematical representation of our potential, valid for all r, without distinction between the theoretical and phenomenological parts. Consequently, no physical interpretation should be attached to the values of the parameters. However, we required the LR + MR theoretical part to be strictly preserved.

PARAMETRIZATION IN CONFIGURATION SPACE

For the two isospin values T=1 and T=0, the potential is expressed in terms of the usual non-relativistic invariants:

$$V(\mathbf{f}, p^{2}) = V_{0}(r, p^{2})\Omega_{0} + V_{1}(r, p^{2})\Omega_{1} + V_{LS}(r)\Omega_{LS}$$
$$+ V_{T}(r)\Omega_{T} + V_{SO2}(r)\Omega_{SO2}$$
(1)

where

$$\Omega_{0} = \frac{1 - \overline{\sigma}_{1} \cdot \overline{\sigma}_{2}}{4}$$

$$\Omega_{1} = \frac{3 + \overline{\sigma}_{1} \cdot \overline{\sigma}_{2}}{4}$$

$$\Omega_{LS} = \vec{L} \cdot \vec{S} \qquad (2)$$

$$\Omega_{T} = 3 \frac{\overline{\sigma}_{1} \cdot \vec{r} \overline{\sigma}_{2} \cdot \vec{r}}{r^{2}} - \overline{\sigma}_{1} \cdot \overline{\sigma}_{2}$$

$$\Omega_{SOZ} = \frac{1}{2} (\overline{\sigma}_{1} \cdot \vec{L} \overline{\sigma}_{2} \cdot \vec{L} + \overline{\sigma}_{2} \cdot \vec{L} \overline{\sigma}_{1} \cdot \vec{L}).$$

As mentioned earlier, the central components contain a velocity dependent part and V_0 and V_1 are defined as

$$V(r, p^{2}) = V^{a}(r) + (p^{2}/m)V^{b}(r) + V^{b}(r)(p^{2}/m), \qquad (3)$$

with

$$p^{2} = -\hbar^{2} \left[\frac{1}{r} \frac{d^{2}}{dr^{2}} r - \frac{\vec{\mathbf{L}}^{2}}{r^{2}} \right],$$

m = 938.2592 MeV for T = 1, and 938.9055 MeV for

FIG. 1. The solid lines refer to the complete potential, the dashed lines to the theoretical one. In the case of the LS potential (T=0 S=1) the two curves are indistinguishable.

864

FIG. 1. (Continued).

FIG. 1. (Continued).

T=0. For each component V(r) the following parametrization is used:

$$V(r) = \sum_{j=1}^{n} g_{j} F(m_{j}r) \frac{e^{-m_{j}r}}{m_{j}r},$$
(4)

where

$$F(m_{j}r) = 1 \text{ for } V_{0}^{a}, V_{0}^{b}, V_{1}^{a}, \text{ and } V_{1}^{b}$$

$$F(m_{j}r) = \frac{1}{m_{j}r} + \frac{1}{(m_{j}r)^{2}} \text{ for } V_{LS}$$

$$F(m_{j}r) = 1 + \frac{3}{m_{j}r} + \frac{3}{(m_{j}r)^{2}} \text{ for } V_{T}$$

$$F(m_{j}r) = \frac{1}{(m_{j}r)^{2}} \left[1 + \frac{3}{m_{j}r} + \frac{3}{(m_{j}r)^{2}} \right] \text{ for } V_{SO2}.$$
(5)

The masses m_i are the same for all components, the first term (j = 1) corresponds to the OPE and appears only in V_0 , V_1 , and V_T .

