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A nonrelativistic wave equation for the relative motion of composite particles is derived from a given,

microscopic Schrodinger equation. For two composite particles, the theory is identical to resonating group
theory. For three and more composite particles it differs by the use of distortion functions with a continuous

degree of freedom which allows a correct asymptotic description of the system. The dynamical equation,
formally, is a multichannel Schrodinger equation with a matrix of nonlocal and energy-dependent
interactions. The internal degrees of freedom of the composite particles and the Pauli principle are
incorporated into the interaction. The relative motion wave function of the composite particles is a
probability density amplitude in the asymptotic region only. In regions where the composite particles interact,
the relative motion function is not a probability density amplitude and may even have a certain degree of oH'-

shell ambiguity. In all regions of configuration space, however, the probability density of particles is defined

by the microscopic wave function. The theory is formulated for nuclear fragments but is valid also for atoms
and particles consisting of quarks.

NUCLEAR REACTIONS Scattering theory, nuclear fragments, atoms, bags of
quarks. N-cluster theory. Composite particle interaction.

I. INTRODUCTION

The central problem of theoretical atomic and
nuclear physics is the derivation of the dynamical
behavior of A particles from an A-particle Schro-
dinger equation with phenomenologically given in-
teractions. As is well known, an A-particle sys-
tem has so many degrees of freedom that there is
no hope for a general solution of the problem,
when A is larger than, say, three or four. In many
practical cases, however, not all degrees of free-
dom come into play. In scattering experiments,
energy is a chosen parameter. Sometimes its val-
ue is not large enough to allow the system to dis-
integrate into A free particles. When this is so,
then not all parts of the 3A-dimensional space are
accessible, and some degrees of freedom are not
needed. A quantum dynamical theory should be
able to take advantage of that. In the following, we

are presenting such a theory. It will be valid in a
limited energy range. Degrees of freedom which
are only needed when energy is higher than the
limit will not appear.

The idea we use is essentially the resonating
group idea which has been introduced by Wheeler'
in 193'7. It has been reintroduced and worked out
in the two-cluster case by Wildermuth and collab-
orators. "The concept of treating clusters as
point particles while putting the Pauli principle
and internal degrees of freedom into the interac-
tion has been discussed for three clusters. ' The

present paper deals with the general N-cluster,
multichannel formalism. The dynamical equation
will be a set of coupled second order differential
equations with nonlocal, energy-dependent interac-
tions. Despite its complicated mathematical
structure, the theory will allow one to study gen-
eral features of composite particle dynamics and
will lead the way to new approximation schemes.

It has been emphasized earlier' that there is a
striking similarity between the interaction of ha. -
drons and the interaction of typical composite par-
ticles such as n particles. The present theory is
formulated in terms of nuclear clusters. We
should bear in mind, however, that it is valid also
for atoms and for bags of quarks, provided that
quark motion obeys the nonrelativistic Schrodinger
equation.

In Sec. II of this paper the microscopic A-par-
ticle wave function is expressed in terms of inter-
nal and relative motion wave functions of clusters,
together with cluster distortion functions. In Sec.
III the dynamical equation is derived. In Sec. IV
it is shown that unitarity is conserved and in Sec.
V the asymptotic behavior of the solution is inves-
tigated. Some general features of the relative mo-
tion wave function of composite particles are dis-
cussed in Sec. VI.

In part II of this series of papers, the interaction
of composite particles, as it is present in the dy-
namical equation, will be studied. It will be shown
that, despite its complicated mathematical form,
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the interaction is readily understood in terms of
physics and can be approximated by separable po-
tentials.

II. THE N-CLUSTER WAVE FUNCTION

An A-particle system can be decomposed into
asymptotically stable clusters in various wa, ys.
For each decomposition we assume the eigenener-
gies and eigenstates of the clusters to be known

(approximate description of clusters will be dis-
cussed later). The sum of cluster eigenenergies
is the minimum energy needed to disintegrate the
system into free clusters. At zero energy, by def-
inition, the system can disintegrate into A free
particles.

As has been said in the introduction, we want
to take advantage of a limitation of energy. Let us
pick a particular threshold energy and define this
energy as upper limit of an allowed energy range.
A lower limit will not be needed. The maximum
number of clusters, into which the system can de-
cay within the allowed energy range, is called ¹

Let us try to find an ansatz for the scattering
function which has all the needed degrees of free-
dom, but which has as little unnecessary degrees
of freedom as possible. When all clusters of a
certain decomposition i are separated from each
other by very large distances, the scattering func-
tion rigorously goes over into an antisymmetrized
product of cluster eigenstates pj, cpj, ~ ~ times
a function X, ((, „$,. „.. . ) which describes the
center of mass motion of the clusters':

g-A{@;i9; 2' ' 'X;((; i, $; „.. .)}.
The eigenstates of the clusters include spin and
isospin, while the function Xj depends on the Ja-
cobi coordinates $,. „$j „.. . only. A denotes an-
tisymmetrization. Asymptotic scattering states,

A{9/, 1'Pj, 2', 3 X(~j,ltd j,2t'''6' (2)

It is easy to write down more correction functions.
We can either replace y, , by other compound
states of the same particles, or we can introduce
compound states of pairs or groups of other clus-
ters. To simplify notation we put the tilde on all
functions and Jacobi coordinates which appear in
a correction term, knowing that some of the p& ~'s
may be ground states.

Putting it all together we get the following an-
satz' for the microscopic A-particle wave func-
tion:

which are eigenstates of total angular momentum
and, if desired, of total isospin, are obtained by
taking appropriate superpositions.

When two or more clusters interact with each
other, an expression like Eq. (1) can no longer de-
scribe the true scattering wave function. It has to
be supplemented in two ways: (1) Asymptotic chan-
nels with different fragmentation are coupled and
we have to add the relevant functions. (2) The
clusters become distorted while they interact.
This means that their internal motion is no longer
described by the bound state wave function of free
clusters. We have to add correction functions
which we will sometimes call distortion functions
and sometimes compound state corrections. A

typical correction function consists of a chosen
wave function y, „which is a square integrable
compound state of two or more clusters, multi-
plied by the ground state functions p, ,y,. 3

of the remaining clusters (the "spectators"). This
product of internal motion states is multiplied by
a function X,. ($,. „$,„.. .) which describes the
center-of-mass motion of the state p, , and of the
clusters y, ,y„. „... in terms of Jacobi coordinates

The full product is anti symme-
trized:

{Ps,i%~, s' ' ' 0's. »X g (5g, x~ks, 2~ ~ ~

~{V;.i Pg, 2X( (t;, i ~

j=nN+ nN-1+ ~ ~ + n3+ 1

nN y+nN

~ ~ ~
f~{9'i.i%~.2' ' '

9 ~, »-2X&(t &,
i =nN ~+l

+ ~ ~ ~

nN+ "N-i

'&~i, »0+ Z A{Pc,)q(, 2'''Pa, » gxs(hr, g, k;,~. . . ~(; » i)) +'''
j =nN+1

& ..))+E AQ';..P;,. "P;, ,x;(4, ,,h, .„.. . , g, „,))j =1

+ ~ ~ ~

+ ~ ~ ~

(3)
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The first sum includes all decompositions into N
clusters, the second into (N-1}clusters, and so
on. Some of the y, f's may stand for particles, in-
stead of clusters. In that case, y, f is simply the
spin-isospin state of the particle. The antisym-
metrization operator 4 operates on the expres-
sions in curly brackets. Within the curly brackets,
natural ordering of particle numbers is assumed.
The no-distortion part ends with a sum over two-
cluster decompositions.

