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The three-body variational wave functions resulting from two dualistic nucleon-nucleon interactions
featuring different deuteron D-wave probabilities have been used in the calculation of the three-body

electrodisintegration of triton in the quasi-elastic region. The angular distributions of the coincidence cross
section H(e, e'p)2n are found to depend sensitively upon the D-wave probability in the triton. In the case
of the Reid soft core interaction a comparison of the T = 1 spectral functions corresponding to the Faddeev
and variational wave functions reveals an appreciably larger high momentum content in the latter.

NUCLEAR REACTIONS SH(e, e'P) 2n, calculated spectral function P{k,E2), an-
gular distributions of coincidence process, quasi-elastic peak, energy-weighted
sum rule. Three-body variational wave functions; Reid and RHEL-j. nucleon-

nucleon interactions.

I. INTRODUCTION

The development of accurate computational tech-
niques' ' has made it possible in recent years to
obtain the solution of the three-body nonrelativistic
Schrodinger equation corresponding to realistic in-
teractions with a high degree of reliability. The
validity of the three-body wave function has been
investigated by calculating such quantities as the
binding energy, the rms charge radii, and the
charge form factor (extensive reviews on the
three-body problem in nucjear physics are given
in Refs. 6—9). Recently, in order to investigate
in more detail the structure of the three-body
wave function, the photodisintegration process
and the quasi-elastic electron scattering on 3He

have also been studied. The photodisintegration
of He at low and intermediate energies has been
analyzed by Craver et al. ' using the wave function
obtained by Brandenburg et al."from the momen-
tum space Faddeev formalism developed by Harper
et al."and corresponding to the Reid soft core
(RSC) potential. " The same wave function has
been used by Dieperink t a/. ' in the calculation
of the quasi-elastic electron scattering by 'He ob-
taining, unlike the case of Tabakin's interaction,
a satisfactory explanation of the experimental
data, except for the high energy transfer tail and
the top of the peak. In a previous paper' we have

pointed out that, in order to have a more complete
understanding of the merits and the drawbacks of
realistic nonrelativistic three-body wave functions,
it would be very useful to analyze various scat-
tering processes in terms of three-body wave
functions different from those used in Refs. 10 and
12. In Ref. 13 preliminary results concerning the
calculation of the three-body electrodisintegration
of H performed with the variational wave function
of Nunberg et al. 4 were reported. In the present
payer the calculations of Ref. 13 are extended in
three respects: (1) The calculation with the RSC
interaction is completed. (2) The wave function4b

resulting from another realistic interaction, viz.
the RHEL-1 interaction, '4 is also used. (3) The
binding energy per proton Z~/Z has been calculated
using the energy-weighted sum rule.

Our paper is organized as follows: In Sec. II the
structure of the three-body wave function and the
main features of the two-nucleon potentials con-
sidered are recalled. In Sec. III the calculated
proton spectral function for the three-body electro-
disintegration of 'H is presented and a compari-
son is made with the corresponding quantity ob-
tained from the Faddeev wave function of Ref. 1(a);
moreover, the sensitivity of the spectral function
upon the structure of the triton wave function and
the spectator pair final-state interaction is dis-
cussed. In Secs. IV and V, respectively, the re-
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suits of the calculation of the coincidence cross
section of the tH(e., eP)2n reaction and of the con-
tribution of this process to the quasi-elastic peak
are presented. In Sec. VI the energy-weighted
sum rule is calculated and, finally, in Sec. VD
the results are discussed and the conclusions are
drawn.

The study of electrodisintegration and photodis-
integration processes with the variational wave
function of Ref. 4 is of particular relevance in
light of the recent results on the calculation of
elastic electron scattering by He and H per-
formed in Refs. 16 and 17. There it has been
found that, the charge form factor and the charge
point density of 3He appreciably differ from the
corresponding quantities obtained using the
Faddeev wave functions of Refs. 1, 2, and 18.

our calculations of the electrodisintegration of
3H are the first ones performed using three-body
wave functions corresponding to realistic nucleon-
nucleon interactions. A calculation of the coin-
cidence cross section and the quasi-elastic peak
was previously performed by Lehman~e who, how-
ever, used a simple S-wave separable interaction.