The potential is regularized at the origin $\gamma = 0$.

$$\begin{split} g_n &= -m_n \sum_{j=1}^{n-1} \frac{g_j}{m_j} \text{ for } V_{0,1}^a \text{ and } V_{0,1}^b \text{ ,} \\ g_{n-1} &= \frac{m_{n-1}^3}{m_{n-1}^2 - m_n^2} \left(m_n^2 \sum_{j=1}^{n-2} \frac{g_j}{m_j^3} - \sum_{j=1}^{n-2} \frac{g_j}{m_j} \right) \\ g_n &= \frac{m_n^3}{m_n^2 - m_{n-1}^2} \left(m_{n-1} \sum_{j=1}^{n-2} \frac{g_j}{m_j^3} - \sum_{j=1}^{n-2} \frac{g_j}{m_j} \right) \\ g_{n-2} &= \frac{m_{n-2}^5}{(m_n^2 - m_{n-2}^2)(m_{n-1}^2 - m_{n-2}^2)} \left[-m_{n-1}^2 m_n^2 \sum_{j=1}^{n-3} \frac{g_j}{m_j^5} + (m_{n-1}^2 + m_{n-2}^2) \right] \\ \end{split}$$

Consequently, the parameters g_i are imposed to satisfy the following relationships:

$$\sum_{j=1}^{n} \frac{g_{j}}{m_{j}} = 0 \text{ for } V_{0,1}^{a} \text{ and } V_{0,1}^{b}$$
(6)

$$\sum_{j=1}^{n} \frac{\mathcal{B}_{j}}{m_{j}} = 0 \quad \text{and} \quad \sum_{j=1}^{n} \frac{\mathcal{B}_{j}}{m_{j}^{3}} = 0 \quad \text{for } V_{T} \text{ and } V_{LS}$$
(7)

$$\sum_{j=1}^{n} \frac{g_{j}}{m_{j}} = 0, \quad \sum_{j=1}^{n} \frac{g_{j}}{m_{j}^{3}} = 0, \text{ and } \sum_{j=1}^{n} \frac{g_{j}}{m_{j}^{5}} = 0 \text{ for } V_{\text{SO2}} .$$
(8)

It should be noted that these constraints have to be satisfied with an accuracy related to the precision required for the value of V at the origin r=0, so that in Tables I and II the last values of the g_i 's (the last one for $V^a_{0,1}$ and $V^b_{0,1}$, the last two for V_{LS} and V_T , and the last three for V_{SO2}) are not listed. They are to be computed by the users, according to the accuracy they will need, with the following formulas:

(9)

$$g_{n-2} = \frac{m_{n-2}^{5}}{(m_{n}^{2} - m_{n-2}^{2})(m_{n-1}^{2} - m_{n-2}^{2})} \left[-m_{n-1}^{2} m_{n}^{2} \sum_{j=1}^{n-3} \frac{g_{j}}{m_{j}^{5}} + (m_{n-1}^{2} + m_{n}^{2}) \sum_{j=1}^{n-3} \frac{g_{j}}{m_{j}^{3}} - \sum_{j=1}^{n-3} \frac{g_{j}}{m_{j}} \right]$$

and two other relations deduced by circular permutation of n-2, n-1, and n.

PARAMETRIZATION IN MOMENTUM SPACE

By a Fourier transform of Eq. (1), one gets⁵ in the center-of-mass system

$$V(\mathbf{\tilde{p}}_{i},\mathbf{\tilde{p}}_{f}) = \tilde{V}_{0}(\mathbf{\tilde{p}}_{i},\mathbf{\tilde{p}}_{f})\tilde{\Omega}_{0} + \tilde{V}_{1}(\mathbf{\tilde{p}}_{i},\mathbf{\tilde{p}}_{f})\tilde{\Omega}_{1} + \tilde{V}_{LS}(\Delta^{2})\tilde{\Omega}_{LS}$$
$$+ \tilde{V}_{T}(\Delta^{2})\tilde{\Omega}_{T} + \tilde{V}_{SO2}(\Delta^{2})\tilde{\Omega}_{SO2}$$
(10)

where

$$\begin{split} \tilde{\Omega}_{0} &= \frac{1 - \tilde{\sigma}_{1} \cdot \tilde{\sigma}_{2}}{4}, \\ \tilde{\Omega}_{1} &= \frac{3 + \tilde{\sigma}_{1} \cdot \tilde{\sigma}_{2}}{4}, \\ \tilde{\Omega}_{LS} &= \frac{i}{2} (\tilde{\sigma}_{1} + \tilde{\sigma}_{2}) \cdot \tilde{p}_{i} \times \tilde{p}_{f}, \end{split}$$
(11)
$$\begin{split} \tilde{\Omega}_{T} &= \Delta^{2} \tilde{\sigma}_{1} \cdot \tilde{\sigma}_{2} - 3 \tilde{\sigma}_{1} \cdot \vec{\Delta} \tilde{\sigma}_{2} \cdot \vec{\Delta}, \\ \tilde{\Omega}_{SO2} &= \tilde{\sigma}_{1} \cdot (\tilde{p}_{i} \times \tilde{p}_{f}) \tilde{\sigma}_{2} \cdot (\tilde{p}_{i} \times \tilde{p}_{f}), \end{split}$$

