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The Coulomb displacement energy in the *'Sc-*'Ca system is calculated using three different methods. All
three methods make use of Hartree-Fock densities at some stage. The Hartree-Fock calculations are
performed with the SIII and SIV Skyrme-type forces. The results from all three methods are in agreement
with each other. The resulting Coulomb displacement energy is less than 4 or less than 6 percent smaller
than the experimental one depending on the force employed. Higher order Coulomb corrections are
evaluated and it is found that they can be very large (of the order of 1 MeV) and depend on the approach
taken. The use of the analog state defined with the T_ operator as a representation of the physical analog
leads to an overestimate of the Coulomb displacement energy by more than 0.5 MeV. The inclusion of
Coulomb distortion terms restores the result by reducing the Coulomb displacement energy. One can also
conclude from the present study that the mechanism of treating higher order Coulomb corrections by taking
the giant isovector monopole as the only important intermediate state is in fact the correct one and gives

precise results.

[NUC LEAR STRUCTURE Coulomb displacement energy, ‘!Sc-*Ca system.:l

I. INTRODUCTION

In this paper we examine the problem of Cou-
lomb displacement (CD) energies':2 in nuclei
emphasizing the case of mirror pairs. There
are several methods to evaluate these energies
in mirror nuclei. Each approach has its merits
and shortcomings. We will explore three such
methods and evaluate the CD energy using as a
test case the CD energy in the *!Sc-*!Ca pair.
Each of the calculations presented makes use at
some stage of Hartree-Fock (HF) proton and
neutron densities. The density distributions are
computed in the kind of HF calculations in which
density-dependent forces of the Skyrme type® are
employed.*”5 These calculations reproduce quite
well the experimental charge distributions.® The
calculations of the proton and neutron densities
are mutually dependent in an HF approach; it is
therefore argued that since the proton density is
correct one should have confidence in the neutron
density distribution as well.

One of the important problems in the calcula-
tion of CD energies is higher order Coulomb
corrections.>®” These corrections are essen-
tial in the precise evaluation of CD energies and
their size depends crucially on the definition of
an analog state. As we shall see, the question
whether higher order corrections are large or
small depends on the starting point of the calcu-
lation of CD energies, and therefore it is impor-
tant to investigate several different approaches.
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11. VARIOUS APPROACHES TO CD ENERGIES IN MIRROR
NUCLEI

The CD energy is defined as the difference be-
tween the peak-energy of the isobaric analog res-
onance (IAR) and the energy of the parent state
]n), or in case of bound states the energy differ-
ence between the “physical” (measured) analog
state and the parent state. For the simple case
of a pair of mirror nuclei like *'Sc-*'Ca the CD
energy is the energy difference between the
physical analog state which is the *'Se¢ ground
state and the parent state which is the *'Ca ground
state.

A. The total binding energy calculation

The problem of the CD energy in mirror nuclei
seems to be relatively simple. All that one needs
is to evaluate in the HF approximation the total
binding energies of the two nuclei (*!Sc, “*Ca) and
subtract one from the other. In such a calcula-
tion the most important higher order Coulomb
corrections are taken into account. Also core
polarization effects of the type described first in
Ref. 8 and discussed subsequently in other
works®™!! are included in this approach. The
above core polarization corresponds to the exci-
tation of the core monopole state by the nucleon
which is outside the core. Other core polariza-
tion effects in which core states with higher mul-
tipolarity are excited are not taken into account
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in the spherically constrained HF calculation of
the total binding energies (BE) of the two mirror
nuclei. The contribution of this type of core
polarization effect to the CD energy is small
although not negligible and can be estimated.®!?
The CD energy in this approach is given by