II. THE NUCLEON-NUCLEON INTERACTION AND THE
TRITON WAVE FUNCTION

The triton wave functions used in this work have
been obtained by diagonalizing the nonrelativistic
intrinsic Hamiltonian

p2 —7'e ~+

where M is the nucleon mass and

BSC BHEL 1 Exp

E,(MeV)
(r2&«' (fm}
I's+s (%)

ID (%)
Pp (%)

-7.3 + 0.2
1.85.

89.9
10.0
0.1

-8.1 + 0.2
1.79

92.34
7.6
0.06

-8.48
1.70 + 0.05

different values for the binding energy and & wave
probability of triton (see Table I).

(b) Triton &eave function. The diagonalization of
the Hamiltonian (1) has been performed by ex-
panding the triton wave function ~g", &2) in an in-
trinsic harmonic oscillator basis depending upon
the intrinsic variables

a= ~(f', —r2),

b=~l: 3-( g+ 2)],

(2)

where the subscripts 1 and 2 label the like par--
ticles (neutrons) and the subscript 8 the unlike
particle (proton). In Ref. 4 the isospin formalism
has not been used, so that the wave function is
written in the following form:

~ $f /2) gc, g (l, m, l~ m~
~
&M~)

TABLE I. Binding energy E3, rms charge radius
(r ) 2 and percentage of the various waves in 3H, cal-
culated with the BSC (Ref. 11) and BHEI 1(Bef. 14) in-
teractions (Ref. 4). Note that the values for E3 and (r2}~~~

are extrapolated values, whereas the values for PI cor-
respond to Q~~= 28.

the kinetic energy operator associated with the
center of mass motion.

(a) Nucleon nucleon int-eraction Two dif.ferent
nucleon-nucleon potentials v(i, j) have been used .
in Eq. (1), namely

(i) the RSC interaction which, as is well known,
is defined for waves with angular momentum J&2,

(ii) the Rutherford-High-Energy-Laboratory
potential, developed by Ulehla~4 (RHEL-1 poten-
tial), which is a potential with a slightly softer
short range repulsion than the one of the RSC in-
teraction yielding a very good fit of the experi-
mental phase shifts. The RHEL-1 potential is
defined in all waves with angular momentum J& 5
and l & 6. However, in Ref. 4 only the waves with
l & 4 have been considered.

The above interactions mainly differ in the pre-
dicted & wave probability in deuteron (J sec=6.47%
and Is"s ' =4.7%, respectively), resulting in

x (LM~ SMs
~

—,
'

p) (nJ,mg,

x ~n,l,mg, ~S„-',;SM,), (2)

~nsl~ms), are two harmonic oscillator wave func'-
tions with oscillator parameters p, and p~ [p = (}I/
Mu&)' ], ~S&2 —,', SMs) is the three-body spin func-
tion, and L, S, and J=-,' are, respectively, the
triton orbital, spin, and total angular momenta
(cf. Fig. 1).

The diagonalization of the Hamiltonian (1) is
carried out by increasing the maximum number
Q of oscillator quanta Q=2n, +1, 2+~+nl~ in-
cluded in the basis, until the convergence of the
binding energy E3 is reached. Thanks to the intro-
duction of two nonlinear variational parameters p,
and p~, a good convergence of the binding energy
is achieved already for Q =28. (The details of
this procedure are described in Hefs. 4 and 17,
theref ore, they will not be repeated here wher e
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p k,~ k2p

4,+lb= L

$2+ 1/2 =$

L+ $ = J = 1/2

FIG. 1. Coordinates and angular momenta used in the
wave function [Eg. (3)}.

only the final results pertaining to various ob-
servables of H are listed in Table I.) It should
be pointed out that when this type of wave function
is used it is always necessary to check the con-
vergence of the expectation value of any operator
as Q increases. It has been shown" that the
charge form factor of 'He converges very well for
Q =28 even at very large values of the momen-
tum transfer. The convergence of the cross sec-
tions considered in this paper will be discussed
at the proper place.

