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Explicit formula for hadron-nucleus elastic scattering in the eikonal approximation
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%'e obtain a closed form asymptotic approximation to the eikonal amplitude in hadron-nucleus scattering
which agrees remarkably well with numerical evaluation of the full eikonal amplitude. The characteristic
features of the scattering are dominated by the nuclear edge —its radius and thickness. The radius

determines the oscillations and the thickness the exponential decrease with momentum transfer of the cross
section. By developing systematic corrections to our asymptotic approximation we can separate the effects of
"hard" and "soft" collisions in the multiple-scattering sense.

~NUCLEAR REACTIONS Closed form eikonal amplitude for hadron-nucleus scat-
tering.

I. INTRODUCTION

High energy elastic hadron nucleus scattering
is well described by the eikonal approximation. '
For moderate momentum transfers hadron-nu-
cleus elastic scattering cross sections show reg-
ular oscillations superimposed on an exponen-
tially fall. ing average. The minima in the oscil-
lations, though often deep, do not go to zero and
the entire oscillatory pattern disappears at suf-
ficiently large momentum transfers. All these
features can be accounted for in the eikonal ap-
proximation by straightforward numerical eval-
uation. However, these numerical calculations
give little insight into how the various empirical
features emerge and on which aspect of the input

they depend. Our purpose here is to give a
closed form, analytic, nonperturbative evaluation
of the eikonal amplitude for hadron-nucleus elas-
tic scattering. This cannot be done exactly, but
we show that our approximation correctly accounts
for all the features of the data mentioned above,
agrees with the full numerical. evaluation for a
wide range of momentum transfers, and is amen-
abl.e to systematic improvement.

The principal feature of high energy hadron-
nucleus elastic scattering, the periodic minima,
suggest diffraction scattering from a circular
object, but it is not at all clear p priori that the
other features also have a purely geometric origin.
Even the existence of "diffraction minima" is not
a certain sign of the dominance of geometry over
interaction mechanism. In P-e scattering, for
example, the minimum arises from the inter-
ference of single and double scattering and there-
fore depends essentially on the interaction
strength. In fact we will show that high energy
hadron-nucleus elastic scattering is governed
primarily by the shape of the nucleus, but that
since the nucleus is not "black" and since it does

not have sharp edges, that shape reflects itself
in more subtle ways than in classical black sphere
diff raction theory.

The oscillations in our picture of hadron-nucleus
elastic scattering do arise from the nuclear
radius c, and they are asymptotically periodic
in qc where q is the momentum transfer. Since
diffraction from an object with sharp boundaries
gives oscillations but a power law decrease in q,
we expect the exponential. decrease to be related
to the diffuse edge of the nucleus. We find that
the amplitude falls like exp(-wPq) where P is the
skin thickness. This agrees with data and pro-
vides a simple explanation of the fact that the
exponential falloff does not depend on the nucl. eon
number A of the target. We also find the same
falloff for the electromagnetic form factor since
both are governed by the same "geometric" con-
siderations. ' This is to be contrasted with p-a
and e-a scattering where the strong and electro-
magnetic scattering have different forms due to
the fact that the strong scattering is not dom-
inated by the shape of the alpha particle. In our
picture this would be related to the absence of an
"edge" in the alpha particle. We also show how

a combination of Coulomb scattering, the phase
of the elementary hadron-hadron amplitude, and
higher order terms in the hadron-nucleus scat-
tering fill in the minima and finally cancel the
oscillatory behavior completely for large q.

All of these features arise from the shape of
the nucleus, which we describe by a Fermi func-
tion. The principal feature of the density that
enters is its rapid variation near its surface or
edge. Such a rapid variation can be thought of as
arising from a singularity of the density function
at some nearby complex point. We find that the
dominant momentum transfer dependence of the
scattering amplitude in the eikonal approximation
is given by the contribution of that singularity to
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fhe eikonal integrals and that that contribution can
be evaluated (using the method of steepest de-
scents) explicitly. Systematic corrections to the
first, asymptotic contribution can also be eval-
uated. Although we explicitly use the singularity
structure of the Fermi function in our evaluation,
it is clear that any function that represents the
nuclear shape will have similar features, and that
our result therefore does not depend on some
expl. icit and perhaps pathological feature of the
Fermi function.

In Sec. II we begin by studying the ordinary
form factor of the Fermi function. The features
of oscillation in an exponential envelope are al.-
ready present here, and how they arise from the
nearest singularity of the Fermi function is
particularly transparent. We emphasize here that
although the Fourier transform of the Fermi func-
tion eventually has a power law falloff, it has a
large region of exponential. decay because the
power law part has a small coefficient. This is
reminiscent of the theory of decaying states. In
Sec. III we extend the analysis to hadron-nucleus
elastic scattering in the eikonal approximation.
We show how, exploiting the nearby singularity of
the Fermi density function associated with the
rapid density variafion at the surface, it is pos-
sible to obtain the leading large q behavior of the
eikonal amplitude. We then discuss the general
feaf.ures of the result: how the oscillation and
exponential fall. off develops, how Coulomb scat-
tering and nongeometric terms in the amplitude
fil. l in the minima, and the A dependence of the
result. In Sec. IV we present a survey of system-
atic correcfion terms to the result of Sec. III.
In particular, we see how the result can be infer-
preted in terms of "hard" or "soff," scattering
and what dimensionless parameters control the
expansion. Many of the more technical results
needed for Sees. III and IV are derived in

Appendices. We conclude with Sec. V which sum-
marizes our results. There we show how wel. l.

our results compare with full numerical evalua-
tion of the eikonal cross section. We also discuss
further avenues for investigation suggested by
our work.

It should be noted thaf, we have little to say about
the interesting question of why these eikonal ap-
proximations work so well. Our only contribution
to that subject is to have an expl. icit formual for
the eikonal amplitude which at least permits
examination of its ingredients.

II ~ THE FORM FACTOR

The form factor E(q) is the Fourier transform
of the single particle ground state density p(x).