Apg = Eyp(*1Sc) - Exp(*Ca), (1)

where Eyp denotes the total energy calculated in
the HF approximation. The HF method is
straightforward for closed shells. In the case of
nonclosed shell nuclei one introduces a compu-
tational simplification by making the so-called
filling approximation, in which one distributes
the nucleons outside the closed shells in a uni-
form manner among all the states forming the
next complete shell.>!° In this way, one intro-
duces fractional occupation numbers. The ex-
pressions for the HF densities are given in the
filling approximation by

p(?)=‘; ny| d4(F)|? (2)

with n; being the occupation numbers and ¢, the
HF wave functions. For mirror pairs with one
nucleon outside the closed shells n; =1/(2j, + 1)
for the last orbital j;,. (In the *'Sc-*!Ca case,
n;=1%.) The filling approximation introduces a
spurious Coulomb self-energy term. This term
is simply due to the fact that the last proton in
“ISc is replaced by eight  protons which interact
mutually. This self-interaction energy is

il j,m,j,m'> 3)
2

e 22 pom om

and must be subtracted from the CD energy ob-
tained from Eq. (1) using the filling approxima-
tion.

Another difficulty in this method (as well as in
the others) is the spurious isospin mixing intro-
duced by the HF approximation for nuclei with
N#Z. The spurious isospin mixing causes a
spurious shift in the CD energy.'® In the case
of T =1 nuclei the spurious isospin mixing and
shift are very small and we estimate this shift
to be only a few keV in the A =41 nuclei.

Yet, a more severe limitation in the method
discussed is that it can only be used for mirror
nuclei and cannot be applied to the case when the
excess neutron number is large. In nuclei with
N -Z > 1 the analog is not a ground state and one
cannot use the HF approximation to compute its
total energy. Moreover, even in the case of
mirror nuclei (T =%) we must deal with the sub-
traction of two large numbers and hence there

is a priori a possibility of introducing uncer-
tainties in the evaluation of CD energies. In
other words, instead of calculating directly the
CD energy, which represents only a relatively
small change in the total energy when going from
the parent to the analog, we are dealing with the
total energies themselves.

B. The |A) state approach

To avoid the above restrictions one attempts
to calculate directly the energy difference be-
tween the isobaric analog state (or resonance)
and the parent state by introducing model defini-
tions of the analog state. In this case one must
deal with higher order terms which correct for
the fact that the starting point is a model state.
The advantage is that we can apply this method
to heavy nuclei where N-Z > 1 and where the
analog is not the ground state (often unbound) and
we avoid the step of calculating total binding
energies.

One usually starts the description of the IAR by
assuming that the parent state ]-n) is an eigen-
state of the full Hamiltonian H which includes the
Coulomb potential. This is a very convenient
and natural starting point since one wants to use
the available nuclear structure information and,
in particular, the measured charge distribution.
The next step is to define a model state for the
isobaric analog®:

|A) =T |7>a™/2, (4)

where a =(r|T,T_|m), and T. is the usual isospin
lowering operator T.=23,t%’, where t %’ changes
the ith neutron into a proton leaving unaffected
other quantum numbers. This state is not an
eigenstate of the Hamiltonian but in the limit
when the Coulomb force and other isospin vio-
lating forces are put to zero, it becomes an
exact eigenstate of H. This is the intuitive
reason why |A) is chosen as the starting point
in describing the IAR. The energy difference
between |A) and |m),

E,=(A|H|A) - (n|H|m), (5)

can be expressed as

E,=A,+4,, (6)
where
=(n|[T,, [H, T.]]|m o™ (M
and
A, =(n|[H,T.]T,|m a™. 8)

We must bear in mind, however, that the wave
function of the IAR differs from that of |A) due




746 N. AUERBACH, V. BERNARD, AND NGUYEN VAN GIAI 21

to the Coulomb distortion effects. The correc-
tion terms due to the distortion are given by the
expression®:”:

I{q|H|A)|?
AS:Z:_—ET:ET——’ (9)

where the sum runs, in principle, over all states
|g) orthogonal to |A). The full CD energy is
then

Ed =A,+a,+4,. (10)

At this point one would immediately ask “Is
the state |A) a good approximation of the real
wave function as far as the CD energy is con-
cerned?”, or, in particular, “If |1r) represents
the ground state of “'Ca, does |A) describe the
ground state of *!Sc so that the energy difference
between *'Sc and #'Ca is well represented by E,
and A, may be neglected?” The answer to this
question will be given in Secs. III and IV.