III. THE PROTON SPECTRAL FUNCTION IN THE THREE-
BODY ELECTRODISINTEGRATION OF TRITON

The process we are going to consider is the
three-body electrodisintegration of 3H

e+'H- e'+p+ (nn), (4)

which is supposed to occur by a direct collision of
the incoming electron with four-momentum k&„
—= (k&, ie&t with a bound proton moving, after inter-
action, with asymptotic four-momentum k
-=(k, iqP; the four momentum of the scattered
electron will be k2„—= fk2, ie2), the center of mass
recoil momentum of the neutron-neutron (nn) pair
ks„-=f kR, ieR) and the relative momentum and en-
ergy of the pair t and t /M, respectively. We use
the ultrarelativistic approximation for the elec-
trons, i.e , m, =0, ~k .=e, and a metric such that

, =0
FIG. 2. One-photon-exchange diagram for the process

3H(e, e'P) 2n.

the four-momentum transfer is q„=q' —~, where
q=k& —k2 and ~ =&& —e2, furthermore, the proton
and the recoiling-pair motions will be treated non-
relativistically. The momentum and energy con-
servation will therefore be expressed by the equa-
tions

q =kp+kR,

kp (q —kp) t
2M 4M M

where 7 =k /2M is the kinetic energy of the
emitted proton, (q —k ) /4M the recoil energy of
the neutron pair, and (E3)=M +2M„- M3, with
~E, ~

being the calculated binding energy of triton.
Two main approximations have been used in the

derivation of the cross section for the process (4),
namely (i) the one-photon-exchange approximation
for the electron-nucleus interaction, and (ii) the
plane-wave approximation (PWA) for the emitted
nucleon. The limits of validity of the PWA will
be discussed later on.

The cross section for the process (4), shown
diagrammatically in Fig. 2, has the following
form

8
= (2n')46~(q- k —ks)OPS —

~ ~~
—k /2M- (q —k ) /4M- t /M]

2 2 2 2~ I ( 4s&v& X(I&e&+Pr2e1 I I 6/2&fI&e&) I (2+)3 (2z)& (2&)& (2z)»
a& g e&~e2

/jr Afg

where g~ „ is the two-body final state wave function, ~ is the emitted proton wave function, and y~, is
P P

the electron plane wave. Using the nonrelativistic reduction of the electron-proton interaction and retaining
terms up to order (q/M) (see, e.g. , Ref. 20), summing over electron spin projection and integrating over

.k„and the direction of t, one obtains
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where

„=),M(u /dn)„~(), E,)~( ~z,
(~ -; — ', ——'), (8)

k= —kR =+ —q
I

is the momentum of the bound proton,

Z, =f'/I
is the energy of the neutron pair,

(10)

=crM, «GI(q ) 1+ 2 tg2 —(2k —q)2 — sec2 —
[k& (2k —q) +@2 (2k —q)7

+ ~sec —))~ (2k —q)$& (2k —q) +Gg(q, ) ~ +(t2( lI'

is the electron-proton cross section defined in terms of the Mott cross section (n =1/137)

c.2 cos~(8/2)
4e& sin4(8/2) '

and the generalized Sachs form factors

G p 2 ~~(e.') &S(e.')
@('Vg )

(1 + 2/4M2)1/2 i N(Vg ) (1 + 2/4M2)1/2

Finally, P(k, E2) is the proton spectral function

(12)

(13)