It is defined by

normalized to E(0) =A, the number of nucleons.
For p(r) we take a Fermi distribution

pz(r) = p,/(I +exp[(r c)/p])l (2)

where c is the radius parameter. We will refer
to P as the skin thickness parameter although
strictly if. is the diffuseness parameter. This
gives

4m
E(q) = — r dr sinqr p~(r)

0

4m
= —p ImE0

(3a}

(3b)

where

e""rdr t+e'" '"
0

(4)

We evaluate the integral I by deforming the inte-
gration path into the first quadrant of the complex
r plane. ' For Heq~0, the contour at ~ makes no
contribution but the function (I+el" '

)
' has

simple poles in the first quadrant at x = b„= c
+(2n+ 1)iaP, n =0, 1, 2, 3 . . . . The residue of
(1+el" 'l

)
' at each of these poles is -P. We

may therefore rotate the contour of integration in

(4) to the positive imaginary axis but must add
in the residue at the poles passed in that rotation.
We find

t"
I=-2mP+b„e'"~+ e'~rdr (1+e'" '~)

n=0 0

(5a)

=S +I, , (Sb}

( 1)II+1 tlclN

I1111 2gq~ [(g2 2]2 (6)

Since S [Eq. (6)] decreases exponentially for large
q, while Imf, decreases like 1/q', the behavior
of E(q) for large q is 1/q from Imf, . This

where b„=c+ (2n+ 1)ivP, n =0, 1, 2, 3.. . . S of (5)
can be summed to give

ac
S =-mq-

dq sinhwPq

To evaluate I, we change variables and get

xdx
1 -cd ix/Is

0

which can be evaluated by expanding the denom-
inator since

~
e ' e' )&I all x. Recalling that

(3b} requires only the imaginary part, we find
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power law behavior is associated with the small
r behavior of p(r). [In general E(q)-q " ' for
large q where n is the first nonvanishing odd
derivative of p(r) at r = 0.] However, the power
behavior of ImI, carries a small coefficient
(e '

) and hence for a considerable range of q,
E(q) will be dominated by the exponential falloff
given by S. For small q all the poles contributing
to S are important, but for intermediate q, only
the closest pole is significant. More explicitly
(and up to terms in lnq) if q is in the regime

1 C—«q «
m'p wp

width for decaying states) is small compared to
the real part.

III. THE STRONG FORM FACTOR

A(q, k}=t —F,(q)
. ky

(1la)

with

The hadron-nucleus elastic scattering ampli-
tude A can be expressed in terms of the normal. -
ized strong form factor E, by'

the form factor can be represented by

8m2pg
E(q}= e ' '(vP sinqc —c cosqc), (10)

where J, is the standard Bessel function, q the
momentum transfer, k the projectile wave num-
ber, and y is determined by

which is the contribution from the first pole of
S only.

One can use the expression (10) for E(q) to
transform back and obtain the corresponding x-
space density. However, this is not particularly
instructive since we are not claiming that that
new density is a good approximation to pr of (2).
It is not. For example, the new density is not
even positive definite. Rather we are claiming
that for a wide range of q, (10) is a good approx-
imation to the Fourier transform of p~. In par-
ticular, we note the two principal features of (10).
It has an exponential falloff with a range governed
by mP, where P is the skin thickness, and it has
oscillations with a periodicity determined by c,
the radius. Precisely those properties will be
carried into our discussion of hadronic diffrac-
tion scattering. They arise from the dominance
of the nearest singularity of p(r) associated with
its edge. The skin thickness is the imaginary
part of the singularity position and the radius its
real part. The fact that the density is character-
ized by such a singularity, or at least a corre-
sponding rapid variation, is a general feature of
the shape of the nucleus and not a special or
pathological property of the Fermi distribution.

We have also seen that our Fourier transform
has a power law falloff for sufficiently large q,
but that that falloff has a very small coefficient
so that there is exponential behavior for a large
range of q. Dominant exponential behavior for
functions that are not asymptotical. ly exponential
is wel. l known in the theory of decaying states. In
that case the familiar exponential time decay l.aw
goes over to a power law for sufficiently long
times, and for precisely the same reason as in
ours. This exponential dominance arises because
the imaginary part of the singularity position (the

(12)

where &„, and r are the elementary hadron-nu-
cleon total cross section and ratio of real to
imaginary part respectively. The profile func-
tion t(b} is given in the eikonal approximation by

(13)

where p is the mass distribution after folding with
the elementary interaction. In the following we
will assume that p is a Fermi distribution as in
E(I. (2). F, is normalized so that it reduces to
F(q) of (1) for small y.

It is not. our purpose here to discuss the deriva-
tion of (11b) and (13}or its range of validity.
Rather we take it as given that (lib) and (13) give
a remarkably good account of hadron-nucleus
elastic scattering over a wide range of projectile
type, incident energy, and momentum transfer.
This agreement is usually obtained through de-
tailed and often complicated numerical evaluation
and therefore the way in which the answers re-
flect the physical input is obscure. We will give
an approximate asglytgc evaluation of (lib) which
will permit the dependence on input parameters
to be read off and the physics content of the answer
to be explicit. In this section we will obtain only
the leading large q approximation to (lib) with (13)
using the method of stationary phase, but in
Sec. IV and the Appendices we show how correc-
tion terms may be systematically obtained. We
will see in Sec. V that away from the forward
direction, the leading large q approximation with
first corrections agrees very well with exact
numerical evaluation. We now turn to our evalua-
tion of (lib). For finite q we can drop the "one"
term in (lib} (which contributes only in the for-



650 R. D. AMADO, J.-P. DKDONDER, AND F. LENZ 21

ward direction) and using the relation between
Bessel and Hankel functions we have

with

g (b) =iqb —yt, (b) (2o)

E.(e) -J =I(-('"(~)) (('*'(e)))&&)8 "'"
0

= —(G(q, y)+G*(q, y*)),2r

(14)

(15)

(16}

with

where in going from (14) to (15) we used the fact
that B ' and H ' are complex conjugates and that

y is the only other complex quantity under the
integral in (14). The integral for G can be de-
formed into the first quadrant of the complex
b plane because H ' provides exponential damp-
ing at infinity for Imb) 0. For a Fermi distribu-
tion, the profile function t(b) has singularities
at b =b„=c+(2n+l)twP and therefore the integral
for 6 may be decomposed into the contribution
from these singularities and a background or end

point contribution coming from the integral aI.ong
the imaginary axis. As in the form factor case
that end point contribution wil. l lead to a power
law falloff in q but with a very small coefficient.
We will therefore neglect it for now and return
to its calculation in the correction section (IV)
where we show that its coefficient is damped con-
siderably over the end point contribution of the
form factor by an exponential penetrability factor.