The distortion part starts with a sum over (N 1)-
cluster corrections, and ends with a sum over
one-cluster corrections. In the general case, the
distortion part has very many terms.

In ansatz (3) for the scattering function, all y's
and y's are kept fixed, while all X's and X's have
to be determined by a dynamical equation. Cur-
rently, we assume that the internal cluster states
y, f are rigorous bound states of the respective
parts of the full A-particle Hamiltonian. We keep
in mind, however, that in practical applications we
have to allow approximate cluster eigenstates.
The states y, f are either bound eigenstates, when
the cluster is a spectator, or they are chosen func-
tions. The question arises as how to choose them.
In principle, any square integrable function of the
respective space-, spin-, and isospin coordinates
may be chosen. There is no condition of orthogo-
nality. Only linear dependency is an undesirable
feature. Just to have something on hand, we give
one of the many possible prescriptions for choos-
ing correction states y, f: Generate states by an
oscillator shell model. Take all those particle-
hole excitations, two particle-two hole excitations
and so on, which are believed to play a role in the
scattering process. Delete the rest. Now try to
reduce overlap with the no-distortion part of the
ansatz. Take those no-distortion functions which
can have nonzero overlap with the shell model
states. Replace the relative motion part by one
or more square integrable functions which, at
short distances, oscillate with a wave length which
is typical for scattering states. Take the so-ob-
tained square integrable no-distortion states out
of the shell model basis by a (numerical) subtrac-
tion procedure. What will be left from the shell
model states can be used as correction states
cpf f ~

Another kind of linear dependency is easily re-
moved from Eq. (3). Consider an example where,
in the N-cluster decomposition, a proton appears
as one cluster and a neutron as another cluster.
In this case, the N-cluster sum can rigorously de-
scribe an (N 1) cluster -state in which these two
particles form a deuteron. Therefore, this (N- 1)
cluster part is left out from the second sum, be-
cause it is already present in the first sum. We

also leave out such (N-1} cluster decompositions
which are approximately contained in the N-cluster
sum. As an example, think of a deuteron and a
neutron at the N-cluster level which can form
something with the quantum numbers of a triton.
Of course, a deuteron and a neutron in relative
motion will not correctly describe the eigenstate
of a triton. But we are introducing corrections,
anyway: therefore we leave out the respective
cluster decomposition in the second sum.

It is clear how to proceed. In the third sum we
leave out everything which is contained, rigorously
or approximately, in the first two sums, and so on.
In this way, certain sources of linear dependency
are removed from the ansatz (3) without use of
projection operators. In complicated systems,
there still remain sources of linear dependency,
which will be discussed later.

The reader may feel that there is much room
for ambiguity in Eq. (3). Indeed, there is. But we
shall see that this is not a fault of the theory. It
reflects a, general property of composite particle
dynamics and is related to the off-shell and multi-
body-force ambiguity which, in case of the ha-
dronic interaction (as an interaction of particles
with internal degrees of freedom} has been a focus
of interest for a long time. '

In Sec. III, a more compact form of Eq. (3) will
be needed. We denote the products of internal mo-
tion states p, ,y, , ~ ~ by |I5,-, and write

In this paper, the tilde will always refer to distor-
tion states and the hat will be used when an index
runs over no-distortion and distortion states as
well. It has already been said that the y's and
y's are chosen and kept fixed, while the y's and
X's are freely adjustable. With the new shorthand
notation we can express this more precisely by
saying that all variations of the y's and X's in Eq.
(3) define the test function space &g:

A general N-cluster ansatz has also been presented
by other authors. ' " Their ansatz differs from
the present one in two respects: (i) all distortion
functions are of the one-cluster type, (ii) all open
channels are carried along, including those which
are, rigorously or approximately, contained in a
higher cluster decomposition.

ExamPle 1. Consider the 'Li scattering system.
From the energy eigenvalues of the fragments one
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gets the following thresholds": n t(--36.777
MeV), 'Li-n (-31.990 MeV), o. -d-n (-30.520 MeV),
'He-p (-29.259 MeV), a n n-p-(--28.295 MeV),
t t P(--1-6.964 MeV), 'He t-n-(-16. 199 MeV), t-
d-d (-12.92 Me V), . .. . As upper limit of the ener-
gy range we choose the t -t -p threshold, which
means N=4.

The first sum of Eq. (3), in the present example,
describes the motion of an undistorted a particle,
of two neutrons, and of a proton. As internal mo-
tion states we have the eigenstate of an n particle
and the spin-isospin states of the neutrons and of
the proton. In order to construct a 'Li scattering
state with good quantum numbers, several spin
orientations of the nucleons are needed. There-
fore we have a sum over four-cluster states. We
call it a natural order when nucleons 1-4 occupy
the n-particle state and nucleons 5-7 occupy, in
sequence, the states of the two neutrons and of
the proton.

The channels with lower threshold energies are
already included in the n-n-n-p channel. All de-
grees of freedom needed to form either a triton
or a deuteron out of three nucleons are already
present. Also present are the degrees of freedom
needed to form, in no-distortion approximation,
a 'Li or a 'He from the n cluster and the relevant
nucleons.

In correction space, we have a three-cluster,
a two-cluster, and a one-cluster sum. The three-
cluster sum contains square integrable compound
states formed by the nucleons of the n cluster to-
gether with one of the nucleons 5, 6, or 7. The re-
maining two spectator nucleons are described by
their spin-isospin states and by the functions y,
The number of different spin-isospin states of the
nucleons 5, 6, 7 and the number of chosen cora-
pound states determine the number n, of terms in
this sum. The a-nucleon compound states should
have little or no overlap with states formed by an
undistorted a particle in relative motion with a
nucleon.

In the sum over two-cluster correction states,
the compound states are formed by the nucleons
of the a cluster together with two single nucleons.
The spectator nucleon is described by its spin-
isospin state and by X,. Again, the overlap with all
states mentioned so far should be kept small.