~(~ E2)=(, ~ 2
--'Z Z &u. ~ (r)~ ""~i'/2('~/2(r, I)drdP (14)

e k / ))) 9 w
y Ply y

y tÃy yp

where r and p are Jacobian coordinates r = r& —r» p = r3 —(r& + r2)/2, and X labels the quantum number
specifying the coupled states. The spectral function represents the probability distribution for finding in
the triton the proton with momentum k= —kR and the neutrons with relative energy E2. Inserting the triton
wave function (3) in Eq. (14) one obtains

f, l(, L!I
P(k, &2) =—

3
—Q (2j/+1) Q (2j+1) Q c,( S/ S)(2L+1)~ 2(2S+1)' ~1 tM

hSjjy fib nanbta

2,1

x I, ~ q „(&2a)R„, (a) ~ da
lgSy fy)L "a'a

00 2

r
0

where R„, is a radial harmonic oscillator wave
function and u, ~ » (x) is the radial wave function1g Sygyk

describing the relative motion of the pair. As is
well known, the spectral function is the central
quantity which determines the electrodisintegra-
tion cross section for all possible coincidence and
noncoincidence processes. A detailed study of the
dependence of the spectral function upon the struc-
ture of the triton wave function and the two-neutron
final-state interaction has been reported in Ref.
43. There it has been found that only the n-n final-
state interaction in the 'So wave has important ef-
fects on the spectral function which, moreover, is
practically not affected by the components of the

wave function with f, + l() & 4 [in the wave function
(3) the values of /, and l() ra, nge up to 15]. Fur-
thermore, it turns out that for any value of k, and
E2 &3 MeV, and, on the other hand, for any value
of E~, and k &O.2 fm ', the spectral function is
essentially determined by the E, =E~=0 compo-
nents; in particula, r (see the continuous curves in
Fig. 3), the sharp minima around 2.1 fm ' for low
values of E„and around 42 MeV for small values
of k, are characteristic features of these compo-
nents. The sensitivity of the spectral function
upon the triton D-wave probability deserves par-
ticular attention. In Fig. 3 the spectral functions
including all wave function components (full line)
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i02 "P(k,E,)(fm&)
= J 0 P(k, E2)dE2, (ii) directly from the wave func-
tion by means of a completely analytical calcula-
tion. The maximum difference between the two

cases is less than one percent for every value of
k.

IV. COINCIDENCE ANGULAR DISTRIBUTIONS FOR
THE PROCESS H(e, e'p)2n

The cross section for the coincidence process,
the kinematics of which is depicted in Fig. 6, can
be obtained by integrating Eq. (8) over the proton
energy T and the relative energy E2 obtaining

k(fm ')
g O.B

13.B
37.2
.2

max

2k', M dkr

!3k —q cosy) dQ

x P(k, E,)dE, , (16)

~E,(MsV)

FIG. 4. Spectral function of the process 3H(e, e'p)2n
calculated using the RSC interaction (continuous lines)
and the BHEL-1 interaction (dashed lines).

where the factor 2k / !3k —q cosy l

factor arising from the dependence
conserving 5 function upon k and

!!!~-IEal- ' (3-cos'y),
Elskx

!
~- IESI -,I

is the recoil
of the energy

(18)

Both k and k are functions of Ez such that

k = 3 q cosy+ 3 q2 cos y —12M
«

2 i/2
«2+ IEs I

—~+

10

k=[4M( !E,! -—E,)-3k,']'~'. (&o)

We neglect the other value of kp, with a minus sign
in front of the square root, since its contribution
is negligible in the kinematical region we have
chosen which corresponds to the experimental
conditions by Johansson, that is, e&

——550 MeV,
~, =441MeV, 8, =51.7, 8, =44.2, 51..5, and 62,
so that ao =109 MeV and q =2. 2 fm ~.

FIG. 5. Spectral f'unction of the process 3H(e,.e'p)2n
calculated at E2= 0.5 MeV using the variational wave
function [Ref. 4(a)] (continuous line) and the wave function
of Ref. 1(a) ref. 21]. The interaction is the RSC potential.