The contribution to G from the singularities
of t(b) we call G,. Since that contribution comes
at finite b, we can use the asymptotic form of the
Hankel function to evaluate it for large q. We
have therefore

and where now the contour C, may be taken to
run from - to +~ and passes through the saddle
point. We find this stationary point of g„call
it b, [go(b, }=0] and expand go around it,

g, (b) —=g.(b.)+
2

* g."(b.).(b —b, ) (21)

Using (21) in (19) we must choose our integration
path so that Hego'(bo) &0. We can then integrate
(19) with (21) to get

I,/2

G.(q, y) =-;,
(b )-&80 S

gerx exp ——-yt (b,) +g, (b,) (22)

dg
PPQ

g (z2 ~b2))J2 (23)

which is singular at b =b„. The singular part of
(23) comes from z near zero. It can be evaluated

by expanding the square root for z «b. This gives
for the singular part of (23)

To express this in terms of the parameters of
the Fermi distribution and the interaction requires
that we find t(b, ), b„g,(b, ), and g,"(b,) We .now

turn to their evaluation, but the reader interested
only in the result can skip to Eq. (40) and the
subsequent discussion of qualitative features.

We saw in Sec. I that the Fermi distribution
pr(r) has simple poles in the first quadrant
of the r plane at r =b„—= c+(2n+1}xip, n
=0, 1, 2, 3. . . and that the residue of p(r) at these
poles is -p0p. The contribution to the pole at
b„ to t(b) comes from the integral

g(b) =iqb —yt(b), -2g i PP0b x/2 )Im(2b(b b)) )0 (24)

where the contour C in (16) encircles the singular-
ities of t(b} in the first quadrant. We evaluate the
leading contribution to (16) by assuming that the
singularity of t(b) nearest the real axis, b = b„
dominates. We write Im(b ' —b')' ) 0

(b 2 b2)1/2 ) )) (25)

Near b =b„we can write 2b =b+ b„and b =b„ in the
numerator and rewrite (24) as

t(b) = to(b) + t(b), (18)

where to(b} is the part of t singular at b =bo and

E(b) is analytic at bo We now .evaluate (16) by
deforming the contour to pass through the saddle
point or stationary phase point of g(b) associated
only with the singularity at b0. Since that saddle
point is near b =bp we evaluate slowly varying
parts of (16) at b =b, to give

This has the same singul. ar part at b =b„and the
new singularity introduced at b =-b„ is of no
concern to us because we are integrating in the
upper half plane. We see from (25) that t(b) has
essential singularities at b =b„and that as we
extend b into the first quadrant, the first of
these will. come at b,. Therefore we have for
t, (b)

b
G,(q y}=—e "' "' o) (ibe'o (1.9)

2 1Ttg
0

(26)
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with (26) for t0(b) in (20), the condition for a
stationary point of g0 [g,'(b,}= 0] becomes

1 2b„P
t (r) =Po

1 (r-c)l() + 2 b 21+8 -b (3 5)

i nb, b0

(b
2 b 2)3/2 (27)

u = 2n yPp0. (28)

where we have introduced the dimensionless pa-
rameter

The form of the singular term subtracted out on
the right in (35) corresponds to going from (24)
to (25) and again introduces a singularity at
r = b0 that does not concern us. Making the vari-
able change (z'+b, ') ' =y+ b, in (34) and using
(35) we find

For large q, (27) requires that b, be near b,.
We write

b, =b0+5

and to lowest order in 1/q find

(29)

p(b) 2
~t" (y+bo)dy

'~. (y'+2b. y)'~

2boP
1-e""+y'+2b, y

' (36}

2g, X/3

n=01 2
2 q2

To this same order in 1/q we find

ge)(b )
3 $$

(30a)

(30b)

(31)

(37}

with

1 "dt 1+ rz
vm 0 ))z (1+2rz)'"

where we have explicitly used the fact that b,
=c+imP to transform the exponential term.
Changing variables again to z =y/p we can write

&(b.) = p.(2b.Pv)"f(T)

g0(b. ) =iqb. + 2cr'"(qb. )' e"" (32)

and

+-2/3 - $r /6

g,"(b, = -3q'
0

It remains to find t(b0), the finite part of the
profile function. It should he noted that in (22},
t(b0) enters only through the factor exp[-y&(b )].
It introduces no momentum transfer dependence
and only a trivial energy dependence via y. It is
important therefore only in setting the overall
scale of t",{q,y).

f(b0) can be defined in terms of the nonsingular
part of p(r), p(r) as

(0t,)=z I (z((**+),')"*)z*,
0

where

(34)

The branch of the —,'rd root, that is, the value
of n, to be taken in (30) must satisfy Im(b, ' —b,') '
& 0 [see (26)], and we must be sure that the path
we took in obtaining (22) corresponds to Reg'(b, )
&0. For our case these two conditions are equiv-
alent. For most applications, for example proton
scattering from a medium or heavy nucleus, only
the n =0 root will satisfy the condition. In the
following we will keep only the n = 0 root, but it
must be kept in mind that the appropriate root of
(30) depends on the physical input parameters.
Keeping only the n =0 root gives, to leading order
in q,

1 1
) - e' z(l ~ —,'e*l} (38)

with T =P/b, = P/c.—Since T is small, we expand

f(r) in an asymptotic series in powers of r (Ap-
pendix A). The first term can be evaluated nu-
merical. ly to give

1 "dt 1 1
f(0) = — —,+ — =1.460,&v, )(z 1 —e' z

(39)

+iqb, +-2a2 '(qb, )'"e" '

(4o)
to leading order in 1/q.

Let us now turn to a qualitative discussion of
(40) and what it predicts for the cross section.
In particular, we are interested in the behavior
with momentum transfer, interaction strength,
and target size or A.

Let us begin by assuming y is real. , that is,
that the elementary hadron-hadron ampl. itude is

which is a good approximation for most nuclei.
In other cases we can use our asymptotic series
or numerical evaluation. Since t(b0) only deter-
mines the cross-section scale, and since it de-
pends only on the size of the nuclear target and not
on energy or momentum transfer, either of these
choices is reasonable and does not significantly
compromise our goal of giving an analytic expres-
sion for F,.