The one-cluster sum is identical to the distor-
tion part of a conventional resonating group an-
satz. ' " Even though we are trying, from the be-
ginning, to reduce overlap of states as much as
possible, linear dependency will become unavoid-
able when the number of particles, clusters, and
channels becomes large. A second example will
show a typical linear dependency.

Example Z. Consider a system of two protons

and two neutrons and assume a fictitious interac-
tion which causes the triplet deuteron as well as
the singlet deuteron to be bound. Exclude four-
particle breakup by taking its threshold as upper
limit of allowed energies. Then N= 3, and the
three-cluster sum will consist of two types of
functions: (1) a triplet deuteron in relative motion
with a neutron and a proton, (2) a singlet deuteron
in relative motion with a neutron and a proton. In
no-distortion approximation, each one of the two
types of functions is fully capable of describing
a singlet deuteron in relative motion with a triplet
deuteron. The ansatz is overcomplete in the sense
that a no-distortion two-body channel can be
formed in two ways. Which consequences do we
expects

Overcompleteness of the function basis will
certainly be an unpleasant mathematical feature.
We believe, however, that it will not be prohibitive.
A simple example of similar structure is the fol-
lowing. Consider an operator eigenvalue equation
which generates a discrete set of eigenvalues and
eigenstates. If a complete and orthogonal repre-
sentation space for this equation is extended and
made overcomplete by the addition of linear com-
binations of basis states, then the eigenvalues and
eigenvectors are still uniquely defined. Numerical
methods, also, are available to solve the problem. "
Only the representation of eigenvectors in the lin-
early dependent basis will be nonunique.

Similarly, in the present four nucleon example,
there is more than one way to express a given mi-
croscopic wave function g by relative motion func-
tions y, The final equation to be solved will be a
coupled set of three-body equations. We cannot
quote an existing numerical method to solve this
problem, but we believe that it can be constructed
and that an extra boundary condition will play the
essential role in handling the redundant degree of
freedom.

The dynamical equation, which is derived in Sec.
III, will be very complicated. It has many channels
coupled by an interaction matrix. The elements of
this matrix contain complicated nonlocal, multi-
body interactions of infinite range. In order to
break down this mathematical monster to its physi-
cal contents, a powerful tool will be needed. This
tool is the asymptotic serparation property of the
dynamical equation. It will be shown that the
asymptotic solutions of the full equation satisfy
subsystem equations which are similar, in struc-
ture, to the full equation.

We want to choose from the function space
spanned by Eq. (3) all functions which describe a
situation where one part of the A-particle system
is confined to one remote area of configuration
space, while the remaining part is confined to
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&y,'IHIP'|;& =&&,. Iy,. & =O.

The states which do not necessarily have zero
coupling can be written in a form similar to the
probe. They factorize into an antisymmetrized
product of two functions:

4'=~M.x,(i,)}
=~9,"x".(5f)0;x; (&;)},

& &0.

The symbol $„represents the Jacobi coordinates
$„„$„„.. . of the kth cluster configuration, $"„

and f~s represent the relevant subsystem Jacobi
coordinates. Adding up the relevant factors P,"y",
and f„y», respectively, one gets two expressions
which are similar to expression (3) or (5),

(Va)

(7b)

another remote area; within both areas the sub-
systems may undergo scattering and reactions.
We call this situation an asymptotic separation of
the system. In a multichannel system of identical
particles it is not trivial to describe an asymptotic
separation. Therefore we give a prescription of
how to choose the relevant functions from Eq. (3).
Choose one term of the no-distortion part of Kq.
(3) and divide the clusters, as defined by their in-
ternal motion functions y, &, into two groups. One
group of clusters forms subsystem A, the other
group forms subsystem B. Introduce a transfor-
mation of the Jacobi coordinates $, , in such a way
that each one of the two groups of clusters has its
own system of Jacobi coordinates. Now, let the
center of mass motion of the two groups of clus-
ters be described by two nonoverlapping asymptotic
wave packets and use this antisymmetrized clus-
ter state as a probe g~. Discard all states g;
which, because of the separation, are not coupled
to the probe by the Hamiltonian

+{0;x;(&;.i t;,~}}-&{0";x";(&";,i t";,2)4";x,'
x ($; &, $;. , 2)},

0'= ~H", x& 0;x} (10}

as a probe. Obviously, &g, ~H~g~& is equal to zero
whenever j refers to a one-cluster state, because
the seven-nucleon compound states are square in-
tegrable, except for total center of mass motion.
We also get zero when j refers to the two-cluster
level, because the 'Li and 'He compound states
have a finite extension. At the three-cluster level
the coupling is not necessarily zero.'

The correc-
tion states, which correct the n-n motion, are
coupled to the probe unless some good quantum
numbers are different in either subsystem A or B.
At the four-cluster level, all those states are cou-
pled to the probe which are needed to construct
states with good quantum numbers in both subsys-
tems or, in other words, to construct an irreduc-
ible representation of H in cluster space. The
asymptotic wave function can be written as

1l~ I0"'=~ ~(+{v;,,s;,.x";(5";,, h";,.)}
x ~{a, ,s, ,x,. (t,'. „~,'. ,}}]

+ Z +[&{9;,,x";(&";,,}}

where $";, and $~, are the o-neutron (1) distance
and the proton-neutron (2) distance, respectively,
while $,". , and $,. , are the center of mass coordi-
nates of the two subsystems. The range of indi-
ces,. is such that a triplet deuteron with three spin
orientations and a singlet deuteron can be formed
in subsystem B while the neutron in subsystem A
can have spin up or down.

Now we pick a special value of i, say i =1, and
identify

They describe the two subsystems as if they were
isolated scattering systems. In Eq. (8},the prime
at the sum symbols indicates that not all of the
(n+ n) values of k are present in the sum; the
states of the probe, of course, are included.

The upper limit of allowed energies, for each
subsystem, is obtained by subtraction of the lowest
possible physical energy (bound state energy or
lowest threshold energy) of the other subsystem
from the upper energy limit of the full system.

Our example 1 may again serve as an illustra-
tion. Let subsystem A consist of an n-particle
and a neutron. The remaining two nucleons form
subsystem B, which is assumed to be so far away
that the two subsystems do not interact. At the
four-cluster level we then have

x A{y, ,y, ,x, ((; „$;-,)}], (11)

where the prime at the sum symbol again indicates
that some i values are left out in the sum. The
antisymmetrizer in front of the square bracket is
needed, otherwise Eq. (11) would not be compatible
with Eq. (3).