FIG. 6. Kinematics of the reaction 3H(e, e'p)2n (note
that in Ref. 13, e& denotes the angle between+ and q}.
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It should be pointed out that in the three-body
elec trodisintegration there is no one- to- one cor-
respondence between the values of the proton
emission angle y and the proton internal momen-
tum k, since for a fixed value of p, due to the
variation of E2 in Eq. (16), 0 & E, E2, the value
of k& varies from k~ to k& ~ and correspondingly,
k varies from k ~ to k . However, it has been
shown&' that the function k =k(E2) plotted for
various values of y exhibits almost a constant be-
havior for not too large values of the energy (ex-
cept for small &&)); since the spectral function for
low values of k drops out very rapidly as a func-
tion of E2, in the range 11' &

~ p ~

& 61' there is
actually a very small contribution to the cross
section (16) from the values of E2 such that k(E2)
is different from a constant. It turns out, there-
fore, that as far as the cross section (16) is con-
cerned, to each value of y in the above range cor-
responds a unique value of k, and vice versa. If
the kinematical conditions are varied so as to in-
crease the energy and momentum transfer (for
example, &@=140MeV, @=2.45 fm ') the function
k =k(E2) becomes constant on a larger energy
range. Then the experimental measurement of
the proton momentum distribution from the ex-
perimental cross section d o/42dfl2dT dA, at a
fixed value of p, would be possible in the range of
k from 0.5 to 1.8 fm '. Indeed, for each y, the
function k(E2) is a constant in the energy interval
(0, E2); the momentum distribution is given by

P(k)= J' kZ, P(ks, ), ,
0

(21)

but, due to the rapid drop out of Pk, E2), one can
writ;e

P(k) f dkmP(k, kq)
0

(dc/dA)~ 1IA &dF2dQ2dT, dQ ) „,&»'

(22)

The coincidence cross section [Eq. (16)] com-
puted from the wave function (3), both including
and omitting the triton D wave and disregarding in
Eq. (11) the convection current terms (which yield
a very small contribution), is shown in Fig. 7
together with the experimental data of Johansson.
It can be seen that the angular distributions cor-
responding to different nucleon- nucleon interac-
tions do differ at high proton scattering angles by
about 30%%uo and this difference can be almost en-
tirely ascribed to the difference in the D wave
percentages.

A careful check, for each value of y, of the con-
vergence of the angular distributions with the max-

10
CV

1O'

102

~& 1O'

104—

1O-'—

10 6

Pa
I I I I I I I

20' 40' 60'
I I

80' 100'

imum number Q of oscillator quanta included in
the basis, has been performed. A very good con-
vergence of the theoretical angular distributions is
obtained for

~ y ~
& 10'. The convergence, however,

is not very good at lower angles; this means that
the theoretical results strongly depend upon Q
so that the computed angular distributions have to
be extrapolated to higher values of Q; the ex-
trapolation procedure leads to an uncertainty in
the theoretical results, represented in Fig. 7 by
the shaded area at low scattering angles. The
results presented in Fig. 7 clearly show that the
variational wave function of Ref. 4 is not the best
suited for the calculation of the angular distribu-
tions at low values of y (or k). This is due to the
fact that the low momentum part of the angular
distributions does depend upon the asymptotic
part of the wave function which has not yet con-
verged at Q =28. However, at higher values
of k, where the asymptotic part of the wave func-
tion does not play any significant role, the con-
vergence of the angular distributions is very good.

Fabian and Arenhoeve124 have shown that the
effects of meson exchange currents (MEC) and
isobar configurations on the reaction d(e, e'p)n in
the quasi-elastic region are small; one expects
that these effects will be small also on the reac-
tion ~H(e, e'P)2n Therefo.re, the measurement of
the angular distributions of this reaction may pro-
vide useful information on the S- and D-wave mo-
mentum distributions.

