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The multiple-scattering structure of various scattering operators as well as the integral equations they

satisfy are investigated for Hamiltonians consisting of terms of definite but arbitrary connectivities. This is

done in order to encompass the effective interactions which arise in few-body models of nuclear reactions.
The counterparts of the Watson and other kinds of multiple-scattering expansions are developed under these

circumstances. Connected-kernel scattering integral equations which have the unique and practical feature of
being both partition labeled and possessing a multiple-scattering structure are obtained for the transition

operators. These extended versions of both the multiple-scattering expansions and partition-labeled multiple-

scattering integral equations are applied to the specific class of few-body Hamiltonian reaction models found

by Polyzou and Redish. The concept of a well-structured reaction mechanism is introduced and it is

established that for such a reaction mechanism an appropriately modified multiple-scattering picture carries
over to the approximate few-body models. It is shown, for example, that for a well-structured reaction
mechanism the analogs of the Born and impulse approximations emerge directly from the extended partition-
labeled multiple-scattering equations in contrast to alternative formulations.

NUCLEAR REACTIONS Multiple-scattering theory with many-body forces.
Connected-kernel N-particle equations with multiple-scattering structure. Few-

body models for nuclear reactions and related approximations.

I. INTRODUCTION

Modern formulations of nuclear reaction theory
below the pion production threshold involve the
use of nonrelativistic many-body integral equa-
tions for the description of the N-nucleon dynam-
ics. ' In such formulations the major problem is
the derivation of integral equations for the tran-
sition operators which have connected kernels
after a finite number of iterations. The con-
nectedness of the kernel is taken to imply its
compactness and hence the possibility of the solu-
tion of these equations by standard numerical
methods. These equations are quite complex in
structure and their numerical solution is not
feasible at present without further simplifying
assumptions for N & 4.

Two sets of many-body equations, the Bencze-
Redish-Sloan (BRS) and the Baer-Kouri- Levin-
Tobocman' (BKLT) equations, have featured
prominently in recent attempts to derive few-
cluster models of nuclear reactions. In these
models one truncates the space of asymptotic
reaction channels to reflect the dominant physical
features of the system. Such truncations allow a
reduction in the number and dimensionality of the
coupled integral equations with which one has to
deal.

It should be stressed that neither of these two
sets of equations exhibits an explicit multiple-
scattering structure. The lack of such structure
suppresses certain physical features of the prob-

lem and complicates the introduction of related
approximations. By way of contrast, Yakubovskii-
type theories' ' have a multiple-scattering struc-
ture but involve operators which are only very
indirectly related to the physical transition ampli-
tudes. The major objective of this article is to
develop scattering integral equations and few-body
models of nuclear reactions which combine some
of the most attractive features of the BELT, BRS,
and Yakubovskii methods, and, in particular,
which possess an explicit multiple- scattering
structure.

The more traditional formulations of multiparti-
cle scattering are usually based on very specific
nuclear reaction models. Here we refer, for
example, to the optical model, distorted-wave
Born approximation, the multiple- scattering and
R- matrix formalisms. These models have been
highly successful in practical applications and
have contributed greatly to our present under-
standing of the structure and interactions of nuclei.
H owe ve r, they suff e r some serious limitations
which are often overlooked in practice or absorbed
into one phenomenological device or another.
These limitations can be understood and overcome
only within the framework of a many-body theory
involving well-defined scattering integral equa-
tions such as those referred to previously. In
turning to such equations it is important not to
ignore those features responsible for the successes
of the conventional methods.