One more word about compatibility of a separa-
tion with the full ansatz. Equation (3) spans a
space from which one will later construct an ir-
reducible representation space for the dynamical
equation. By choosing a probe and using Eq. (6)
one will, in general, exclude certain parts of an
irreducible subsystem space. Without a tensor
force, the triplet deuteron with spin down would be
excluded in the present example if the relevant
nucleon spin states of the probe have spin up. In
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practice, this reduction of the space is a desired
feature. If, for an analytic investigation, the re-
duction is not wanted, one has to use several
probes and add all functions which are coupled to
at least one of the probes.

From Eq. (11) one sees that the asymptotic sep-
aration leads to an ansatz P" which is, save for
an antisymmetrizer in front, a direct product of a
subsystem A space and a subsystem J3 space.

(6ql(ff-E)lq& =o, (12)

where 0 is the given A-particle Hamiltonian. In-
serting Eqs. (4) and (5) we get

(13)

We want to bring this equation into the form: op-
erator x wave function=zero. The states appear-
ing in the matrix elements can be written as

x{(,x, ({,)) = f i((,'{x{{;x({;— '{))Jx;( !{) ()4)

The symbol (, represents all coordinates $,. „
The integral is a multidimensional one

and 6($,. —t'&) is a product of Dirac 6 functions.
Note that the antisymmetrizer A does not operate
on primed coordinates. In Dirac notation, we can
write

I A{4,x&}&
= d{!,'I AH~& ~}&&h,'I x,& (15)

The function space IA{(t&;6X,}& is written similarly:

III. THE N-CLUSTER DYNAMICAL EQUATION

The dynamical equation of resonating group the-
ory is obtained by solving the A-particle Schro-
dinger equation in a space of cluster functions. In
the present case, the wave function is given by Eq.
(4) and we demand that, with this wave function,
the Schrodinger equation is satisfied in the function
space given by Eq. (5). In short notation, the dy-
namical equation reads

lx{(i;xx)) = fx(llx{(i(ll)({llxx (16)

The states
I Ag, f,'}&, for all f and all t", , span the

same function space as IA{p;6&{;}&. Therefore Eq.
(13) can be written as

n+n
' dt,"&A{P;t",}I(ff-E)IA{j,i,"}&&f Ix) =o, (17)

y =1

which is the operator form we are looking for. It
is a matrix-integro-differential equation. Toget-
her with boundary conditions it defines the rela-
tive motion functions g,. ($,.), from which the micro-
scopic A-particle wave function is obtained by Eq.
(4).

The evaluation of the operators

&A{4;t;}l(Jf-E)IAQ, & }&

is straightforward, in principle, provided that the
internal states P,. are given. A classical example
is a —n scattering in no-distortion approximation
with oscillator shell model ground states as ap-
proximate n-particle internal states. " Many other
two-cluster examples are discussed in Ref. 3. For
larger particle numbers, or when distortion cor-
rections are taken into account, Eq. (17) becomes
very complicated. Group theoretical methods are
very helpful, then, to reduce the number of ex-
change terms arising from antisymmetrization.
We refer to the method of double coset decomposi-
tion" and to the generator coordinate method. "
An SU, approach" to multicluster systems seems
to be very promising.

Equation (17) is not yet the final dynamical equa-
tion. We want to treat clusters like elementary
particles, namely as point particles which are
coupled by an interaction. The internal degrees
of freedom of the clusters as well as the Pauli
principle should enter by the interaction, only.
Equation (17) still includes the distortion ampli-
tudes y,. as unknown functions, while we want to
have a theory in terms of the functions g,. alone.
Therefore we eliminate the functions X, In the
more explicit notation of Eq. (4), Eq. (17) reads

(18a)

(18b)i= 1, ... , n.

formal solution into

x(;&x{ix(l)l()&-x)lx{(;(l')&&(!'Ix&+f Jx{!'&x{4,(l)l(xx-x)lx{tx(l')&&(l'Ixi& =o
g =1

x(!&x{(;(l))l(H-x)lx{X;(l')&&(l'Ixx&~ Jx((;&x{(;(l)t&xx x')lx{(i,{"))({lx-x&=0, ,"
=1

The elimination is achieved by solving the second equation for ((,. Ig) and inserting the
the first equation. The solutions of

f i)(x'&+{Pl(;)l(H )i))x{(xx( )&((i'lxi& =0
j =1

(19)

for a, full set of boundary conditions and all energies, allow the construction of a matrix Green's function
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z;,(z, (l', (l)=g ((l'Ix (x))z z, (x ( ))4.
e

(20)

The symbol e labels the spectrum of solutions. It characterizes the boundary condition and the energy
E(e), for which ($, ~&(,

. (e)& is a solution of Eq. (19). Since we do not yet want to introduce a special boundary
condition, such as a boundary condition which specifies the incoming wave, no ic appears in the denomina-
tor. The singularity is just left as it is. We will come back to this point in Sec. VI. With this Green s
function we can formally solve Eq. (18):

((,"Ix&=g ((x'Ix, (x)&z z(,

x g~ x~ e $' d$„"' A Q„$~ H —& A Q~)I" $~" X„

The solution is inserted into Eq. (18a):

(21}

d$," Ay,.$,' H-E A y,.$,".

+ d$~' A Q,-$,' H —E A,.$,". (~" y) e ~ @ d$, X, e

x g j 1(( (A(z( &l(H —z))\(z ( "))( ,"(ld)x=0. (22)

The sum over j in the first term runs over the n coupled channels of the no-distortion part of cluster
space. The sum over h in the second term does the same. We combine the two sums and get

d$~ A Q &3 H —& A Qfg)'

+ d$,"' A P;$,' H-E A Q,(, $,"'
gc e

x&A{j,g }I(H-E)IA{y,t',"}&j&t,"IX)=o (~=1,",n}.

(24)

This is the dynamical equation of the N-cluster system. From this equation we want to derive properties
of composite particle motion and composite particle interaction.

The second term in the square bracket of Eq. (23) starts and ends like the first term, namely with

(A{/, $,'}~ and ~A{(})),$,"}&,respectively. We can therefore interpret the operator

g f z(."(z-z)I«ZA."&&((.'")Ix.(x)& z z( 2 jz(, (x.(x))l(.'&(«Z(. I(z-z)
c=1 E —E(e

as an effective interaction which arises from the
elimination of the distortion part. It may have
poles, depending on whether E(e) lies inside or out-
side of the allowed energy range. When it is sand-
wiched between (A{/;$,'}~ and ~A{Q,$,".

}& this opera-
tor becomes a (nonlocal) matrix potential which
operates on the relative motion states Q&~&().