with $\vec{\Delta} = \vec{p}_f - \vec{p}_i$.

Here, the velocity dependent central components \tilde{V}_0 and \tilde{V}_1 are defined as

for V_{SO2}

$$\tilde{V}(\vec{p}_{i},\vec{p}_{f}) = \tilde{V}^{a}(\Delta^{2}) + \frac{\hbar^{2}}{m} (p_{i}^{2} + p_{f}^{2}) \tilde{V}^{b}(\Delta^{2}).$$
(12)

For each component $\tilde{V}(\Delta^2)$

$$\vec{V}(\Delta^2) = \frac{1}{2\pi^2} \sum_{j=1}^n \frac{g_j}{m_j} \frac{1}{m_j^2 + \Delta^2} f(m_j) , \qquad (13)$$

where

$$f(m_j) = 1 \text{ for } V_{0,1}^a \text{ and } V_{0,1}^b$$

$$f(m_j) = \frac{1}{m_j^2} \text{ for } V_{LS} \text{ and } V_T \qquad (14)$$

$$f(m_j) = \frac{1}{m_j^2} \text{ for } V_L \text{ (dispersed of division)}$$

 $f(m_j) = \frac{1}{m_j^4}$ for V_{SO2} (disregarding additional logarithmic terms).

$E_{\rm iab}$ (MeV)	25	50	95	142	210	330
¹ <i>S</i> ₀	48.51	38.74	25.85	15.68	4.03	-11.80
${}^{1}D_{2}$	0.75	1.81	3.72	5.56	7.66	9.37
${}^{1}G_{4}$	0.04	0.17	0.43	0.71	1.14	1.93
³ P ₀	8.87	11.82	10.35	6.31	-0.16	-10.79
${}^{3}P_{1}$	-5.04	-8.41	-12.76	-16.47	-21.27	-28.90
³ P ₂	2.44	5.73	10.66	14.06	16.49	16.44
ϵ_2	-0.85	-1.78	-2.67	-2.91	-2.71	-2.00
${}^{3}F_{2}$	0.11	0.35	0.77	1.04	1.08	0.14
³ F ₃	-0.24	-0.73	-1.53	-2.19	-2.93	-3.95
${}^3\!F_4$	0.03	0.14	0.48	0.95	1.75	3.31
ϵ_4	-0.05	-0.21	-0.54	-0.86	-1.23	-1.64
³ H ₄	0.01	0.03	0.11	0.21	0.37	0.59
${}^{3}H_{5}$	-0.02	-0.09	-0.30	-0.55	-0.87	-1.31
${}^{3}H_{6}$	0.00	0.01	0.05	0.13	0.27	0.59
ϵ_6	-0.00	-0.03	-0.12	-0.23	-0.40	-0.66
${}^{3}\!K_{6}$	0.00	0.00	0.02	0.04	0.09	0.19

TABLE III. The calculated pp phase shifts (in degrees).

TABLE IV. The calculated T = 0 phase shifts (in degrees).