In terms of (32) and (33) we have finally for (22)

~~'q-'"b.'" S~.
G, (q, y} = &

' exp i —yt(b —)
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pure imaginary (12). Then the cross section for
hadron-nucleus scattering is proportional to the
square of the real part of G (40) via (15). As a
function of the momentum transfer q this quantity
wil. l oscillate and will in fact have zeros at the
points where the cosine of the phase of (40)
vanishes. These are given (for real y) by

—+qc+ —,
' iz'~' Im(qb, )' ' e"~' —Imyt (b,)

=x/2+nv, n=0, 1, 2, . . . . (41}

With 50=c+i mp and c)) mp this becomes

—+qc+ —,iz ~(qc)'' = —+nw.
5 1T 3»»3 1T

The zeros therefore depend only on qc (recall
that c is the nuclear radius). For qc large they
are evenly spaced with distance between zeros
&q given by v/c as it is for the electromagnetic
form factor. However, the entire pattern is
shifted by the constant phase factor 5v/6 and
modified by the —, n' '(qc)' ' term. For typical
nucleon-nucleon amplitudes at a few hundred
MeV we take o'„, =40 mb. Combining this with
pa=-,' fm ' and P=0.54 fm gives e —= 2nyPp0=1. 13.
Thus a is of order 1 and the (qc) ~ correction
term is neither anomalously large nor small.
As a function of q, the oscillatory behavior is
modulated by an overall exponential factor from
the iqb, of exp(-qwti) again as in the electromag-
netic case. These features of oscillatory behavior

I

ii}t (b), (43)

where i}=Ze'/v, v =k/(m'+k')'k and t'(b) is the
profile function for the Coulomb interaction folded
with the density. ' Since t '(b) is a smooth function
of b, the stationary point is not modified and we
need only evaluate t' at 5 =b„ the singular point
of the density. In Appendix B we evaluate t'(b, }.

Including the effect of t'(b, ) modifies (15) to
give

in an exponentially falling envelope are well
known in nucleus scattering. In fact the universal
exponential. falloff is more clearly seen in the
data than one might expect from our result. We
see from (40) that the magnitude of G, has a q
dependence determined by the product of exp(-iiPg)
and q

' ' exp[(3 P3/4)(iAb, }i3]. Remarkably this
second factor has very little q variation over the
range of q values usually studied since the fal-
ling q

' ' is compensated by the rising exponen-
tial. This is essentially a numerical accident.
It should also be noted that in the electromagnetic
form factor case (Sec. II) there is another factor
of 1/q in the amplitude that makes the falloff
slightly faster than exp(-vPiq).

Both a real part of the elementary amplitude
and the Coulomb interaction will fill in the zeros
of the cross section. The effect of the Coulomb
interaction is especially important for scattering
on a heavy nucleus. Within the eikonal approxima-
tion the Coulomb interaction is easily included by
adding to the strong profile function we have been
considering the Coulomb contribution

(q)e ieRei (eoi(G(qy)e™Q+Gif(q

ye�)ee

i i (eo)) (44)

(45}

If we also include the effect of a real part of the elementary amplitude, which then makes y and e com-
plex, we get, using (40),

~~ ~»3q-~»c»
F, ,(q) = — exp -ii}Ret'(b, ) —qvp

where the c on F signifies the addition of Coulomb effects. We see from (44) that only the imaginary part
of t '(b, ) concerns us and explicit evaluation yields

Imt '(bo) = -2 arctaniiP/c+8((ti/c)' ') .

—y Ret(b, )+ —,'(qc)' 'cos —(Rea' '+i Imn' ') [e e'+ e '~ e '], (46a}

where

8 =qc+ —+ 2(qc)' ' sin —Reix' ~ —y Imt(b, )

and

p =q Imt '(bo) —2 (qc)'~' sin- Ima t',

(46b)

(46c)

I

and where we have approximated baby c in most
places. The factor in the square brackets is respon-
sible for the oscillations in the cross section and its
minima are zeros if p=0. They come when
8=v/2, 3w/2, . . . . For p small the positions of
the minima are not significantly altered but they
are filled in. For p small the square brackets be-
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come 2p at a minima. If lm& =0, this filling will
be due to the Coulomb force alone and the factor
in the square brackets at the minimum becomes

2q lmt '(bo) —= -4r}wp/& (47)

using (45). Hence the Coulomb force produces a
constant (q independent) filling of the minimum.
Since q-Z and c-Z'' the filling goes like Z 3 in

the amplitude. As is clear from (46c) the effect
of a real part in the fundamental amplitude com-
bined with the Coulomb interaction will be to tend
to fill in the minima if both correspond to attrac-
tion or repulsion, but they will. cancel if the
forces are opposite. However, the strong inter-
action effect grows with q like (gc) ' while the
Coulomb part of p is q independent. Thus even-
tually the ImoP ' form will dominate and in fact
for sufficiently large q, p will no longer be smal. l
and the oscillatory behavior of the cross section
will disappear entirely. ' This is seen experi-
mentally but the eikonal formal. ism is presumably
not sufficiently reliable at the large angles in

question for our calculation to be more than
suggestive.

For discussing the dependence of our result
on target size, or nucleon number A, it is con-
venient to return to the case of Imy =0 and no
Coulomb interaction. The A dependence of (40)
enters only through bo=c+imP since c-A'~'. y
and a are A independent and it should be recalled
that for proton-nucleus scattering n is of order 1.
The A dependence of the oscillatory behavior can
be read off from (41). The A. dependence of the
overall factors for fixed (qc) come from the b,' '
and the factor of exp[-yRet(bo)]. We take from
(28), (37), and (39)

yf(b, ) =ye, (2b,Pv)"'f(T)

=a f r =a x15. (48)

Hence F, depends on A for fixed (qc) via the
quantity

j./2
c' 'exp -1.5u

2mP
(49)

If we write c =roA' ' and take r, /P 2 this gives
an A dependence of the form

A' 'exp(-A''),

which is a weakly decreasing function of A for all
A&1. The origin of this decrease is the exponen-
tial factor of -yp, (2cPv)'+. It is an absorption,
penetration, or mean free path factor. The larger
the nucleus the larger this absorption. It dom-
inates the rising A' ' factor in front that would
give growth with A for weak scattering. Perhaps

more surprising is the strange radius dependence
of the penetration factor in the exponent. One
might have expected c or A". However, that
assumes the projectile is traversing the center of
the nucleus. Such central traversals do not yield
scattering in the momentum transfer region we
are studying, Rather to be scattered to our q the
particle must go near the surface. Hence the
amount of nucleus it crosses is expressed in a
geometric mean of the radius and the skin thick-
ness, which is (Pc)' '. An A dependence of the
sort. we obtain here is observed for medium ener-
gy proton scattering from complex nuclei.