It should be pointed out that coincidence reac-

I I I I I I I I

I I I I I I I I

0,5 0,75 1,0 1,25 1,5 1.75 2,0 2,25 k( f~-1)

FIG. 7. Argular distributions of the reaction
3H(e, e'P)2n. In the upper curves all wave function com-
ponents are present, whereas in the lower curves the
triton D wave is omitted. The experimental data are
from Ref. 23. For the meaning of the shaded area, see
text.
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tions in the quasi-elastic region have several ad-
vantages with respect to the elastic electron scat-
tering because: (i) although the charge form factor
of 3He does depend upon the D wave percentage,
it is not possible to obtain reliable information on
the &-wave percentage due to the uncertainties in
the knowledge of the nucleon charge form factor
and in the theoretical treatment of MEC and rela-
tivistic effects'8; (ii) as is well known, the details
of the wave function, which appear in the momen-
tum distribution at a momentum k, appear in the
charge form factor at a momentum transfer q
considerablylarger thank (see, e.g. , Ref. 25), so
that @ nonrelativistic description of the charge
form factor may not be valid; (iii) at k ~ 1.3 fm
the angular distributions are entirely determined
by the D wave, whereas in the charge form factor
the contributions from the $ and D waves overlap
in the full range of momentum transfer.

V. THE QUASI-ELASTIC PEAK IN ELECTRON-TRITON
SCATTERING

The quasi-elastic peak in electron-triton scat-
tering is given by the incoherent sum of the fol-
lowing processes:

the experimental data is meaningless.
Integrating the cross section (8) over the vari-

ables 7.', Q, and E2 one gets.

dE dkI' k E 2m

where

2

=& —1&3 I
—

8M (25)

k., = /-', q-k, /,

&m~ —3 &+&0

(26)

(27)

with ko being the relative momentum between the
proton and the neutron pair

4M I q'
ko=

6M (28)

The calculated quasi-elastic peak corresponding
to the kinematical conditions by Hughes et al. ' ls
shown in Fig. 8. As previously explained, the

e+3H —e'+P+ (nn),

e+3H e +n+d,
e + 'H —8' + n+ (nP) .

(23a)

(23b)

(23c)

s&- 398,4 MeV

e, =75

As shown by Lehman, ~~ the main contribution to
the quasi-elastic peak comes from the three-body
disintegration (23a). This process is the simplest
one to calculate with wave functions of the type (3).
In fact, the calculation of processes (23b) and

(23c) and, more generally, the calculation of all
those processes characterized by a two-nucleon
final state composed by the two unlike particles,
e.g. , SHe(e, e'P)d or 3He(e, e'P)nP, is more compli-
cated. The difficulties arise from the fact that
since in Ref. 4 the isotopic spin formalism has
not been used, a change of variables from a and
b to r = r& —r& and p = r2 —,-'( r

&
+ r&) (1 and 2 label

the like particles) and the corresponding recou-
pling of the angular momenta are necessary in
order to compute the processes (23b) and (23c).
This can be accomplished only by introducing the
generalized Moshinsky brackets, ~e which lead to a
very complicated expression for the cross sec-
tion; the evaluation of this cross section represents
therefore a cumbersome computational task, with-
out involving, however, any difficulty of theoreti-
cal character. In this paper, only the results for
process (23a) will be presented, whereas the re-
sults including the other two processes will be
presented elsewhere. It is clear that having cal-
culated only process (23a), any comparison with

1.4

E»
~ 1.2

Q C:1.0
CV

4)n
0.8

0.4

0.2

0 I

200
I

250
I

300 350., (MeV)

FIG. 8. The quasi-elastic peak corresponding to the
process 3H(e, e'p)2n. The dot-dashed line has been ob-
tained usirg the BSC potential and omitting the triton D
wave, whereas the full line corresponds to the case
wherein all wave function components are retained. The
dashed line corresponds to the RHEL-1 potential includ-
ing all wave function components.
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FIG. 9. Proton number N& and proton energy per par-

ticle E& calculated from Eqs. (32) and (29) as a function
of the upper limits of integration Ez '"and km«
= (4M E2 ) using the HSC interaction.

thickness of the curve, which reflects the uncer-
tainty of the calculation due to the extrapolation
procedure, has to be ascribed to the dependence of
the top of the peak upon the nonconverging (at Q
=28) asymptotic part of the wave function.