The term 4, in Eq. (7) is the largest contribu-
tion to the CD energy and a proper treatment of
it is crucial to the evaluation of E5,. In an in-
dependent particle model such as, for example,
the HF approximation for |n), the expression
for 4, is

- - - ez - - -
A=a f [P (F,) = p,(T)] 7—-p,,(r2)drldr2 +exch,
12

(11)

where p, and p, denote the neutron and proton
densities in the parent nucleus, and “exch”
means the exchange term.

We stress the following points concerning Eq.
(11): (a) It is not a result obtained from a per-
turbation theory. The densities p, and p, are
calculated in the presence of the Coulomb force
and therefore Eq. (11) has contributions to all
orders in ¢2. Consequently, isospin mixing does
contribute to A,. (b) The difference p,-p, in-
volves the total densities and is not merely the
neutron excess density p,,.=2,;|¢,;|%, where the
sum contains only the wave functions of the excess
neutrons. The full density difference is p,-p,
=pPeg. + AP, where Ap is the difference between
the neutron core and proton densities.

In some calculations the definition of the analog
as given in Eq. (4) was introduced, but in evalu-
ating the density difference in Eq. (11) the approx-
imation p, - p,~p,,. was used®% hence the core
term

2
A;x)re: pr(Fl)_f..pp(Fz)dflsz+eXCh (12)
12

was discarded. This is conceptually inconsis-
tent because the definition in Eq. (4) implies that
Pexc + Ap be used in Eq. (12). However, as we

shall see later, the neglect of all A{°™, A,, and
A, leads to a numerically reasonable approxima-
tion of the CD energy. in mirror nuclei.

The present HF calculations are able to pro-
vide the full density difference p,-p,. In Fig.
1(a) we show the p, ~ p, density in *’Ca and com-
pare it with p,, i.e., the density of the f,,, neu-
tron. We see that the isovector density (p, - p,)
in #ICa is very different from the excess neutron
density p,,.. This should be kept in mind when
various processes are considered which involve
the difference of proton and neutron densities.

The origin of the difference between (p, - p,)
and p,,. is well understood by now.?:®*! The
Coulomb force polarizes the core by expelling
slightly the protons with respect to the neutrons.
[The Ap density can be derived!! using the notion
of the isovector monopole state and the results
are in qualitative agreement with the HF calcula-
tions.] This causes (p,-p,) to have a smaller
radious than p,,. has. Therefore, one expects
an increase in the A, term. In Fig. 1(b) we show
the two densities multiplied by 72 and the Coulomb
potential V (») as they appear in the integrand of
Eq. (12). We see that the effect in the densities
is very pronounced. The quantity »*(p, - p,) is
peaked at a radius 20% smaller than that of
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FIG. 1. (a) Densities (p, —p,) and pgy in *'Ca calculated
with interaction SIV. (b) The one-body Coulomb potential
V.(7) and the above densities multiplied by v2. The
right-hand side scale refers to V, (7).
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|rR,7 2(r)l2 When evaluating the A, term we
shall use the densities calculated in the 4Ca
system. This, as already discussed, introduces
spurious isospin mixing which is, however, very
small. The advantage is that the polarization
correction®! is included in this case. To check
our results we performed the calculation of A,
using the HF densities calculated in the *’Ca sys-
tem. We then added the core polarization cor-
rection evaluated separately. We found that the
two results agreed within a few keV.