The strength of the interaction enters the scat-
tering amplitude in a more complicated way.
(The 1/y in front of F, is in fact just a normaliza-
tion. The cross section depends on yF, and hence
has no 1/y). There is a factor of o.' ' in front but
from the exponent there is the overall factor

exp -y Ret(b, ) + -', (qc)'" a'~' cos-
t

These two terms in the exponent are of the same
order of magnitude and opposite sign. Clearly
for sufficiently large qc the second term wil. l
dominate and the amplitude will grow with inter-
action strength. For smal. l qc the first term dom-
inates and the amplitude decreases with increas-
ing interaction. This is another manifestation of
the absorption or penetration effect carried by the
yt(b, } term

IV. CORRECTION TERMS

In obtaining our result (40}for the asymptotic
form of the hadron-hadron nucleus elastic scat-
tering amplitude in eikonal approximation we made
a number of approximations. In this section we
examine these, and develop systematic correc-
tions for the major approximations. We do this
not only to have these corrections but also because
the nature of an approximation is best understood
in terms of the corrections and in particular of
the parameters that control their size.

Our major approximations occurred in going
from (18) to (21). We assumed that only the first
singularity of the profile function was important
and we then evaluated its contribution to the inte-
gral by the saddle point method. Much of our
attention will be devoted to these two approxima-
tions. In addition we made further "kinematic"
approximations in obtaining (19). We used the
asymptotic form of the Bessel function and we
assume that b under the integral can be replaced
by its value of the singular point b=b, . It is
easy to see that corrections to these approxima-
tions are of order (qb, } ' and can be developed
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as a systematic series in inverse powers of
(qbo) T. hese corrections are not dynamical in
that they do not involve y. By contrast we will
see that the corrections to the saddl. e point method
are of order (n'qb, ) "and are therefore both
dynamical and more slowly decreasing in q.

FinaHy in obtaining our asymptotic form (40)
we neglected the background or end point con-
tribution coming from the integral al.ong the
imaginary axis. At the end of this section we
show that it is much smaller than the correspond-
ing (and already small) contribution to the elec-
trornagnetic form factor.

To calculate the corrections to the saddle point
method we rewrite (19}as

G (q y ) e i sl4-rt( 40) o

21Tq

I \

x db e" 1-exp,
OO

(52)

where we have explicitly used the form of t,(b)
and have reintroduced the 1 from (lib). Expand-
ing the second exponential, the integral can be
evaluated as a power series in

z = a'(iqb, )'~'.

We obtain

(q y)=
2ib

S

(53)

N-Rez' ' =Re(a' '(tqb, )") (55)

(54)

This can be understood as a multiple scattering
expansion of the strong amplitude. We note that
these scatterings are separated in (54) into "soft"
collisions that are summed into the penetration
or renormalization factor e "'"p' and "hard" scat-
terings. Using the asymptotic form of the Bessel
function in (54) we see that these hard scatterings
give terms of the sum proportional. to z" e" o.

Using the asymptotic form for the Bessel and

gamma functions and finding the term of max-
imum modulus in the series by differentiating
with respect to n, we see that the number of
terms contributing significantly to (54), and
therefore the number of hard scatterings, N,
is of order

which increases with q as one would expect, but
very slowly. Even for a nucleus such as Pb and
a momentum transfer q of 4 fm ', we find N-3,
a rather small. number, indicating the rapid con-
vergence of this multiple scattering series in

terms of hard coll.isions. Mathematically this
comes about from the I'(n/2)n l in the denom-
inator of (54}.

Using the asymptotic form of the Bessel func-
tion in (54), converting the sum to an integral,
and evaluating that integral again by the saddle
point method, we can- recover our asymptotic
result (40). Corrections to that asymptotic answer
are developed in Appendix C where we see that
they are given as a series in inverse powers of
the parameter (o.'iqbo)'~. The first correction
term is explicitly given in Eq. (57). It is inter-
esting to conjecture that this weak (cube root)
dependence on qbp-qc helps account for the re-
markable success of the eikonal approximation
at larger momentum transfers than c Priori might
seem appropriate. It should also be noted that
this cube root is not a special property of the
Fermi distribution but arises from the geometry
of cylindrical coordinates.

We now consider corrections to (40) coming
from singularities in the profile function beyond
the first. 'The corrections are particularly im-
portant in extending the asymptotic form into
small momentum transfers since as q decreases,
the saddle point moves farther away from b, and
therefore the other b„become relatively more
important In go.ing from (18) to (19) we evalu-
ated the part of the profile function coming from
the other singularities, t(b) at the singular point
of t,. In fact t has a b dependence and we wish
to include it. We take it into account in lowest
order by making a Taylor expansion of t around
b =b, and keeping only the first derivative.

t(b) =—t(bo) + (5 —bo)—dt
(58)

bp

Inserting this in (17}will change both the position
of the stationary point and the second derivative.
The details of this modification and the value of
dt/db)4 are given in Appendix A. We quote here
only the result for the amplitude including both
the first correction to the saddle point integral
and the first order to dependence of t(b). We
cail the first order corrected form G„(q, y) and
find for it in terms of the G, of (40)

dt b a 2s

(57)
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Let us now examine the correction terms and what
they tell us about the parameters that control
our asymptotic approximation. The corrections
from the saddle point integration are in the sec-
ond set of square brackets. They are of two
types. The first comes directly from correc-
tions to the asymptotic summation of the series
in (54) and requires that

—", I(or'iqb. )' I»1
or approximating b, by c and —", by 3 that (q,c)
» 1/2'I aP, a condition that is easily fulfilled for
hadron-nucleus collisions, but is not for weak
(a«1) forces. The second term in the bracket
requires that

I +/[8(+iqb. )'"]I«1.
It comes from the first correction to using the
asymptotic form for the Bessel function in (54).
It becomes qc» u'/8'. This condition is also
easily met by hadron-nucleus collisions, but it
is interesting to note that it has the opposite de-
pendence on the strength of the elementary inter-
actions. We stress again that for typical proton-
nucleus parameters, @=1.