Dieperink et al. argued that the wave function
components with high values of angular momenta
might help in removing the discrepancy between
theory and experiment in the quasi-elastic peak
of 3He at a transferred energy v+ 150 MeV. %e
have, on the contrary, found that, at least for the
process we have considered, neglecting the com-
ponents l, +i~&4 has no influence at all on the
quasi-elastic peak, the high energy tail of which
is instead affected by the D wave as shown in Fig.
8. It should be pointed out that the kinematical
conditions by Hughes &t al. used to obtain the
curves shown in Fig. 8 are not the best suited in
order to display the effect from the triton D wave.
For example, if e, =65' instead of 75' is used,
our spectral function will lead to a large con-
tribution from the & wave already at ~ =-160 MeV.
A detailed study of the effect of the triton & wave
in the quasi-elastic peak is under way and will be
reported elsewhere. From the results presented
in this paper, it appears, however, that some
doubts might be raised against calculations of the
quasi-elastic peak in heavier nuclei based on sim-
ple S-wave wave functions.

VI. THE ENERGY-WEIGHTED SUM RULE

The energy-weighted sum rule, '5 which expresses
the energy per proton Ee/Z through the proton
mean removal energy (E) =(E2) + ~Ee~ and the
mean kinetic energy (T), reads in our case

0 I I I I I' I I I I

0 50 100 150 200 250 300 350 400 450 500

Ez "(Mev]

FIG. 10. The same as in Fig. 9 for the proton mean
kinetic energy (T) [Eq. (30)] and the mean n nexcitat-ion
energy (Ee) [Eq. (31)].

where

(T) =—f f Pfk, km) k~dk ddt,
o o

(E,) =—"f P(kk, )k,k'dk d,d„
N

III =4m P(k, E2)k2dkdE2.
o o

(30)

(31)

TABLE H. Calculated binding energy E3, mean proton
kinetic energy (T) tEq. (30)], mean excitation energy of
the n-n pair (Ez) [Eq. (31)], and mean proton removal
energy (E)=

] Ee ~
+ (E&) I E& and &„ are the proton and

neutron energy per particle calculated from Eq. (29).
The nucleus is 3H and the interaction the H, SC potential.
All quantities are in MeV.

The quantities (T), (Ee), and N have been cal-
culated as a function of the upper limits of integra-
tion E2'" and k '" = (4MET )'~ . Their behavior is
shown in Figs. 9 and 10. The asymptotic values
are (T) = 21.76 MeV, (EQ = 11.10 MeV, and V = 1,
so that, using in Eq. (29) the calculated value Ee
= —7.3 MeV, one gets for the proton energy E
=- 3.76 MeV. The neutron energy per particle
is E„=—,'(Ee —E ) = —1.77 MeV. The difference
between E and E„ is due to the different interac-
tion acting in the P-n and n-n pairs. Neglecting the
Coulomb interaction, one obtains E„(He) =E (eH)
=—3.76 MeV and E (eHe) =E„(eH) = —1.77 MeV.
The various energies obtained from Eqs. (29),
(30), and (31) are collected in Table II.

E, = ~e(.-'&T) —&E2))+ -'Ee (29)
21.76 18.4 -3.76 -1.77
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The results presented in Fig. 9 allow us to
estimate the maximum value of the experimental
removal energy E = lE, l+E~ which has to be
reached in order to measure the value of E with
a given precision. For example, if a precision of
10% is required, the value E~ -70 MeV (k
-2.6 fm ~) has to be reached; correspondingly,
the value of N can be measured with a precision
of about 4. 5%%uo. From Fig. 10 it can be seen that

(T) and (Eg saturate very slowly. In fact, for
Eq -70 MeV, (T) is only 59%of the asymptotic
value and (Eq) only 49.5%. However, in Eq. (29)
—,'(T) and (E~) are almost of the same order and
this gives rise to the rapid saturation of E .