In view of this, it is of interest to consider the
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relationships among various conventional reaction
models and the approximate theories based on
connected-kernel formalisms. Work in this di-
rection can be found in Ref. 10, where the multi-
ple-scattering structure of the transition opera-
tors is considered in terms of the connectivity
expansions of the various operators which appear
in the usual formulations. '" (See also Ref. 8.)
Another major result of Ref. 10 is the derivation
of a new set of connected-kernel equations for the
transition operators which possess the BRS
kernels but also exhibit a multiple-scattering
structure. This was carried out in Ref. 10 as-
suming only pairwise interactions. The present
paper extends this work to include the effect of
channel-space truncation on the various cluster
expansions, in particular, the form of the multi-
ple-scattering series for the two-fragment colli-
sion operator, the disconnected structure of the
approximate integral equations and related prob-
lems. The detailed study of these questions,
which involves some aspects of the work of Ref.
10 when arbitrary many-body forces are intro-
duced, raises several important new problems.
It is usually assumed that the particles of the
system interact only via pairwise forces. This
assumption leads to simplifications such as the
so-called minimally coupled BRS equations, that
is, equations which couple explicitly only the tran-
sition operators for two-fragment collisions.
In contrast, the recently proposed few-body reac-
tion models 6 as well as some of the traditional
theories, e.g. , the optical potential, ' assume
that the many-body system is composed of n &N
interacting clusters. The cluster-cluster interac-
tion is a typical many-body force when viewed
microscopically. Also, the clusters themselves
possess an internal structure which can be modi-
fied in the collision process. These features are
absent from the usual many-body problem with

only pairwise interactions and indicate the type
of extensions required to incorporate the few-body
reaction models into the theory. The investigation
of these problems represents the major portion
of this study.

This paper is organized as follows. In Sec. D
we introduce the partition notation which greatly
simplifies the subsequent discussion. This nota-
tion has now become a standard part of the many-
body scattering theory' and its discussion has
been abbreviated accordingly. In Sec. III we dis-
cuss the various cluster expansions of the elastic
transition operator for two-fragment collisions
when many-body forces are present. In Sec. IV
we derive a new set of N-particle connected-ker-
nel equations which exhibits both a multiple-scat-
tering structure and incorporates many-body for-

ces. The transition operators which enter into
these equations have precisely the same off-shell
extensions as in the usual theories. These equa-
tions are called the partition-labeled equations
with multiple-scattering structure, or briefly,
the PLMS equations. In Sec. V we review the
notion of a reaction mechanism (RM) and the re
lated few-body reaction model as given in Refs.
4 and 6. The reduced form of the integral equa-
tions for the RM transition operators is derived.
Also, a new form of the imbedding equations, i. e. ,
the equation imbedding the approximation in the
full or exact theory, is presented. In Sec. VI
we use the results of Secs. III and IV to obtain RM
scattering integral equations with a multiple-scat-
tering structure, the RM-PLMS equations. Our
results are summarized in Sec. VII. The detailed
derivations of the results of this paper employ the
full battery of technical machinery of contempo-
rary many-particle scattering theory. ' ' 3' Con-
sequently, some of these derivations have been
placed in four Appendices in order not to obscure
the principal ideas presented in the text.

II. NOTATION

In this section we briefly review the partition
notation of many-body scattering theory. %e start
by introducing the concept of a partition a as the
grouping of the N particles into n, distinct clus-
ters. The arrangement of the particles within the
clusters and the order of clusters within the parti-
tion are irrelevant. The partitions for which n,
= 1 and n, =N are unique and will be denoted as I
and 0, respectively. In the following we use the
Latin letters a, b, c, . . . to denote partitions of the
system. The set of all partitions of the N-body
system will be denoted 8,. The Greek letters
u, P, y, . .. are used to designate the two-cluster
partitions and the set of all such partitions will be
denoted by S . A partition which can be identified
with a physical asymptotic state of the system
(i. e. , where all clusters of that partition are
bound) is said to be stable.

The partition indexing of various operators ap-
pearing in many-body scattering theory is facili-
tated by the introduction of several ideas. Vfe say
that a partition b is contained in another partition
a, written b ~ a, if b can be obtained from a by
subdividing one or more of its clusters and we
write b c a when we include the possibility of equa-
lity. The alternative possibility, where b is not
contained in or equal to a is denoted by bg a.
These relationships are conveniently represented
by the matrices b and b, with the elements"

6„~=1, b( a

=0, otherwise
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and

(2.2)

It can be shown that the inverse of b exists both
on the entire partition set Q p as well as any of its

4~12e13e15e16

The N-particle Hamiltonian H is taken to be the
sum of the kinetic energy operator H, and interac-
tion V:

H=Hp+ V. (2.3)

In general the Hamiltonian possesses the decom-
position

[H]„ (2.4)

where [H], is the a-connected part of H. We re-
call that an operator 6 is said to be a-connected if
it commutes with the generators of translations
along the intercluster coordinates of partition a
and no others, and if its momentum space matrix
elements have the structure

(pipt ' ' '
pv I

6
I p{ ' ' '

pw

section we generalize these results to include
explicitly the effect of multiparticle forces. The
transition operator for the elastic scattering of
two bound fragments corresponding to the two-
cluster partition u is

T, =V +VIV
where

G =(z —H) ',

(s.l)

(3.2)

= g T.(o(), (3.3)

where

T,(&) = [V],(1+GP'),

and [V],= [V],Z~„ for arbitrary partitions a, b

Let

(3.4)

and z is the parametric energy the dependence
upon which we suppress.

Since the Hamiltonian possesses the cluster de-
composition (2.4), T, can be written as the sum
of partition-indexed operators

=5(Pg- P{)6(P2—P2) ' ' '

6(P..- P.'.}6.(k...lk;. , I piP2. "P. ), (2.5)

where p& is the momentum of particle i, P& refers
to the center of mass (c.m. ) momenta of the i'"
cluster, %„, represents, collectively, the indepen-
dent internal momenta of the clusters of the parti-
tion a, and the functions 6, do not contain any 5-
function singularities. Note that H, =[H],.

The interaction internal to the partition a is

t,(c() = (1+[V]~G [a])[V], ,

so that

t, (o) =[1+t.( )GoJ[V]'. ,

where

G. =(z-H. ) '

and

G.[a]=(z -H. —[V];) '.

(S.5a)

(3.5b)

(s.6)

(3.7}

V.-=Z n..,[V]„

and the partition Hamiltonian is

H, =Hp+ V, .

(2.6)

(2.7)

Multiplying Eq. (3.4) by [1+t,(c() G ] on the
left, and using Eqs. (3.1) and (3.3) we obtain

T ()=t.( )(1++. )', ( G)().,,), (s.8}

Note that for b a 0, [H]~ = [V](). If a is a stable
partition, H, is a Hamiltonian describing a physi-
cal asymptotic state. The interaction V' external
to partition a is

=H —Ha = +a~y V ~ ~ (2.8}

It should be noted that the partition sums in Eqs.
(2.6)—(2.8) are usually severely restricted. For
example, if only pair interactions are included,
the sums are restricted to the subset of (H 1)-—
cluster par titions.

III. MULTIPLE SCATTERING EXPANSIONS

The multiple-scattering series for various tran-
sition operators have been studied extensively for
a system with no many-body forces. ' ' In this

where 5„()=1—6„(,. Equations (3.8) represent the
generalization of the Watson' multiple- scattering
theory to arbitrary two-cluster partitions and po-
tentials. As in the case of pairwise interactions
discussed in Ref. 10, Eqs. (3.8} do not represent
a set of well-defined integral equations since their
kernels may not be connected upon iteration for
N~ 4. This means that the numerical solution of
Eqs. (3.8) is not possible since the operator in-
verses needed for the solution are not defined in
general. However, in contrast to the case of pair
interactions, the existence of many-body forces
makes it possible for Eqs. (3.8) to have a connec-
ted kernel upon iteration in certain cases. Also,
Eqs. (3.8) represent a correct formal relationship
between the t,(a) and T,(a) operators and yield a
generalization of the Watson theory to few-cluster
reaction models. We consider this question fur-
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t, = P,'(I+G,V,"),

where, in general,

v'. =g [v]',n...

(3.9)

(3.10)

and G, =(z —H, ) . From Eq. (3.9) and the connec-
tivity expansion of 0, it follows that t, can be
written as the sum of operators of definite con-
nectivities, viz. ,

(3.11)

Since if = T. . . we have from Eq. (3.11)

r. ..=gx;. (3.12)

It can be shown that X„ is the d-connected part of
T, . Equation (3.11) can be inverted to yield

x;=g(n '), .f;. (s.ls)

An important example of X„obtains when d is an
(N —1)-cluster partition i' Then.

where t; is the two-particle transition operator
for the scattering of the particle pair i' and XP is
proportional to t; .