The corrections from the b dependence of the
nonsingular part of the profile function are also
in two parts. One is in the exponent and comes
from corrections to the location of the singular
point, and one is a factor coming from corrections
to the second derivative. From Appendix A [(A9]
we see that we can write for the quantity in the
exponent of (57),

dt ~b n ao 1 ~b

db, 2 bg 4(2w) (qb )' ' P

where a, is a number of order —,'. This quantity
is of order one except for very small q and does
not significantly affect the q dependence of G ex-
cept again for small q. Notice that for fixed (qb, )
the quantity in (58) grows with b„ the nuclear
size. This reflects the fact that "background"
scattering grows in importance as the nucleus
grows. Equation (58}also grows with interaction
strength since as a grows the nucleus becomes
"blacker" and the interesting multiple scatterings
occur further out in the region of lower density.
For me~ strong forces only the exponential tail
of the density wil. l. contribute and then we can
replace the nuclear density by an exponential. For
such a case one finds asymptotically a falloff
of exp(-Psq/2), which is different from (10) and
is no longer dominated by the nuclear "edge" but
by its "tail." Thus the correction (58} is a first
step to this new behavior. Note that this "strong
absorption" limit with exp(-ilwq/2) falloff is
real. ized only for an intermediate regime of mo-

mentum tranfer. As q increases (for fixed a)
the region of the nucleus contributing to the scat-
tering will move inward so that this "tail dom-
inance" regime will pass into an "edge dominated"
part as in (40) and ultimately it is the end point
contribution that dominates. In high energy P-
nucleus scattering there seems to be no such
intermediate regime with a e ' + falloff coming
from the scattering in the tail region. In heavy-
ion scattering by contrast this peripheral scat-
tering seems to be more important due to the
combined effect of Coulomb repulsion and strong
absorption. '

The correction from dt/db, to the second deriva-
tive in (57) is (iy/q)Ht /dbms. It is easily seen
that this is (58) divided by ~(a qbo)'~. Since we
have already argued that this factor is small, the
entire correction is small except again at small
q. It should be noted that like the correction in

the exponent, it grows with b, and e for fixed
(qb.).

Finally we turn to the end point contribution
to E, coming from the integral along the imag-
inary axis. For simplicity we consider the case
of real y (the final result is valid for all y) and
call the end point contribution F,. We have

F 2m&e ', ) qy ydy 1 —e-rt{a)
0

(59a)

—Im Z, qx xdx 1-e-""",
0

(59b)

where in going from (59a) to (59b} we changed
variables and expressed H, ' of imaginary argu-
ment in terms of the purely real function E,.
Since E, is purely real, the contribution to F,
comes from Imt(ix}. We have from (2) and (13)

dz
t&sx', ]= 2

1 + g-c/a g(& /a){X2-~'2) j/2
0

d8
1+&-c/0 g~/s)(s2-g2)&/2

=2p, (A+iB+C),

(60a)

(60b)

where C is the second integral. and A and B are
the real and imaginary parts of the first. We
can write

4
E, = —

~ Eo(y)ydy e 2'0" e ' o" sin2poyB,
0

(61}

where we have changed variables from qx to y
so that A, B, and C. are now all functions of y/q.
Since E,(y) is exponentially decreasing for large
y, we can expandA, B, and C in powers of x or
y/q. We see that A-O, 2pC, -t(0}, and that
B-1/q'. Making the expansion we obtain to
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leading order in 1/q'

2~p ~- /B ~-xt(o)
+e

P 4(1 c/tlx2 KP(3 )3 dy1++ )
(62)

The remaining integral is 4 (Ref. 7) and therefore
except for the factor of 8 "' ' the result agrees
with the leading end point contribution to the
electromagnetic form factor (8). It must since
we can formally expand (lib) in powers of y and
the first order term is that form factor. The
factor of e "' ' is a penetrability factor. It
reflects the fact that the very large q' behavior
comes from very small r and that it is much
harder to get to small x in the presence of ab-
sorption. This means that although our strong
form factor ultimately has a power law falloff,
the domain of the power law is even more remote
than in the electromagnetic case.

V. CONCLUSIONS

We have seen that the eikonal amplitude for
elastic hadron-nucleus scattering can be evaluated
in closed form away from the forward direction,
and that correction to the l.eading asymptotic rep-
resentation of the amplitude can be developed sys-
tematically. The major physical ingredient of
this approximation is the shape of the nuclear den-
sity, which we take to be a Fermi function. It is
the radius of this distribution that determines the
oscillations of the cross section, as is well known

from classical diffraction theory, and it is the
diffuse boundary that gives the exponential fall-
off of the large cross section. We find that fall-
off to be given, in the amplitude, by e ' where q
is the momentum transfer and P the skin thick-
ness parameter of the Fermi function. This ex-
ponentially damped oscillatory behavior is seen
both in the Fourier transform of the Fermi func-
tion (Sec. II) and in the full eikonal amplitude
(Sec. IV). It arises from the rapid variation of the
distribution at the surface. Mathematically such
rapid variation implies the existence of a nearby
singularity (in the complex plane), and we eval-
uate the Fourier transform and the eikonal form
by taking advantage of the dominance of that
singularity. It is easy to see that any other dis-
tribution function having a similar shape will
give essentially the same result. However, for
a Gaussian or exponential distribution, there is
no longer rapid variation at the surface and no
corresponding nearby singularity. As a result
for these forms there is no simple connection
between the Fourier transform of the density
(electron scattering) and the eikonal form (proton
scattering}. This is well known in the case of
the alpha particle where the density is Gaussian.

By studying the eikonal form in our case of
rapidly varying density we find that the scattering
series can be separated into soft scatterings due to
the slowly varying parts of the density and hard
scatterings due to the rapidly varying parts. The
soft scatterings sum into a penetration factor
while the momentum transfer is built up from the
hard scatterings. Their effect is controlled by
the parameter (o.'qc)'' where o, is a dimension-
less measure of the primary interaction strength
and c the nuclear radius. We see that this param-
eter grows very slowly with momentum transfer
and helps to explain the wide range of validity
of the eikonal approximation.