The term A, given by Eq. (8) is nonzero only
when the parent state has admixed isospin. We
must emphasize, however, and as already
pointed out, that also the first term in Eq. (7)
contains contributions from isospin mixing. The
A, term can be evaluated directly by performing
the integralsS:

- T A g
a,=a™ fI(rl)r—p,(rz)drldrz

-a™ fI(rl, r,)

16, 5 =py(F T) = [ 0uFo 0, E)AF,

(14)
with the notation p,(T) or p,(T) being the diagonal
term of the density matrix, i.e., pm)(r)
_p,m(r r)and I(f)=I(F,T). The density
matrices were obtained from the HF calculation.

Alternatively, one can calculate A, by using
the notion of the isovector monopole state. Fol-
lowing Ref. 6 we expand the parent state |m) into
states of good isospin denoted by |T +n,T),

pp(rl, r,)dr,dr,, (13)

where

= ZGT”,’T‘FVL,T). (15)
n=0

Substituting | into the expression for A, [Eq.
(8)], we get

A,=a 2(11|[H, T.]|T +n, T +1)

n=1
X[n@2T +n+ 1) 2%, . (16)
Since H is approximately diagonal in states of
good isospin, i.e.,
H|T+n,T+1)>Eq, r,|T+n,T+1). (17)
Then performing some algebra one obtains from

Eq. (16)

Ay~ —a™Y 0T +n+1)g,,20E (18)

n?

where the approximation is made 6E,=Ey,, r,,

_EtzETon,Tol _ET.T‘

We now assume that the sum in Eq. (18) is well
approximated by a single state, the T'+1 com-
ponent of the giant isovector monopole state,
denoted as |My,). The fact that the giant iso-
vector monopole exhausts most of the Coulomb
strength is well known.%7+14"1® Thus, Eq. (18)
can be put into the form

Ay =—=2,,,%(T+1)E,/a, (19)
where
GEl:EMTu_ET,T_FECD' (20)

In Eq. (20) Ey ., is the energy of the T+1 com-
ponent of the isovector monopole in the parent
nucleus and Ej is the Coulomb displacement
energy. We also write

+1
(IE<TT|T’T-|1T>:2T<1 +6T.121i‘—>' (21)

Leaving only terms linear in €,,,* we find

,T+1

AZ: “€r41 T

My, (22)
In the last step, in going from Eq. (19) to Eq.
(22) we dropped the term —ej, *E., (T +1)/T since
this term will be canceled by the same term in
A, when the denominator o there is expanded.
From now on, we shall refer to the A, term as
evaluated with a =2T.

For large T
~_, 2
Ay —€pyy EMTol ’ (23)
but for T =} mirror nuclei
By=—3e3/, Mg, (24)

where ¢,,,” denotes the admixture of the T =3
component of the isovector monopole and Euyy
its energy, in the parent nucleus. Both num-
bers can be calculated using the HF and the RPA
in which the residual particle-hole interaction
V4 is derived from the HF potential'™!® Uy with
the prescription V, =3Uys/3p. The estimate of
A, using Egs. (24) or (13) agree very well.

Finally, we must evaluate A,. Since the states
|@) in Eq. (9) are orthogonal to |A) one may re-
write A, in a form containing the commutator
[H,T_.], namely,?*

A= ~ z l(ql 111)!2 (25)

G

As in the treatment of A, we evaluate A, by ex-
hausting the sum with the isovector monopole
state. Since the states |g) are in the analog nu-
cleus which has T,=T -1 we have (for nuclei
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with T = 1) three possible components—T +1,
T, and T -1 for the isovector monopole state.
(In the case of T =14 nuclei the T - 1 component
does not exist.) We denote the corresponding
states by

|Mz,p, |[Mp), and (M. .