<i>E</i> (MeV)	25	50	95	142	210	330	
¹ P ₁	-7.11	-10.95	-15.33	-18.60	-22.21	-27.00	_
¹ <i>F</i> ₃	-0.44	-1.20	-2.31	-3.18	-4.19	-5.77	
¹ <i>H</i> ₅	-0.03	-0.17	-0.52	-0.86	-1.27	-1.77	
³ S ₁	80.35	62.28	43.83	31.06	17.49	0.06	
ϵ_{l}	1.69	1.89	2.10	2.50	3.35	5.27	
³ D ₁	-2.95	-6.77	-12.33	-16.61	-20.95	-25.32	
³ D ₂	3.96	9.60	17.91	23.51	27.52	28.25	
³ D ₃	0.04	0.29	1.17	2.30	3.70	4.75	
ϵ_3	0.59	1.72	3.56	5.00	6.40	7.76	
³ G ₃	-0.06	-0.28	-0.95	-1.81	-3.10	-5.05	
${}^{3}G_{4}$	0.18	0.77	2.18	3.70	5.75	8.76	
${}^{3}G_{5}$	-0.01	-0.05	-0.16	-0.25	-0.29	-0.07	
ϵ_5	0.04	0.22	0.72	1.28	2.04	3.14	
³ <i>I</i> ₅	-0.00	-0.02	-0.12	-0.28	-0.56	-1.11	
³ <i>I</i> ₆	0.01	0.10	0.41	0.86	1.56	2.80	

The values of the parameters m_j and g_j are listed in Tables I and II, the missing ones $(g_n \text{ for } V_{0,1}^a)$ and $V_{0,1}^b$; g_n , g_{n-1} for V_T and V_{LS} ; and g_n , g_{n-1} , g_{n-2} for V_{SO2}) were computed from Eqs. (9). The values shown in the tables were determined by a balanced fitting of the shapes of the potentials, the phase shifts, and the data themselves. Of course, departures from the simple "rounded steplike" model of Ref. (3) are unavoidable with a superposition of Yukawa-type terms even though they are regularized at r=0. Another origin of the departures is the use of a p^2 dependence for the central potential instead of an energy dependence as in Ref. (3). However, our requirement that the complete potential should reproduce the LR+MRtheoretical part is fulfilled, as can be seen from Fig. 1. The agreement is up to a few percent beyond 1 fm or so, except for the isospin one spinorbit and tensor potentials.

Preliminary results were reported at the Vancouver Conference on the N-N Interaction. Since then, several improvements have been achieved: (i) New results⁶ for the S and P wave $N\overline{N} \rightarrow 2\pi$ am-

TABLE V. The calculated deuteron and low energy parameters.

$E_D = 2.2249$ $P_D = 0.0577$ $D/S = 0.02608$ $a_{np} = 5.427$ $a_{pp} = -7.810$	$Q_D = 0.279$ $\mu_D = 0.853$ $r(-E_D, 0) = 1.765$ $r(0, 0) = 1.766$ $r_{pp} = 2.797$
$a_{nn} = -17.612$	$r_{nn} = 2.881$

plitudes have been included in the LR+MR theoretical potential. The main change is the weakening of the tensor component and an increase of the spinorbit and central ones; (ii) the effective ω vector coupling constant $g_{\omega}^{2}/4\pi$ has been changed from 9.5 to 11.75, the tensor/vector ratio being kept at -0.12. Another part of the 3π exchange represented by the A_1 is included with a coupling constant value $g_{A_1}^{2}/4\pi = 14$. (iii) the determination of the core parameters is now performed by fitting not only the phase shifts but also the scattering data themselves. The fit was carried out via a twostep procedure, first the best fit of the MAW

FIG. 2. The solid lines refer to the results of the present work, the dashed lines to the energy dependent phase shift analysis of Ref. (11), the circles and triangles to the energy independent phase shift analyses of Ref. (7) and Ref. (12), respectively.

FIG. 2. (Continued).

FIG. 2. (Continued).

TABLE VI. The deuteron wave functions. Values for smaller meshes can be obtained on request.