To see how well our approximate form works
we wish to compare it with an exact (numerical)
evaluation of the eikonal cross section. In Fig. 1
we show our lowest order [from (46)] and first
order corrected [from (57}]cross section com-
pared with the full calculation for proton scatter-
ing on "0, ' Ca, and ' Pb in the vicinity of 1
GeV. By studying (I/O')(do/dQ) we remove most
of the energy dependence of the cross section
[see (lla)]. The remaining energy dependence is
in y [(12)], but around 1 GeV proton-nucleon total
cross sections have very little energy dependence.

In the calculation we have used 0'&„=40 mb and
r in Eq. (12) of -0.275. For all nuclei we used a
k corresponding to 1.04 GeV of kinetic energy
(i.e., no center of mass effect}. The radius and
density parameters we used were

c =6.624 fm, P=0.549 fm,

p, =0.16 fm ' for ' 'Pb,

c =3.725 fm, P =0.591 fm,

p0=0.148 fm ' for ' Ca,

and

c =2.381 fm, P=0.671 fm, p0=0.21 fm ' for "O.

We make no claim for the precise physical reality
of these parameters, in particular for "0 a two
parameter Fermi distribution is not realistic.
Rather we are interested in comparing our ap-
proximate forms with exact evaluation of the
eikonal amplitude since it is well known that the
full eikonal calculation agrees very well with
experiment in this region for these cases. We
see from Fig. 1 that for moderate momentum
transfer even the zero order eikonal formula
agrees essential. ly perfectly with the full calcula-
tion, and the first order correction extends that
agreement into quite small values of q. It should
be emphasized that there are no free parameters
in this comparison and it is an absolute compari-
son over some six orders of magnitude. It can
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FIG. 1. Full numerical evaluation (solid line) of the
eikonal cross section for proton nucleus elastic scat-
tering compared with our leading asymptotic form
(dash-dot line) and the form with first order correc-
tions (dashed lines) as a function of momentum transfer.
The vertical scale is (1/A ) (do/dO) in arbitrary units,
but for each nucleus there is no arbitrary normaliza-
tion among the three curves. The scattering para-
meters are appropriate to 1 GeV and are given in the
text. For Pb we do not show the first corrected results
since they are identical to the asymptotic form except
in the forward peak.

be seen in Fig. 1 that the mechanics for filling
in the diffraction minima as well as the A de-
pendence of our result is correct, as discussed
in Sec. III.

The numerical success of our approximate forms
even for relatively light nuclei such as "0and
"Ca and into small. values of momentum transfer
(q

- 1 fm ') may at first seem remarkable since
that success is based on the zero order or first
order asymptotic expansion of the Bessel or
Hankel function. It should be recalled, however,
that the first correction to the asymptotic ex-
pansion of any zero order Bessel or Hankel func-
tion Z, (x) is of order I/&x and the next correc-
tion is 0.0'l/x . It is the existence of these very
small numerical coefficients that makes the as-
ymptotic expansion converge much more rapidly
than one might expect. In evaluating the correc-
tion term we have also neglected the skin thick-
ness term wP compared with the radius c. Again
this might not seem valid for light nuclei, but
recall that wP is the imaginary part of b, and c
its real part. Therefore the error made in ne-
glecting st) is of order (wP/c}' which is negligible
in the correction terms.

Beside giving insight into the major physical
content of the eikonal amplitude, our result (40)
or (O'I} can also be viewed as an analytic, unitary
nonperturbative model of diffraction scattering
which contains a great deal of physics. As such,
it is of interest beyond the assumption used to
obtain it. It will. be interesting to see whether it
can be usefully applied in other parts of physics
in which diffraction scattering is important. These
include heavy ion reactions, electron atom scat-
tering, and particle physics.

Further afield there are other reactions and
other kinds of measurements which should be
amenable to our techniques. Polarization in
hadron-nucleus scattering is an obvious candidate
and we plan to study it. Other cases are inelastic
and inclusive reactions in which "off-shell"
amplitudes may also be needed. These require
further study.
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APPENDIX A

We evaluate in this appendix the nonsingular part of the profile function defined in (34), (35) and its
derivative at b = b,. According to (3V) t(b, ) is written as
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&(b,) =p.(2&Pb,)'"f(&)

with

1
" dz(1+ Tz) 1 1

e'e(1 ~ —,T*)'e 1 —e e(1 ~;e*))

(A1)

(A2)

In order to treat the two terms in the integral of (A2} separately, we introduce a finite lower limit e in the
integral and do some manipulations before we take the limit c- 0. The second term can be integrated and

we find

f(r) —= ,&, lim», ,&, +,&, [1+-, 7z —» (Tz)']

where in the first term of the integral in (A2) we have expanded (I +tz/2) ''. In the remaining integral we
add and subtract the singular term z ' ' and find

1 . 2 2 "dz 1 1 "dz, s 2 1
f(T) = ,&,

lim,—»,,&, —,&, +,&, , + —+,&, [4Tz —
3Q (Tz)'] 1

The limit &-0 can now be performed; the singular pieces in & cancel and we find the following asymptotic
expansion in v'.

f(T) =a, +a,r+a, T'+ ~ ~ ~,

with

1 "dz 1 1
a, =,g, g, , + — =1.460

(A3)

(A4a)

a2 = s f(z'} =0.980,

a, = ——,
", g( —') =-0.157.

The same procedure is applied for calculating the derivative of t(bo),

dt . d r
db, =21'.db.„( -b)~ "}"'

0

One obtains directly, using the definition of p(r) in (35) and 7 = P/bo,
OO

b=bo 6~0 ~

Introducing in (A6) the integration variable

z =(~ b.)/0—
we have

dt p~, ~, . ~,
" 1+hz 1

ee 1
("~'*" ' *' "' " "(1 -'.*) e 1- '' (( -'.*))I'

1

(A4b)

(A4c)

(A5)

(A6)

(A7)

The second term in the integral of (A7) can be directly integrated. In the first term we again expand the
te rm (1 + rz /2) ' and find

1-e' (A8)

After adding and subtracting the singular pieces
in & of the last integral, the limit e- 0 can be
taken with the result

I

with

1 "dz 1 1 1

= —p, (2vPb, }''dt 1
db ~~ 2P

x(a, + —,a„r , a, r + ~ ~ ~ )——3 (A9)

(A10)

The length (2vPb, ) '=—(2nPc)' is characteristic
of the profile function for values around b =c.
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To see this we evaluate the profile function at the
nuclear radius with the same method,

o.b =(1 —)(2)f(-,') =0.605, (A13a)

rdr 1
~PO (r 2 c2)1 /2 1 + s(r c)//Ig(c) =2p

C
(A11)

3 1
n, = —1 ——f(-,') =0.287.