Taking only the isovector part of the commuta-
tor [H, T.] (essentially the isovector Coulomb
potential V() we obtain”!®

1[1<M1-1IIV€>IM} 12 27 - 1

A, ==
STTU E,-E,,, 2T+1
K(MAVEImIZ 1
YT E,-E,, (T+1)
L KM IVl 12 1 ]
E,-E,,, (T+DET+D]
(26)
with
EMT,—EAQ’EM‘F%§[T'(T'+1)—T(T+l)—2]’
(27)

where E , is some average position and £= 60
MeV/A (see Refs. 7, 15, and 16). The reduced
matrix elements satisfy

(M IV ) (M Vi) ) [(Mp VDY

For large T the first term is the dominant one
and we find

(1) 2
o LM IVl |

3T T TE, - (T+1)E (28)

In mirror nuclei, as already remarked, there
are only two components: T+1=3 and T=1.
The energy splitting between the two components
is very small and the difference between the
above reduced matrix elements is negligible.®
Therefore to a good approximation:

KMIVEImI2 1
Ay ————C 1 —
8 Ey T’ (29)
where IM) is either the 3 or 1 component of the
monopole. On the other hand,

1 MVl |2
2, c
€ra = T+1 E‘MZ . (30)
Hence
T+1 -
Ay ""_T_ET.leus (31)

and we finally obtain for T =3,

Ay~ =3¢y, °E,y, (32)
i.e., A,~ A, for mirror nuclei, and

A, + Ay —Bey,,°E,, . (33)
Of course, Egs. (22) and (26) are general and

apply to any nucleus.

The method described in the present subsection
makes up a consistent scheme to calculate the CD
energies for both light nuclei with a small neu-
tron excess and for heavier nuclei where the neu-
tron excess is large. When applying the method
one must be careful to treat all the higher order
corrections A{°™®, A,, and A, in a systematic
manner. By ignoring some of these terms one
can make considerable errors. The Af°™ cor-
rection has a positive sign and cancels a large
portion of the negative corrections (4, +4,). In
some calculations of CD energies in heavy nuclei
the correction A{°™ was not included but A, and
A, were kept.®® This led to a few hundred keV
underestimate of the CD energy. And vice versa,
as we shall see in Sec. III, the neglect of 4, or A,
and the inclusion of A{°™ leads to large errors
for CD energies, especially in the case of a
mirror pair.

C. The p, approach

In this approach one simply calculates the in-
tegral in Eq. (11) with (p, — p,) replaced by p,,.,
i.e.,

1 - L. .
A.,c=§ffP.xc(rl)?,—l;!)p(l‘z)dﬁdrz+GXCh- (34)

The understanding is that going from the parent
state to the analog the change in energy is due
only to the fact that an excess neutron becomes
a proton and interacts with the field of the core
protons. The #'Ca and *'Sc ground states differ
only in their last nucleon which is changed from
an f,,, neutron into an f,,, proton. The Coulomb
energy from the proton core is unchanged and
drops out when the differences are taken. This
is why A{°™® and A, + A, defined in Sec. II B will
essentially cancel each other. (All three cor-
rections are connected with the core.) In addi-
tion to the term in Eq. (34), one must add the
core polarization correction as given, for exam-
ple, in Refs. 9-11, 20.

In nuclei with a large neutron excess (for ex-
ample, in *°Zr or 2°®Pb, etc.) one cannot easily
separate the contributions coming from the core
and the excess neutrons. (When we refer to the
core we have in mind the Z protons and the Z
neutrons in the lowest orbitals, for example, in
208pp, the core consists of 82 protons and the
corresponding 82 neutrons.) All higher order
Coulomb effects or core polarization contribu-
tions involve expressions in which both the ex-
cess neutrons and core nucleons play a role and
the contribution from each one cannot be sepa-
rated. For example, when discussing higher
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order terms one uses as the intermediate state,
the collective isovector monopole. In the case of
mirror nuclei this state is made up mainly of
1p-1h excitations from the core and the influence
of the single nucleon outside the core may be
neglected in the construction of the monopole.
However, in a nucleus like 2°®Pb the giant isovec-
tor monopole (its T and T -1 components) are
made up of a coherent admixture of 1p-1h con-
figurations in which the hole states are both in
the core and in the excess neutrons. Therefore,
in such cases one cannot rely on the argument

as used in T =3 pairs that the influence of the
core will cancel out.