Evidently, Eqs. (3.9)-(3.12) provide hierarchic
expansions of the transition operator T in terms

ther in Sec. VI.
At this point it is interesting to consider the

physical interpretation of the operators t,(u) and
T,(u). This is difficult to do in general, but in a
closure type limit, where, e.g. , we replace G

by G, in Eqs. (3.5b) and (3.8}, t,(o} corresponds
to scattering of particle internal to the clusters
of partition a by the potential [V],. Then for
a=(12)3 ' 'N, f,(o.') represents the scattering of
particles 1 and 2 from each other and for b
= (123}4 N, t~(o) corresponds to the scattering
of three free particles 1, 2, and 3 by a three-body
force [V]„and so on. It should be noted that al-
though t~(u) refers to a three-body problem when
G, =G„Eq. (3.5a) can be solved numerically.
This is because [V]~ couples all three particles
and the connectivity questions appearing in a three-
body problem with pairwise forces do not arise.
The physical interpretation of the T,(u) operator
can be inferred from the iterated form of Eq.
(3.8). There products of the form t, (n)G, t~(n)
appear and T,(o.} thus represents the part of T,
in which the interaction [V], acted last.

Other operators of a structure similar to t,{o)
can be constructed. Let us consider now the oper-
ator'

of operators of definite connectivities. Their
usefulness lies in the fact that it is possible to
derive a connected integral equations for the t,
operators, and these equations can be systemati-
cally approximated. '

We now note that Eq. (3.13) can be used as the
definition of the X-operator, given t, . For exam-
ple, in Ref. 10 it is suggested that one can define,
alternatively,

and

i, -=V, [1+(G ' —V. ) V,] (3.14)

Xd d rata (3.15)

In contrast to the Xd operators defined above, the
Xd are not necessarily d connected. However,
since t, =T, we obtain as before [cf. Eq. (3.12)]

T.,=+X;.
d

(3.16)

As pointed out previously, Eq. (3.16) is the gen-
eralization of the correlative expansion of Ernst
et al. '~ to arbitrary two-cluster partitions. The
major difficulty with this expansion is that all of
the operators t, are N-body operators and it is
not clear how one can find connected-kernel equa-
tions for them.

This completes our investigation of the various
connectivity expansions of the elastic transition
operator T, . Apart from the generalization of
the Watson series contained in Eqs. (3.3)-(3.8),
the inclusion of many-body forces in the problem
is seen to be straightforward.

Before proceeding further, it is interesting to
consider how the various partition sums of this
section can be restricted if some terms of thecon-
nectivity expansion of the interaction V are al-
lowed to vanish. To do this, define 6, the inter-
act~on set, to be the set of all partitions ac.- Cp,
at 0 such that [V],o 0. The set a has a very
specific structure. Normally 8 is composed of
partitions such that only one of its clusters con-
tains more than one particle. For example, in
the case of pairwise interactions, the partitions
in 8 are of the form {i,i2)i~ ' 'i„, where (i~].de-
notes any ordering of the integers 1, 2, . . . , N.
However, in the approximate few-body theories,
the interaction set may also contain partitions in
which several clusters contain more than one
particle, e.g. , as in (12}345(678) N. It is in
the latter case that the partition notation of the
many-body scattering theory becomes important.
Then it follows that the operator t, (&} defined by
Eq. (3.5a), and consequently T,(o,), vanishes un-
less a cC. Similarly, from the definition of V.
it follows that the partition sum in Eq. (3.11) is
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restricted to d c ft (a). Here C(a) is the set

a(a) =(d) S bc n, b c d ca}. (s. lv)

In particular, if 8 contain all possible pairwise
interactions, +(I) contains all partitions from 6 0

excluding the 0- partition.
From the above it is also obvious that al/ parti-

tion sums in a theory defined by the interaction
set g must be restricted to the set 8(1}and the
0-partition. This result has some important
practical consequences, which will be discussed
in the latter parts of this paper.