8
(A13b}

1 "dz 2 1=—(2nPc)
( ~, ,/, (1+,rz)—

= (2wpc)2/'(a, + a, r) (A12)

which, after introducing z = (r —c)/P as integration
variable, becomes

1 dz(l + rz) 1
(V)2/' Z)/'(I + zrZ)'/R 1+e'

By contrast for small impact parameters, the
profile function becomes proportional to the
nucl. ear radius

dr
(. .)/(2-

0

=2P0 C+

with =—2p, (c+pe ' ). (A14)

APPENDIX B

We calculate the profile function t'(b) of (43) for the Coulomb potential -Ze'V, (r) of the nuclear density.
We want t'(I)) at b =I)„ the singular point of the strong interaction profile function t(b). We have

f'(I)) =2 V,{(z' + I'))~~ )d z=z, R,/, V,(r)dr,
0 b

where R is a Coulomb cutoff radius and V,(r) is given by

(B1)

V,(r) = — p(r')r"dr'+ p(r')r'dr',
0 r

where the density is now normalized to one. After one integration by parts t'(b) becomes

b R R

I (b)=2II 2R'—I 2 p(rlr'dr — I [r ~ (r' —2') ']p(r)r'dr+ (r' —2')'*p(r)rdrI.
0 b b

(B2)

(B3)

As long as the integration path and the real axis do not include a singularity [we need t'(I)) for values of
I) =b, -f[a[]we can use

t b R
p(r)r'dr =1 — p(r }r 'dr

0 b

and therefore (B3}can be written as

(b)=t2(l ——2 I —~ —(
' —b I*P(r) 'd ''(r' —b Ip( lrdr''''2ij

b b b b

(B4)

(B5)

In the integrals of (B5) we can replace R by ~ and since the integrals are finite at b =bR we can calculate
t'(I),). Changing variables to y =(r —I/, )/P and with p(r) =p,/I+e " ' and r =P/I), we have

t'(bo} =2 ln ——pobo'P dy in[i+ ry+ (2ry+ r'y'}'']2R 1+ry '
0 0

dg(I r)(2 2 ~ ~*)p) *,
I) . (B6)

The integrals of (B6) can be expanded in powers of
T and the final result reads

I'tb )=2II 2
-p 2'(2. 22.)"' 2('-)+2

20 0

I

For the imaginary part we find for the leading
term in p/c

p (p v/2)
Imt'(I), ) = -2 arctan —+ 6

~c (c j' (B8)

where the first term comes from the log term in
(B'I).
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APPENDIX C

In this appendix we evaluate the various cor-
rections to our asymptotic formula (40) for the
strong form factor. First we consider correc-
tions to the approximate evaluation of the integral
(19). We consider

b
Q (qy} e i r /3 rt( pp-)

Sj 2 lTq

'q 1 Cab

m OQ

the function

h(y) =g(z)

(C9)

can be shown from (C7) to satisfy the differential
equation

y 'h —'y -'(3h+2h')+-;(4h" +18h'+27h') =0. (Cll)

The ansatz for the asymptotic solution of (Cll),
N

a„y ",
n=p

In the integral we can replace e'" by cosqb. Ex-
&0 ~ / (a ~w2)~/ 2

panding e' ~p ' o ~ ', the power series can be
integrated term by term (R. G. p. 426) and we
obtain the following "multiple-scattering ex-
pansion":

leads to the 3-term recursion relation

3(12n(n+ 1) —5)a„+2(9 —4n')na„-,
54(n + 1)

(C12)

. bp ri(py g (a/'iqbp) ~E(n 1)/3( iq-b„)—
q „, 2"/pr( /2) l

and therefore the asymptotic expansion to (C8)
reads

(C2) f(z}=z'/' e('/')' g a„z '"/' (C13)
In the asymptotic expansions of the Bessel func-
tion (R. G. p. 963) we keep the first two terms

n=p

By comparing (C13) with Eq. (40}, the normaliza-
tion is obtained to

E( g)/3( 3qbp) 8 8
2 b2q (6 )

1/2 (C14)

With

Z1+ n(n —2)
Sqb,

(C3)
Inserting the result (C13) into (C6), G, (q, y) reads
including the lowest order correlation to the
stationary method

and

&n~ 2"/Sl I ( /2)
(C4}

G, (q, y) =G.(q, y) 1 —,3. ,~, (—,', +3(r')
~n'iqbpj'J

+«(q '")) (C15)

z = (a'iqbp)' ',
(C2} can be rewritten as

i r/p-ri(pp) P

Sy q

Z 2 dxe"pp f(z)+ z', —z —f(z)

One verifies from the power series expansion
(C4) that f(z) is a solution of the differential
equation

(C6)

We now consider the corrections arising from
the singul. arities in the profile function which are
further away from the real axis. These singular-
ities lead to an additional b dependence of the
profile function at b =b,. The lowest, order cor-
rection term is obtained by replacing t(b) in

Eq. (16) [cf. Eq. (18)],

t (b) = t(b, ) + (b —b,)—
b=bp

which amounts to replacing gp(b) by g, (b} in (19),

g, (b) =g,(b)+ibq(b —b, )

z„.=f(z).
d'f

(C7) with

= -ibqbp+i(q+ bq)b -yt, (b) (C16)

(C8)

In the variable

We now define the function g(z) by factorizing
out the known leading term [ef. Eq. (40)] of the
asymptotic expansion of f(z),

f(z ) z I/3 e( 3 /2) ~

5q =iy-dt
(C17)

db b=b

The evaluation of the b integral in (19) ean now be
repeated by simply replacing q by q+ 5q. Expand-
ing in (32} and (33) in the quantity bq/q one ob-
tains Eq. (57).
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