We have already mentioned that, in many cal-
culations of CD energies, correction terms to
Eq. (34) were not included and when some were
included thay were not treated consistently. For
example, in some calculations one adds to A e
the A, and A, corrections derived in the |A) ap-
proach leaving out the A{°*® term.%'®

A formal way to represent the present method
and to derive Eq. (34) is to use the analog spin
introduced by MacDonald.?! Instead of using the
T. isospin lowering operator one defines a dif-
ferent operator W.=2,,w", where w!" changes
a neutron occupying the ith neutvon state ¢p{
into a proton occupying the ith proton state ${P.
One then defines a new model analog state with
T. replaced by the W_ in Eq. (4), i.e.,

| Wy =W_|m/(a| W, W.|m*/2. (35)

With such a definition of the analog, the first
order expression for the CD energy is the one
given by Eq. (34). The contribution due to Ap
drops out because of the Pauli principle. The
W. operator will change a core neutron into a
proton in a state which is already fully occupied
by the core proton. Of course, an exact treat-
ment of the CD in which the starting point is the
w-analog state in Eq. (35) would also contain
several additional correction terms (we shall not
discuss them here).

III. RESULTS

We now present the results of CD energies cal-
culated using each of the three methods discussed
in Sec. II. The *'Ca-*Sc will be our test case.

A. General results

In addition tothe terms we already discussed,
one must add several small correction
terms.}»2:52° These are approximately the same
for all three methods and they include: (1) the
contributions from short range correlations,

(2) dynamic proton-neutron mass difference,

TABLE I. The calculated HF rms radii and isospin
admixtures in #Ca. The radii are in fm and €? in per-

centage.

2
Force 7 Vo n exc Tn-p €372

SIIT 3.42 3.37 3.40 4.02 3.01 0.53
SIV 3.40 3.34 3.37 4.15 3.13 0.58

(3) vacuum polarization contribution to the
Coulomb force, (4) the proton-neutron finite

size correction, and (5) magnetic spin-orbit
terms. In the case of *!Sc-%'Ca the first three
corrections are positive and the last two are
negative so that the total correction (denoted 6)
is approximately 5 =0.01 MeV within an accuracy
of a few tens of keV.

The calculations were performed in the HF
approximation using the SII and SIV forces,®
which give good charge distributions and charge
radii in the Ca region. In Table I we give some
of the ground state quantities calculated for %Ca.
The various rms radii are defined by

ras(ya"’)‘/z:[fpa(f')rzar/fpa(?)df]”z, (36)

where p, stands for various density distributions;
p, is the proton density distribution, p, the total
neutron distribution, p, and p,. the neutron core
and neutron excess densities, and p,.,=p,~-p,.
The rms radii have the corresponding notations.
We note that the neutron core rms radius 7, is
smaller by about 0.05 fm than the proton radius
and that 7,_., is smaller by about 25% than 7,_,.
The amount of isospin mixing is calculated
from the HF wave functions using the formula

2 (TIT,T.Im) - (N-2)
fr TTTNCZ 12 ’

(37)

where |7) is the HF wave function of the parent

T T T T T T
40(:0

—_ LS J7=0", isovector ]
<

£
T

3 1OF 4
=

u

? ost .

| It ! L 1
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E [Mev]

FIG. 2. Isovector monopole strength in 4°Ca calculated
with interaction SII.
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TABLE II. Calculated CD energies for the 4Sc-4Ca
case in the total binding energy approach. All the num-
bers are in MeV.

TABLE IV. Calculated CD energies for the Sc-4Ca
case in the p,,, approach. All the numbers are in MeV.