IV. SCATTERING EQUATIONS

In the preceding section we have discussed the
multiple-scattering structure of the elastic transi-
tion operator T, . We now wish to derive con-
nected-kernel integral equations for the general
transition operators

where (4)„,=6„,G, and 8„,=1.
Equation (4.6} can be reduced to a form which

explicitly contains the subsystem amplitudes. '
Let us first define the matrix

F = q, ~'Cq„

the operators

~ = 4Pi[V]&sq&

and

M, „=[V'GG, '],6,„,

(4.8)

(4.10)

(4.11)

where P& is the projector onto the set of i-cluster
partitions, Q; =1—P„[],denotes the a-connected
part of the operator in brackets, and b,' is the
transpose of 4. We note that I' relates only par-
titions with more than two clusters while M,„
can be expressed in terms of the subsystem ampli-
tudes. ' ' ' It is shown in Appendix A that Eq.
(4.8} can be reduced to the compact form

T„q ——V'+ V'G V, (4.1) T = (1!f+su)G, (q, sd '+ (P,-+ r)T}, (4.12)
which reflect this structure. In order to do this
we require alternative representations of the in-
teraction terms which we develop next.

Let us introduce the diagonal matrix C with the
components""

C, -=-(a '). .. av 1. (4.2)

It can be shown that C, =(-1}"~(n,—1}!.From the
definition (4.2} and n 'n =1 we obtain the sum rule

6 cob oe1 b e1 ~ (4.s)

From the definition (2.6) of V, and Eq. (4.S) it
follows that

+6.,,c.v. =g 6,,,[v], = v- [v], . (4.4)

In a similar manner we find the representation

v'=g C,(v;+Z„,[v],}6,, (4.5)

~;=- c,(v,'+ n. ,,[v],}&,, , (4.6)

From the sum rule (4.5) and the resolvent identi-
ties for 6 in terms of the 0,'s one obtains from
(4.1) the Bencze-Redish-Sloan (BRS) equations in
their so-called precursor form

Thus, in accommodating the fully connected inter-
action [V], we pick up an effective modification of
the V,

' operator, We then define

+(M+sn)G, (P, + r)T, (4.14)

The fact that all the disconnected substructure of
T' is contained in T is exploited next.

Consider the operator [(y}„,=~" ]

(4.15)

where (V„)„~= V~. From Eq. (4.1S) it follows
that y satisfies an equation of the form

which represents the generalization of the results
of Refs. 2, 12, and 13 to include an interaction
with arbitrary connectivity structure. In Appen-
dix A we also show that Eq. (4.12) has a connec-
ted kernel after one iteration. In the absence of
multiparticle forces OR=0 and MGOI'T =0 so that
(4.12) are then essentially the standard minimally
coupled BRS equations. '

Since W is connected, its matrix elements pos-
sess no ~-function singularities apart from an
overall momentum conservation 6 function. Fur-
thermore, the second term in the inhomogeneity
of Eq. (4.12) vanishes half-on-shell when operating
on a two-cluster asymptotic state. This suggests
that we introduce the operator

T =MG0(q, sG '+(P, + r-)T}, (4.1S}

which differs from the transition operator T by a
connected piece T& which satisfies

T, =5!!G,(q, sG-'+ (p, + r) 7]

aib c c b cob (4.V)
r = W„s +MG, (P) + r) r . (4.16}

or, in matrix form,

T='0G(SG +T}, (4.8)
It is shown in Appendix B that the inhomogeneous
term 8'„s can be written as
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WM's =Q W" (f),
f

(4.17)

where W"~(f) is the f-connected part of r"~.
Since ~ ' = T, , the results of Sec. III imply
that for a c 1

wl" (a) =& (4.18)

Alternatively we candefineinsteadof y the opera-
tor'

y=T —V (4.19)

It is also shown in Appendix A that y satisfies

~ = w„, +5ttG, [q,s G '+ (z, + r) v„]

+ (M +5tt)G, (Z, + r), . (4.20)

V. REACTION MECHANISM AND FEW-BODY REACTION
MODELS

In this section we consider the applications of
the results of the previous two sections to the few-
body Hamiltonian formalism of Ref. 4. We use
the notation of Ref. 6 in what follows.