<i>r</i> (fm)	U	W	r	U	W
0.200 00 - 01	0.15144-02	0.10375-05	0.300 00 + 01	0.43221 + 00	0.96230-01
0.30000 - 01	0.23906 - 02	0.36251 - 05	0.32000 + 01	0.41465 + 00	0.87744 - 01
0.40000 - 01	0.33482 - 02	0.89455 - 05	0.34000 + 01	0.39737 + 00	0.80013 - 01
0.50000 - 01	0.43876 - 02	0.18194 - 04	0.36000+01	0.38051 + 00	0.72994 - 01
0.60000 - 01	0.550 89-02	0.32702 - 04	0.38000 + 01	0.36413 + 00	0.66636 - 01
0.70000 - 01	0.67117 - 02	0.53941 - 04	0.40000+01	0.34829 + 00	0.60883 - 01
0.80000 - 01	0.79956 - 02	0.83566 - 04	0.42000+01	0.33302 + 00	0.55683 - 01
0.90000 - 01	0.93585 - 02	0.12319-03	0.44000 + 01	0.31832+00	0.50980 - 01
0.10000 + 00	0.10799 - 01	0.17459 - 03	0.46000+01	0.30421 + 00	0.46727 - 01
0.20000 + 00	0.290 20 - 01	0.17439 - 02	0.48000 + 01	0.29067 + 00	0.42878 - 01
0.30000 + 00	0.53670 - 01	0.64530 - 02	0.50000 + 01	0.27769 + 00	0.39392 - 01
0.40000 + 00	0.86297 - 01	0.15820 - 01	0.52000 + 01	0.26526 + 00	0.36232 - 01
0.50000 + 00	0.12943 + 00	0.31076 - 01	$0.540\ 00+01$	0.25336 + 00	0.33365 - 01
0.60000 + 00	0.18388 + 00	0.52575 - 01	0.56000+01	0.24197 + 00	0.30760 - 01
0.70000 + 00	0.24695 + 00	0.78828 - 01	0.58000 + 01	0.23109 + 00	0.28391-01
0.80000 + 00	0.31223 + 00	0.10632 + 00	0.60000 + 01	0.22068 + 00	0.26233 - 01
0.90000+00	0.37213 + 00	0.13091 + 00	0.65000 + 01	0.19664 + 00	0.21630 - 01
0.10000 + 01	0.42146 + 00	0.14990 + 00	0.70000 + 01	0.17518+00	0.17947 - 01
0.11000 + 01	0.45879+00	0.16268+00	0.75000 + 01	0.15605 + 00	0.14978 - 01
0.12000 + 01	0.48535 + 00	0.17008 ± 00	0.80000 + 01	0.13900 + 00	0.12566 - 01
0.13000 + 01	0.50330 + 00	0.17335 + 00	0.85000+01	0.12381+00	0.10593 - 01
0.14000 + 01	0.51469 + 00	0.17366+00	0.90000 + 01	0.11028 + 00	0.89686 - 02
$0.150\ 00+01$	0.52117 + 00	0.17189 + 00	0.95000 + 01	0.98220 - 01	0.76229 - 02
0.16000+01	0.52394 + 00	0.16868 + 00	0.10000+02	0.87482 - 01	0.65020 - 02
0.17000 + 01	0.52389 + 00	0.16448 + 00	0.10500 + 02	0.77917 - 01	0.55638 - 02
0.18000 + 01	0.52169 + 00	0.15963 + 00	0.11000 + 02	0.69397 - 01	0.47744 - 02
0.19000 + 01	0.51782 + 00	0.15434 + 00	0.11500 + 02	0.61808 - 01	0.41075 - 02
0.20000 + 01	0.51267 + 00	0.14881 + 00	0.12000 + 02	0.55048 - 01	0.35420 - 02
0.22000 + 01	0.49959 + 00	0.13745 + 00	0.12500 + 02	0.49029 - 01	0.30611 - 02
$0.240\ 00 + 01$	0.48412 + 00	0.12623 + 00	0.13000 + 02	0.43668 - 01	0.26505 - 02
0.26000 + 01	0.46732 + 00	0.11552 + 00	0.13500 + 02	0.38893 - 01	0.22989 - 02
0.28000+01	0.44987 + 00	0.10549 + 00	0.14000 + 02	0.34639 - 01	0.19972 - 02

FIG. 3. The deuteron form factor $A(q^2)$. Experimental results are from Ref. (13).

phase shifts⁷ was searched for and then the results were tuned up by fitting the data themselves. The set of data used consists of 913 data points with 60 normalizations for pp scattering in the energy range $3 < E_{lab} < 330$ MeV,⁸ and by 2239 data points with 156 normalizations for np scattering in the energy range $13 < E_{lab} < 350$ MeV.⁹ The χ^2 per degrees of freedom (degrees of freedom=number of data points minus number of normalizations) are, respectively, 1.99 for pp scattering and 2.17 for np scattering. The details of this analysis will be published elsewhere.¹⁰ To our knowledge, this is one of the best, if not the best, χ^2 presently available. The results for the phase shifts and the deuteron parameters obtained by this fit are displayed in Tables III-V and Fig. 2. The deuteron wave function and form factor are shown in Table VI and Fig. 3.