Force Agg Ag 5 EBE
SII 7.17 0.17 0.01 7.01
SIv 7.01 0.17 0.01 6.85

ground state, which in our calculation is the *'Ca
ground state, and N-Z =1 in this case. The re-
sulting number is e,,,%~ (0.5-0.6)% (see Table I)
for the isospin admixture in the ground state of
“lCa. This corresponds to an isospin admixture
in the *°Ca core of €,>=3¢,,,°~ (0.7-0.9)%. In
order to estimate the correction terms A, and A,
we must know the energy of the isovector mono-
pole E, in *°Ca. This was calculated in the RPA
as described in Ref. 18. The distribution of the
isovector monopole strength 72¢, is shown in
Fig. 2. The average energy of the distribution is
E, ~35 MeV.

B. Results from the total binding energy approach

Using the SIII and SIV forces, we obtain for
the difference between the total binding energies
of ¥Sc-*Ca the numbers: Ap;="7.17 MeV, and
App="17.01 MeV, correspondingly. From these
numbers we must subtract the self-interaction
energy term [Eq. (3)] which we find to be A
= 0.17 MeV. The final results in this method,

Egg:ABE" Ag+d, (38)

are shown in Table II.

C. Results from the |4 ) state approach

The results are summarized in Table III. The
main term 4, is calculated with ¢ =27 and the
other two terms A, and A, according to Egs. (24)
and (32). The superscript HF indicates that
these were evaluated using the HF wave functions
and the Coulomb force only was left in the com-
mutator [H,T.]. The total result in this approach
is

EA =AFF + ABF + A +5. (39)

TABLE III. Calculated CD energies for the “gc-%Ca

case in the | A) state approach. All the numbers are in
MeV.

Force AfF  AlF EXF A, 8 E&p

SII 8.11 —0.56 7.55 -0.56 0.01 7.01
SIv 8.02 -0.59 7.43 -0.59 0.01 6.84

Force Ay Ay 5 EES
SoI 6.90 0.10 0.01 7.02
SIvV 6.75 0.09 0.01 6.85

We have also indicated in the table the sum E%F
=A"F + ABF | which represents the CD energy
(apart from 6) of the model analog state |A) in
Eq. (4). Had the ground state of *!Sc been the
model analog then its energy would have been EﬁF .
We see that the state [A) does not give an
accurate representation of the physical situation.
The correction term due to distortions is more
than -0.5 MeV large, i.e., 8% of the CD energy
in ¥*Ca. The final results E§,,, agree very well
with the ones obtained in the previous method
for both forces SII and SIV.

D. Results from the p,, approach

We evaluated the A,,, term, Eq.(34), with p,,
being the density distribution of the f;,, neutron
in **Ca. The total CD energy in this approach is

EX=A,  +A,,+6, (40)

where A, is the core polarization term.*™' The
results are shown in Table IV and, as we see,
the final result agrees very well with the values
obtained in the previous two methods.

IV. SUMMARY AND CONCLUSIONS

One of the important points we note from the
above results is that the higher order Coulomb
corrections, as calculated in the analog state
approach, are very large for the A =40 region.
This was already noted in Ref. 7 where harmonic
oscillator wave functions were used to estimate
these effects. We find that also when realistic
HF wave functions are used the corrections A, or
A, are of the order of -0.5 to -0.6 MeV. Note
that the A{°*® correction (which is second and
higher order in the Coulomb interaction) is as
large as 1.1 MeV in *!Ca. It is therefore very
important to treat these corrections consistently
and systematically. This is, in particular, true
for large neutron excess nuclei, where these
corrections were not always evaluated in a syste-
matic manner. In exploring the three methods of
calculation we found that all of them give (when
most of the important correction terms are in-
troduced) nearly the same result. From the
comparison of the results we learn that the
mechanism of treating higher order Coulomb
corrections by means of the giant isovector
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monopole is the correct one.

Since the CD energies from all three methods
agree it is meaningful to make a comparison with
experiment. The experimental CD energy in the
45¢-*1Ca case is ESX?="7.28 MeV. The SIII force
gives a CD energy 260 to 270keV smaller than ex-
periment. This is about a 3.5% discrepancy.
For the SIV the discrepancy is 430 to 440 keV
which is about 6% of the total CD energy in *'Ca.
Both forces, although somewhat different in their
nature,® do give reasonable radii, charge dis-
tributions, and binding energies per nucleon.
There is no obvious reason why to prefer one
over the other.