Equation (23} has the form

o, , (E;t;,r;) = &A{a,t;}l(H-E) I.AH. , t -}&

=(AH, (.'}I(ff- E) le, &,"&. (28)

I et us analyze the operators 0,, and 0„. At
first we consider 0,,. Since H and E are symme-
tric with respect to particle exchange, antisymme-
trization has to be carried out only at one side:

[o„(E)+o, (E)]iy,&
= 0,

1
(25)

From the properly normalized sum over exchange
terms A{/, $,'}we extract 1{/,t','} and call the rest
A'{P,$,'}. Formally, this reads

where 0,~
denotes the first term and 0,

&
the second

term in the square brackets of Eq. (23). The equa-
tion is a coupled channel integro-differential equa-
tion for the relative motion functions ($, ~yP, where

j runs from 1 to n.

A =1 —A'. (2'1)

For the cluster decomposition of channel i, in nat-
ural ordering of particles, the Hamiltonian decom-
poses into an internal part H,. and an external part
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H=H, . + V'+ T'. (28)

+ k, ; (E;(,', $,")—E„, , 5 ((,' —g,") . (30)

The relative motion energy E„, ,- is obtained by
subtraction of the cluster eigenenergies (or expec-
tation values) from the total energy E:

The operator 0„. then reads

o, , (E;$,', g,". ) =((1 —A'){y,.g,')l(H;+ v'+ T' —E)I@,

(29)
From the 1, together with T' we get the kinetic
energy operator for the center of mass motion of
the clusters. From the 1 together with V' we get
an interaction V~,. which is called direct interac-
tion. It is the same expression as what is some-
times called double folding interaction in optical
model theory. When the nucleon-nucleon potential
is local, then this potential is a local one. From
the 1 together with H,. we get a sum of cluster ei-
genenergies or, when H; contains approximate
eigenstates, a sum of cluster energy expectation
values. From A', together with H, , V', T' and E,
a complicated energy-dependent nonlocal potential
kf;(E;g, g,") is obtained. Putting things together,
we have

-k2
o;;( Eh, ,t") =g ~ Ag,",&(5,' —h,")+ p'D, ;($,', t;")

tion between (A{@,.$,')I and IA{p,(,")& we get

o;; (E;k,', $,")

A P,(,' 0 —E (It,y, e

x (P x, (e) I (H E) IA—{)Ie),$,")& . (34)

o„.(E; t;. , t;') =(A{y,.t';)l(H - E) I y, t',"&, (Ssa)

o, , (E;(,.', t,")

&A4;t!)I(H-E)le.x.(e}&E E(,c, =1

x &y,x, (e) I(H —E) IA{y,(,")& .
It has tacitly been assumed that the microscopic
Schrodinger equation has a Hermitian Hamiltonian.
With two wave packets g, and fz, taken from the
ansatz (4) and real energy E we then have

In the two-cluster case, with one-cluster correc-
tion functions, it has been shown in Ref. 3, p. 150,
that such a singular elimination potential produces
a Breit-Wigner resonance whenever the eliminated
state is a virtual bound state; correction states
which only describe cluster deformations will lead
to poles which lie far away from the range of al-
lowed energies.

The off-diagonal elements of the matrix opera-
tors 0 and 0 are energy-dependent nonlocal inter-
actions:

(Soa)
&O) l(H- E) lq, & =(a.l(H- E) IV,&*. (36)

The energy dependence of k, , (E; (,', g,") is rather
simple. In terms of the norm operator K„defined
by

Going through the derivation of Eq. (25) we see
that this leads to the relation

&;(5,', 5 ) =&A'{4;( )I4;5l'&,

it is

(31) Xr, g
O.

, J+ 0 J gg

k;;(E; t", , t',")= k; (&g, &,")+EIf;(h,', k,"),
both k, , and E,. are Hermitian integral operators.

The operator 0,, has been obtained by elimina-
tion of the correction part in wave function space.
It represents the influence of internal degrees of
freedom on the interaction of the clusters. In or-
der to see its structure we start from expression
(24) and carry out the integration over (,"' and g, .
This expression then reads

(32)

(H-E)IAA. x.( »E (, &AH, x,(e))l(H-E).
1

c =1

(33)

With respect to its indices c and k, this expression is a
microscopic separable interaction operator of fi-
nite rank. But, since we have eliminated continu-
ous degrees of freedom, there is also the continu-
ous label e. Sandwiching the microscopic interac-

=p &x, , l(o„.+ o, ,}lx, ,&*. (»)

Since this relation is true for any two wave packets
of our cluster function space, we conclude that

o;, (E; 5;, k f") = oy„(E;t,",t",),
o;~(E; $,', $)') = o,*;(E;k,",5,")

(38a)

(ssb)

with

for all values of i and j. With energy being con-
sidered a given parameter, the interaction of com-
posite particles is Hermitian.

When the dynamical equation (23) has been solved
for a certain boundary condition, the eliminated
functions x, are calculated by Eq. (21) and the mi-
croscopic solution is given by Eq. (4}. Introducing
a column operator (Q&} for shorter notation we get

) (x)=E J x),'l, )x;x, x,')x, )x!) (39)
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x E f d{,"(g„{)l{,")&A{{,{ }l{H—E)IA{p, })) (40)

One can see, here, how the boundary condition on

y, is transferred to the motion of the spectator
clusters in distortion states. From the sum and
integral over e, only those states contribute which
have nonzero overlap with the spectator motion
as described by X,.

With respect to the total center of mass motion,
the separation property of Eq. (23) is the same as
that of the original Schrodinger equation. This is
due to the fact that antisymmetrization has no ef-
fect on the total center of mass coordinate. When
the microscopic Hamiltonian is translationally in-
variant, then the center of mass motion function

(8, ) is a common factor of all functions

}(,($,). While the quantum mechanical interpreta-
tion of a solution }{,($;) is still open, we are cer-
tain that the center of mass function X, has all
properties of a single particle state, save for the
case where the whole system occupies a Pauli ex-
cluded state. This feature will be needed in the
discussion on asymptotic subsystem behavior.

&q(e') ~q(e)& = {i(e',e),
&{|)(e')~H~((e)& = E(e){i(e',e) .

(41a)

(41b)

It should be noted that the orthogonality relation
holds for the full wave function g. This does not
imply that it also holds for the relative motion so-
lution }t, of Eq. (23) or for the solution X, of Eq.
(17). The functions }t, and }{,have been introduced
as expansion coefficients in a nonorthogonal space.
It is tempting to consider X, a quantum mechanical
wave function which describes the relative motion
of composite particles, as well as the center of
mass motion of the system. Sometimes, this in-
terpretation will be allowed. But one always has
to make sure that it follows from the interpreta-

IV. UNITARITY

A unitarity proof for equations based on Eq. (12)
is given in Ref. 3, p. 6 ff. In this proof, the wave
function g is assumed to be any linea, r expansion
with a discrete and/or a continuous set of expan-
sion coefficients. Since the present ansatz is of
that type we can just take over the result.

The solutions of Eq. (12) together with Eq. (3)
are orthogonal to each other (after degeneracy has
been removed) and diagonalize the Hamiltonian:

tion of g as being the quantum mechanical wave
function.