VII. DISCUSSION AND CONCLUSIONS

The following results of the calculations pre-
sented in this paper are worth being mentioned:
(1) It has been found that a difference in the D
wave probability in 3H, resulting from different
two-body interactions, might in principle be de-
tected by a precise coincidence experiment even
at not very large values of the proton momentum
(k-1.5 fm '). (2) The variational wave function of
Ref. 4(a) leads to a spectral function for the pro-
cesses 3H(e, e'p)2n and ~He(e, e'n)2p, different
from the spectral function obtained in Ref. 21
using the wave function of Ref. 1(a) in that it con-
tains a larger amount of high momentum compo-
nents. For this reason we believe that the dis-
crepancies between the theoretical calculations
and the experimental data of the quasi-elastic
peak of 3He found in Ref. 12 might be partly re-
moved by using the variational wave function of
Ref. 4(a). The calculation ~ of the T= 1 contribu-
tion to the high energy tail for 'He using the kine-
matics of Ref. 28 shows indeed that the high mo-
mentum components, which are present in the
variational wave function, produce a tail high-
er by about a factor of 2 than the correspond-
ing tail obtained with the Faddeev wave func-
tion of Ref. 1(a). Since the tail of the quasi-
elastic peak converges very well (see, e.g. , Fig.
8 and Ref. 22), the difference in the high mo-
mentum content between the two wave functions
is a real and a detectable one.

The fact that the variational wave function of
Ref. 4(a) has more high momentum components
than the wave function of Ref. 1(a) obviously does
not indicated a superiority of the variational method.
It simply indicates that the two wave functions are
not fully equivalent. We wouM like to mention only
two possible reasons for such nonequivalence: (i)
The cutoff in momentum which is necessary in
order to solve the Faddeev equations may, in
principle, affect the momentum content of the

wave function. (ii) The two-body interaction used
in Refs. 4(a) and 1(a) is not completely equivalent;
in the former all waves with j c 2 were considered,
whereas in the latter only the waves $0 $y Dy
were included in the calculation. The effect on the
charge form factor of the momentum cutoff has been
carefullyinvestigatedinRef. 1(a); moreover, the
charge form factors calculated by solving the Faddeev
equations in momentum "' and coordinate spaces
are almost identical. For these reasons we are
tempted to conclude that the lack of the & wave
interaction in the calculations performed in Ref.
1(a) might be the origin of the different momen-
tum content of the two wave functions that we have
considered (the importance of the odd sta, te inter-
action in the computation of the charge form fac-
tor has been shown by Strayer and Saner~).

The feature of our calculations which deserves
further improvement concerns the treatment of
the final-state interaction between the proton and
the n-n pair, which is completely neglected in the
PWA. The latter is the more valid the higher the
kinetic energy of the emitted proton and the lower
the relative energy of the n-n pair. The kinetic
energy of the proton relative to the n-n pair is

For the kinematical conditions of the coincidence
experiment by Johansson, at proton angles

l pl &25',
the contribution to the cross section resulting from
E& & 10 MeV is negligible, TD

™60 MeV and the PWA
can probably be considered accurate enough. How-
ever, to have more confidence in the validity of
the PWA, both at low and high scattering angles,
future experiments should be performed at higher
values of the energy transfer ~, so as to have
much larger values of 7.'0.

A consistent treatment of the final-state interac-
tion in the processes 3He(y, P)d, 3He(y, P)nP, and
~He(e, e p)d has been performed by means of the
Faddeev formalism and the hyperspherical har-
monics method. 9 The price one has to pay for
these thorough calculations of the final-state in-

' teraction is the use of simple separable $-wave
interactions which might even provide a good ex-
planation of the existing low momentum angular
distributions (see, e.g. , Ref. 29c), but which be-
comes inadequate at high values of k (see, e.g.,
Fig. 7). In light of the planned new generation of
quasi-elastic electron scattering experiments on
the few-body systems, aimed at the study of the
high (k, E&) part of the spectral function, the cal-
culation of this quantity with realistic nucleon-
nucleon interactions becomes a prerequisite for a
meaningful comparison between theoretical calcula-
tions and experimental data.

/
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