In addition to all the corrections we included,
there is a class of corrections not taken into
account in our results. These are the contribu-
tions due to configuration mixing of 3p-2h states
and some special types of 2p-1h states, namely,
those 2p-1h states in which the particle couples

to 1p-1h states not of isovector monopole charac-
ter. Present estimates'?-?? of the contribution of
3p-2h and 2p-1h admixtures to the CD energy in
A =41 nuclei indicate that the corrections are
positive and amount to about 50-150 keV. Thus,
the SIII results, together with the above correc-
tions, bring the discrepancy to less than 150 keV
in #*Ca. This is close to the limits of the theo-
retical uncertainties. The SIV force would give
CD energies only 300 keV (4%) small than ex-
periment.

ACKNOWLEDGMENTS

One of us (N.A.) acknowledges the partial sup-
port of the U. S. Department of Energy. We
would like to thank Dr. O. Bohigas, Dr. X. Campi,
Dr. A. Lane, and Dr. W. MacDonald for helpful
discussions.

*Permanent address.

tPresent address: Institut de Physique, Universite de
Liege, Belgium.

i Laboratoire Associe au CNRS.
13. A. Nolen and J. P. Schiffer, Ann. Rev. Nucl. Sci. 19,
471 (1969). -
’N. Auerbach, J. Hifner, A. K. Kerman, and C. M. Shak-
in, Phys. Rev. Lett. 23, 484 (1969).

T. H. R. Skyrme, Nucl. Phys. 9, 615 (1959).

4p. Vautherin and D. M. Brink, Phys. Rev.C 5, 626
(1972). -

M. Beiner, H. Flocard, Nguyen Van Giai, and P. Quen-
tin, Nucl. Phys. A238, 29 (1975).

6N. Auerbach, J. HTufil;r, A. K. Kerman, and C. M.
Shakin, Rev. Mod. Phys. 44, 48 (1972).

TA. M. Lane and A. Z. Mekjian, Adv. Nucl. Phys. 7, 97
(1973). -

8E. H. Auerbach, S. Kahana, and J. Weneser, Phys. Rev.
Lett. 23, 1253 (1969).

%1. Zamick, Phys. Lett. 39B, 471 (1972).

1(’Ng'uyen Van Giai, D. Vﬁt—_herin, M. Veneroni, and
D. M. Brink, Phys. Lett. 35B, 135 (1971).

UIN. Auerbach, Phys. Lett. 36B, 293 (1971); Nucl. Phys.

A229, 442 (1974).

12y Barroso, Nucl. Phys. A281, 267 (1977).

13N. Auerbach, Nguyen Van Giai, and V. Bernard, Nucl.
Phys. (to be published).

14, 7. Mekjian, Phys. Rev. Lett. 25, 888 (1970).

15y, Auerbach, Nucl. Phys. A182, 247 (1972).

165 Bohr and B. A. Mottelson, Nuclear Structure (Ben-
jamin, New York, 1969).

11G. F. Bertsch and S. F. Tsai, Phys. Rep. 18C, 126
(1975). -

18K . F. Liu and Nguyen Van Giai, Phys. Lett. 65B, 23
(1976). -

195, W. Negele, in Proceedings of the International Con-
ference on Nuclear Structure and Spectroscopy, Am-
stevdam 1974, edited by H. P. Blok and A. E. L. Die-
perink (Scholar’s Press, Amsterdam, 1974).

3. W. Negele, Nucl. Phys. A165, 305 (1971).

Aw. M. MacDonald, in Isobaric Spin in Nuclear Physics,
edited by J. Fox and D. Robson (Academic, New York,
1966).

24, Poves, A. L. Cedillo, and J. M. G. Gémez, Nucl.
Phys. A293, 397 (1977).