From relations (41a) and (41b), it is concluded
in Ref. 2 that the norm of wave packets stays con-
stant in time, which means conservation of proba-
bility. When, in addition, the function space allows
the construction of initial and final states, one
gets conservation of flux and unitarity.

The critical point in the unitarity proof of Ref. 3
is the assumption that scattering states can be
treated as square integrable states. This assump-
tion, however, is not only made in cluster theory.
In potential scattering theory, for instance, the
problem of non-normalizable states is similar and
the common technique of radius averaging or
asymptotic dampening has the same consequence
as wave packet normalization. The infinite con-
figuration space becomes finite while scattering
states are still considered to have a continuous
spectrum of sharp energies.

A similar assumption will be used in Sec. V when
the asymptotic property of the dynamical equation
is investigated. It will be assumed that it is pos-
sible to physically separate a scattering system
into two subsystems in such a way that each sub-
system has a sharply defined energy, and yet, the
two subsystems do not overlap.

V. ASYMPTOTIC SEPARATION OF THE DYNAMICAL

EQUATION

It has been shown in Sec. II that the full wave
function factorizes into an antisymmetrized pro-
duct of two wave functions g" and g when the scat-
tering system is asymptotically separated into the
two subsystems A and B. It is easy to show that,
as a consequence of Eqs. (7a) and (7b), Eq. (17)
separates into two equations, each one describing
one of the subsystems. We are more interested,
however, in Eq. (23) because this is the N-cluster
equation with eliminated internal degrees of free-
dom.

In order to study the separation property of Eq.
(23) we need projection operators I'" and 1'e, which
guarantee that the two subsystems are confined to
two nonoverlapping asymptotic regions of the 3N-
dimensional configuration space. The two projec-
tion operators are constructed from the solutions
of the two subsystem equations:



700 E. W. SCH MID 21

g [0",, (e")+0,"~(e")]Ig,"(e")&= 0,

Q [o,'(e')+ o,';(e')]Ix;(e')& =o.

(42) &t llX; (E)&"'

=Efxx, r"„'(x "x, ',",)(x,"Ix,(xx))

"Ef« r'")x x"l )(x"i Ix')E),) (46)

We assume that the operators of these equations
are directly derived from the wave function ansatz
of the subsystems A and B, Eq. (8). The labels
e", e denumerate the two spectra, including the
energy eigenvalues E"(e") and Ee(ee). From the
solutions g", (e"), y~e(ee) we get the microscopic
wave functions )))"(e") and gs(ee) by Eq. (39), with

operators Q,. and Q,- instead of Q, The micro;
scopic functions form an orthonormal set, as we
know from Eq. (41a). In terms of microscopic
functions it can be stated more precisely what is
meant by asymptotic separation. Let all functions
g"(e") describe subsystem A as being confined to
some area of configuration space. ' Similarly, let
g (ee) describe subsystem B as being confined to
some other area of configuration space. In order
to get two separated subsystems, the two areas
must not be infinitely large in all directions. We
consider them to be finite and use the same argu-
ment as in the Sec. IV, i.e. , assume wave packet
normalization for scattering states and neglect
the energy uncertainty. The operator I'~ is de-
fined as

IxA gA) ~ x)) dr(f Ax IxA(eA)&
~A"e B

x(g (e )g"(e")Ir&Q,(E;r, (.,")

(44)

for all index values i, j which are present in the
no-distortion part of the sums of Eq. (8). All val-
ues of i and j which are not present in Eq. (8) re-
fer to components of the wave function which are
necessarily zero when the system is separated in-
to the two subsystems. For these values of i and

j we put F",.
~
=0. The operator I'B is defined analo-

gously to I'".
With help from the projection operators r", r

the asymptotic structure of a solution g,. of Eq. (23)
can be analyzed. The set of functions

&x", ')x;(x))"... .,.=E f «, r", , M",. ', x!')(x!')x;Ã"))

(45)

is the asymptotic part of g,. which describes the
motion of subsystem A as a wave packet in some
large, remote area, .

Similarly, the set of functions

is the asymptotic part of a solution y& which de-
scribes subsystem A as moving in one asymptotic
area while subsystem B is moving in another
asymptotic area of configuration space.

The asymptotic property of the dynamical equa-
tion (23) is now studied by asking the following
When does the set of functions ((,'Iy,. (E)&"'e satisfy
Eq. (23) 7 The answer is that one of the following
three statements must be true:

(I) ($,'Iy, (E)&"' is a product of solutions of the
subsystem [Eqs. (42) and (43)]

&4'Ix (E)&"'= &("'Ix"(E")&&&"
I
x'(E')& (47a)

with

E=E&+EB

(ii) (g,'I&(,. (E))"' is a sum (or integral) of such
products, each product satisfying Eq. (47b).

(iii) ($', ~X,(E)& s is identically zero or Pauli-
forbidde n.

For a proof, one has to insert Eq. (46) into Eq.
(23), use the explicit notation of Eqs. (44) and (40),
and evaluate the operator products. It is then seen
that the projection operators I'" and I'B have the
effect that Eqs. (18)-(23) become operator equa, -
tions in a product space. Equation (23) is satis-
field only when the factors of the product space
satisfy Eqs. (42) and (43) under the condition of Eq.
(47b). The detailed calculation is rather lengthy
and may be skipped here. With the asymptotic
separation property, as expressed by Eqs. (46),
(47a) and (47b), we now have a powerful tool to
analyze the relative motion wave function of com-
posite particles as well as their interaction.

At first, we check whether there are unphysical
solutions. Our ansatz, Eq. (3), has correction
functions with a continuous degeee of freedom.
Among the clusters described by the internal part
P,. of a correction state, there is at least one un-
stable cluster, and the relative motion function

y,. is assumed to be completely free. A function

Ag;g, j has all the flexibility needed for an excited
cluster to appear, asymptotically, as a composite
particle of its own. This, of course, is unphysical.
The equation which determines the scattering
state, Eq. (23) together with Eq. (39), must not
allow such "ghost states, " otherwise the theory
would be wrong. Indeed, from the asymptotic
separation property, one can immediately see that
such ghost states will not appear. An isolated ex-
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cited cluster defines a subsystem, but its wave
function does not satisfy the subsystem equation.
From Eqs. (8), (42), (43), and (47a) and (47b) we
see that unstable cluster states will appear,
asymptotically, only when and where they are
needed as correction states in a. subsystem wave
function.