NUCLEAR MATTER PROPERTIES

Since our fit of the two nucleon system parame-

ters appears to be very satisfactory, it is interesting to test our potential for the other extreme situation presented by nuclear matter. The purpose is not, for the moment, to predict definite nuclear matter parameters in performing the most sophisticated calculations but rather to check whether the result obtained in the lowest order is sensible. We therefore calculated the binding energy in the lowest order Brueckner theory. This gives a minimum $E/A \sim -11.22$ MeV at the density $k_F \simeq 1.51$ fm⁻¹ with an average wound integral K=0.11, this latter value indicates the softness of our potential, implying a good convergence in many-body calculations.

ACKNOWLEDGMENTS

The Division de Physique Théorique de l'I.P.N. is "Laboratoire Associé au C.N.R.S." We are grateful to P. Grangé for having provided us with his nuclear matter code and for useful discussions and comments in the early stage of this work. We also thank Dr. B. Rouben who made available to us his code to calculate the observables. One of us (J. C.) acknowledges the financial support of the Ministère de l'Education du Québec through a postdoctoral fellowship and the hospitality at the Division de Physique Théorique de l'I.P.N.

¹W. N. Cottingham, M. Lacombe, B. Loiseau, J. M.

- Richard, and R. Vinh Mau, Phys. Rev. D 8, 800 (1973). ²R. Vinh Mau, J. M. Richard, B. Loiseau, M. Lacombe,
- and W. N. Cottingham, Phys. Lett. 44B, 1 (1973). ³M. Lacombe, B. Loiseau, J. M. Richard, R. Vinh Mau, P. Pirès, and R. de Tourreil, Phys. Rev. D <u>12</u>, 1495 (1975).
- ⁴See e.g., R. Vinh Mau, *The Paris N-N Potential in Mesons in Nuclei*, edited by M. Rho and D. Wilkinson (North-Holland, Amsterdam, 1979).
- ⁵See e. g., B. Loiseau, Doctorat es Sciences thesis (Université Pierre et Marie Curie, Paris, 1974).
- ⁶G. Höhler and E. Pietarinen, Nucl. Phys. <u>B95</u>, 210 (1975); E. Pietarinen, Helsinki report (1978); P. Gauron, Paris Report No. IPNO/TH 78-07 (1978).
- ⁷M. A. Mac Gregor, R. A. Arndt, and R. M. Wright, Phys. Rev. 182, 1714 (1969).
- ⁸J. Côté, B. Rouben, R. de Tourreil, and D. W. L.

Sprung, Nucl. Phys. A273, 269 (1976).

- ⁹J. Bystricky and F. Lehar, Physics Data 11-1, Karlsruhe (1978).
- ¹⁰J. Côté, M. Lacombe, B. Loiseau, P. Pirès, R. de Tourreil, and R. Vinh Mau (unpublished).
- ¹¹R. A. Arndt and L. D. Roper, Phys. Rev. C <u>15</u>, 1002 (1977) and R. A. Arndt, private communication.
- ¹²D. V. Bugg, J. A. Edgington, C. Amster, R. C. Brown, C. J. Oram, and K. Shakarchi, J. Phys. G 4, 1025 (1978); D. V. Bugg, J. A. Edgington, W. R. Gibson, N. Wright, N. M. Stewart, A. S. Clough, D. Axen, G. A. Ludgate, C. J. Oram, L. P. Robertson, J. R. Richardson, and C. Amsler, Neutron-proton elastic scattering between 200 and 500 MeV, III Phase shift analysis, Report No. RL-79-023.
- ¹³S. Galster, H. Klein, J. Moritz, K. H. Schmidt,
 D. Wegener, and J. Bleckwenn, DESY Report No. 71/7 (1971) and references cited therein.