Let us consider, again, the seven-nucleon system
as an example. Choose a separation into subsys-
tems A. and B as discussed in Sec. II. From the
solution Xz of the %= 4 dynamical equation we pro-
ject out an asymptotic part according to Eq. (46).
From Eqs. (47a) and (47b) we see that this part
must be a product of an n-n resonating group wave
function and a wave function satisfying the Schro-
dinger equation of n-p scattering, or it must be
a superposition of such products. The n-n solu-
tion is a distortion corrected scattering state. As
many correction states are coupled to the no-dis-
tortion state as are needed and as are available by
the ansatz. Experience with two-cluster resonating
group theory" indicates that only a small number
of correction states will be needed to obtain quite
realistic scattering states; the no-distortion ap-
proximation, already, is very good.

In our example, we may leave reality and assume
a Hamiltonian which has a bound 'He state. The
solution X& will then contain an n-p-'He breakup
channel. The asymptotic 'He state will satisfy
the subsystem equation. It will be a fully corrected
'He bound state and not just a bound state of neu-
tron and n in no-distortion approximation.

The transition to the microscopic seven-particle
wave function ge(r) is given by Eq. (39). Since
qe(r) is, by definition, a quantum mechanical wave
function, it determines the flux as well as the S
and the T matrix.

VI. INTERPRETATION OF THE WAVE FUNCTION

AND CRITICAL REMARKS

The Schrodinger theory, with a phenomenological
interaction, is commonly applied to particles such
as nucleons, which are by no means structureless
point particles. In most papers, it is tacitly as-
sumed that the obtained wave function has a prob-
ability interpretation, i.e. , the absolute square of
the wave function is considered to be a probability
density. When discrepancies arise with charge
form factors or Coulomb energy differences, one
generally believes that something is wrong with
the off-shell behavior of the phenomenological in-
teraction. Some people felt uneasy, though, with
the whole concept of a Schrodinger theory with
phenomenological potentials. Noyes for instance,
suggested throwing overboard the off-shell am-
biguity. When the off-shell behavior of an inter-

action is ambiguous, why not fix it in such a way
that particles move on the energy shell all the
time? The consequence of this idea is a boundary
condition model in zero range limit.

The present theory is based on the assumption
that a nonrelativistic Schrodinger theory with fun-
damental interactions is valid at some microscopic
level. It may be the level of quarks in hadron phy-
sics, or the level of point particles with mass and
charge in atomic physics, or the level of nucleons
in cluster physics. As an illustration, the latter
example is used in this paper, although the theory
is more general. From the first level we get to a
second level by deriving a nonrelativistic quantum
dynamical wave equation for composite particles.
At the second level, quantum dynamics is again
described by an equation which is similar to the
Schrodinger equation. There are, however, some
important differences. The number of composite
particles is not conserved, because N composite
particles are coupled to (N 1), (N -2), and s-o on.
The interaction, even in the case of a very simple
microscopic interaction, is as complicated as the
realistic nucleon-nucleon interaction has become
in the course of many years of investigation (non-
locality, dependence in various quantum numbers,
mixture of repulsion and attraction, three- and
more-body forces). The most important feature
is that the wave function is no longer a probability
amplitude in all regions of configuration space.
Let us take a closer look at this feature.

The final solution, in the present theory, is the
microscopic wave function g. Since the validity
of Schrodinger theory has been assumed at the
first level, this function has a probability inter-
pretation. In case of doubt, we always have to go
back to this mircroscopic wave function g. From
it we can get the S and T matrix, because the flux
of particles follows immediately from the c.m.
velocity and c.m. probability density of asympto-
tic subsystems. At the second level, the wave
function is a set of functions Xy X2 X These
functions have been introduced as relative motion
functions of undistorted clusters, before antisym-
metrization. This indicates that they might have
something to do with a quantum mechanical wave
function describing the motion of composite par-
ticles. But we had to introduce excited clusters
also, with functions Xiy X29 ~ y Xg of similar na-
ture. The introduction of these functions is a con-
sequence of the fact that composite particles have
internal degrees of freedom. According to Eqs.
(18a) and (18b), the internal degrees of freedom
are coupled to the relative moti( ~ of the compo-
site particles. In the final equation, Eq. (23), the
internal degrees of freedom are no longer present
explicitly. Their effect has been incorporated in-
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to the interaction. After elimination of the distor-
tion degrees of freedom the unknown functions

must be considered a storage of infor-
mation, mainly. The information is obtained by
solving Eq. (23), with boundary conditions, and is
then used to determine the eliminated functions
and the microscopic solution g. Moreover, the
solutions g1 g2 p are ambiguous, to a certain
degree, because part of the motion of undistorted
clusters can be packed into distortion space (re-
call that orthogonality of basis functions was not
required). We will investigate this ambiguity in
more detail in the next paper. Here it is enough
to see that g1 X is definitely not a probability
amplitude of the density of clusters in the region
where clusters interact. It is planned to show by
a numerical example that form factor discrepan-
cies and Coulomb energy discrepancies of similar
nature as those encountered with nucleons must
arise when an N-cluster relative motion function

y„.. . , X„ is treated as a quantum mechanical wave
function at short cluster distances.

Asymptotically, however, the solution g1
of Eq. (23) does become a quantum mechanical
wave function. This conclusion follows from the
asymptotic separation property, together with the
fact that center of mass motion functions are sin-
gle particle wave functions. Whenever a cluster,
or a bound state of several clusters, has left the
region of interaction with other parts of the system
it may be considered a subsystem, denoted by A.
The nonzero components X». . . , g"„of the wave17''' y n~
function y„.. . , y„satisfy Eq. (42). These compo-
nents still have the center of mass motion y, (g, )
of the full system as a common factor. But, since
subsystem A has now become a composite particle
system of its own, the center of mass motion

($,
" ) of the subsystem, also, is a common fac-

tor to X1 ~ g & Particle exchange within the

subsystem has no effect on the coordinate $," . Un-

less antisymmetrization of the full system has a
long range effect on the subsystem, the subsystem
c.m. motion g", ((," } has the properties of a single
particle state. Without such a long range effect
and with a normalized internal motion of subsys-
tem A, the function

be no trouble, in practice, because such states are
not generated by Eq. (23},unless the initial condi-
tion is chosen carelessly. But one should be aware
of the fact that states of wrong exchange symmetry
are not excluded by the dynamical equation; they
satisfy the equation because they are trivial solu-
tions of the microscopic problem.

In this connection it is interesting to see what
one gets from Eq. (23) when N becomes equal to A.
One might expect to get back the usual Schrodinger
equation because, for N=A, the ansatz (3) has no
clusters. But we do not get the usual Schrodinger
equation. The reason is that Eq. (23) has a knowl-
edge of exchange symmetry while the Schrodinger
equation has not. This difference is demonstrated
by an example of two noninteracting fermions in a
symmetric spin state. After separation of the cen-
ter of mass motion, Eq. (23) reads, in this case,

d r" A-, , —E [5(r'-r") —5(r' +r")]y(r")=0,

(49)

while the Schrodinger equation reads

[(-g'i'm)~;, -E]g(r ) =O. (50)

g(r) = exp(ig F)+ exp( —iR r), (52)

no matter what the value of K is. Equation (50) is
satisfied by this function only for IKI = IkI. Equa-
tion (49) is a wave equation for two fermions in a
symmetric spin state, while Eq. (50) is a, quantum
dynamical equation for just two particles. For the
two fermions, the function of Eq. (52) is a trivial
solution for all K, because it vanishes upon anti-
symmetrization. In Eq. (49) the long range effect
of antisymmetrization is expressed by the nonlocal
potential of infinite range:

Both equations have the same antisymmetric solu-
tion

y (r) = exp(ikr) —exp(-ikr), (5l)

with IkI = (Emln')' '. But the symmetric solutions
are not quite the same. Equation (49) is satisfied
by all functions,

p(&.",.) = Ix". (&.". .) I' (48) P(r', r") = [(3'/m)A-, , +E]6(r'+ r") . (53)

expresses the probability density of finding the
center of mass of subsystem A at the position $",

The total antisymmetrization has long range ef-
fects when two or more clusters are identical. In
this case, some of the partial waves are Pauli-for-
bidden and must be omitted when the probability
density is calculated. An example are the odd-par-
ity states in an e-e relative motion. There will

Such potentials also appear in Eq. (23) when clus-
ters are identical. Their presence is not disturb-
ing, once their meaning is understood. Basically,
Eqs. (49) and (50) are the same.

A few critical remarks on the present theory may
be appropriate. We did not bother to prove the
existence of a unique solution of the dynamical
equation. With a second order differential equa-
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tion, uniqueness is mainly a question of boundary
conditions. Even in example 2 of Sec. II, where
the function space is overcomplete, uniqueness
can probably be achieved by the boundary condi-
tion. We also did not prove the existence of the
operators which appear in the dynamical equation
(23). Formally, they are defined. But their defi-
nition includes the construction of a Green's func-
tion in a certain restricted function space. In or-
der to construct the Green's function for an N-
cluster problem, one has to be able to solve the
(N I) -cluster problem, and that leads back to the
question of existence of a unique solution. At this
point, we have to recall that the present theory is
an extension of a well-established, existing theory.
For N=2 all distortion functions of Eq. (3) are
square integrable, except for center of mass mo-
tion, and Eq. (23) becomes identical to the reso-
nating group equation. In this case, many numeri-
cal examples have been studied, and there is no

doubt about the existence of operators and wave
functions. Because of this, we are able to solve
N= 2 equations and construct the Green's functions
needed for N=3. Objections may arise because
we formally left the singularity in the Green's
function (20). In the N= 3 case, it is clear what

will happen. When the eliminated state is a square
integrable subsystem correction multiplied by the
center of mass motions of the subsystem and by
the wave function of the spectator cluster, then we
will get a singular elimination potential for the
subsystem. The singularity of the potential will be
caused by a denominator Z —( jr(H( p), where the
bar refers to the subsystem arid Fp is the compound
or distortion state of the subsystem. The effect
of such a potential is well understood (see Ref. 3,
p. 150). It leads to a Breit-Wigner resonance of
the subsystem. The resonance will be narrow or
wide, inside or outside of the allowed energy re-
gion, depending on the value of ( j&~7F)cp) and on the
coupling to the open channel. The coupling to the
relative motion wave function of the undistorted
clusters dislocates the singularity of the elimina-
tion potential to the complex energy plane, where
it becomes a pole of the 8 matrix. In the N= 3
case, the Breit-Wigner resonance will be coupled
to the motion of the spectator cluster. At large
distances, the spectator will be described by an
internal function and by either an incoming, an
outgoing, or a standing wave, depending on the
boundary condition which has been imposed on Eq.
(23). Numerical calculations for N= 3 using a
separable interaction approximation together with
a Faddeev technique are presently under prepara-
tion. For N~ 4, the theory is still a formal one.
It allows, however, the investigation of general
features of composite particle dynamics.

VII. CONCLUSION

A nonrelativistic quantum dynamical theory of
composite particles has been derived from the as-
sumption that the nonrelativistic Schrodinger the-
ory with a given Hamiltonian is valid for the mo-
tion of the constituents. For two composite par-
ticles, the present theory is identical to resonating
group theory. For more than two composite par-
ticles, the theory deviates from what is currently
considered resonating group theory by the use of
distortion states with continuous degrees of free-
dom. This new feature allows correct scattering
states also in the asymptotic region where two or
more composite particles together may form an
incoming or outgoing state.

The dynamical equation formally is a multichan-
nel Schrodinger equation with a matrix of nonlocal
and energy-dependent interactions. The wave
function is a multicomponent function of the rela-
tive distances of the composite particles and of
their center of mass coordinate. The total center
of mass motion separates and may be omitted.
All internal degrees of freedom of the composite
particles as well as all Pauli effects are incorpor-
ated in the interaction.

Asymptotically, the relative motion wave function
of the composite particles becomes a probability
amplitude and the flux of composite particles fol-
lows directly from this function. This is true,
also, ,when two or more composite particles form
a bound state and the relative motion of the center
of mass of this bound state is considered.

The relative motion wave function of composite
particles has no probability interpretation in re-
gions where the particles interact. It determines,
however, the microscopic wave function which de-
scribes the motion of the constituents and which
a priori has a probability interpretation. The dis-
tinction between internal degrees of freedom and
relative motion degrees of freedom is not unique.
As a consequence, an off-shell ambiguity of the re-
lative motion wave function arises in the interac-
tion region. This off-shell ambiguity has a strik-
ing similarity to the off-shell ambiguity of nu-
cleon-nucleon wave functions as described, for in-
stance, by Noyes. ' Composite particle theory may
serve as a nonrelativistic model to study form fac-
tor discrepancies and Coulomb energy discrepan-
cies which are based on a probability interpreta-
tion of the relative motion wave function within
strong-interaction distances.

The present composite particle theory is valid
in an energy range which has an upper limit. The
limit is given by the threshold of the first channel
which is not explicitly taken into account as an
open channel. Without this energy limit the theory
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goes over into a special version of Schrodinger
theory. The special version is characterized by
the fact that all wave functions with Pauli-excluded
exchange symmetry are redundant solutions. This
is a consequence of the incorporation of the Pauli
principle into the interaction.

The present theory is described mainly in terms
of nuclear fragments as composite particles. Its

validity, however, is more general and covers
atomic scattering and quark physics. In atomic
physics, trouble may arise, in practical applica-
tions, from the large number of needed distortion
functions. In quark physics, we are still missing
a trustworthy microscopic Hamiltonian as well as
the confirmation that a nonrelativistic theory is
sufficient.
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