Since the first iterate of Eq. (4.20) has a connected
kernel, the disconnected structures of y and y are
the same.

Clearly, the operator W"'(f) contains within
itself a multiple-scattering structure. ' Also, all
the disconnected substructure of the operators T

and T is contained in the inhomogeneous W„~
term. For this reason we call Eqs. (4.16) and

(4.20} partition-labeled equations with multiple-
scattering structure (P LMS). These equations
represent the generalizations of the PLMS equa-
tions of Ref. 10 to include many-body forces. It
should be noted that the operators v and 7 differ
from each other only in the way the fully connected
interaction is incorporated. The operators 7 and

T are independent of [V], so that T, contains the
full effect of [V],. This lends itself to a possible
perturbative treatment of the effects of [V], using
Eq. (4.14).

The z operator is more directly related to the
T matrix and the development of the PLMS equa-
tion given in Ref. 10; in particular y

' = T
on-shell. One advantage of the y operator is the
fact that it facilitates various approximation meth-
ods, such as the development of the optical poten-
tial. ' Also, because of its direct relationship to
the T matrix, Eq. (4.19), comparisons with stan-
dard methods in nuclear reaction theory are made
more transparent. Finally, we remark that the
operators W" (f) satisfy important identities
which are derived in Appendices B and C, and
constitute the generalization of the results of
Ref. 10 to include many-body forces.

We start by considering the partition Hamiltonian
H, . If a is a stable partition, the maximally con-
nected eigenstates

~
(t(,(v,)) of H, (which are those

with all n, clusters in bound configurations) cor-
respond to physical asymptotic states. The scat-
tering eigenstates

~

(t(", (v~)) evolve from maximal-
ly connected eigenstates ~(t(, (v,)), with b(: a, in the
infinite past. Here the channel ~r, is the collection
of the internal quantum numbers of the clusters of
a stable partition a. The bound and scattering
eigenstates of H, will be denoted collectively
~(t(,(v,)), with b(:a. The dependence on the c. m.
momenta of each of the nb clusters will be sup-
pressed.

Let 80 be the set of all partitions a~ ao with

n, ~ 2 and 80 be the subset of Co of stable parti-
tions. Then the set of physical scattering chan-
nels is

Ao ——(v» all b& Cp}. (5.1)

8 =(a~aW 1 a2b, 3 v(, (= A}, (5.2}

and contains all partitions a(= A(1) except a= l.
The idea of an RM can be exploited to derive

approximate few-body reaction models. We next
outline the analysis of Refs. 4 and 6 for obtaining
approximate scattering equations for the transi-
tion operators. Consider the projector

(5.3)

onto the Hilbert space K,(v,). The resolution of
the identity on the N-particle Hilbert space X&
can then be written as the direct-sum decomposi-
tion

(5.4)I= t2, y+g Vy

VIVE Ap

in terms of the K,(v~) subspaces.
In the absence of N-body forces the counter-

part of Eq. (4.4) for the Hamiltonian H, is'

(5.5)

The prime in the sum in Eq. (5.5) indicates that
the a = 1 term has been omitted. We can then
introduce an approximate Hamiltonian H(A} if we

Following Ref. 4, the reaction mechanism (RM)
is then defined as a particular subset A of Ao. The
notion of the RM becomes meaningful only if A is
identified with the set of dominant reaction chan-
nels for the system and this identification has been
used to simplify the scattering equations.

It is very useful to introduce the idea of a set
A of partitions which is associated with a given
RM. The set 8, which we call the reaction set,
is defined as
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use (5.5) with projected partition Hamiltonians'

H(A) = g CJE,d.(A},
acA

where

(5.6)

&.(A)=Q Q &„~&.(v, ) (5.7)
Vj},+ A

and S',(A) =—0 for agC. Equations (5.5) and (5.6)
suggest a definition of a projected partition Hamil-
tonian ':

H.(A) = &,(A)H. =H.s.(A) . (5.6)

The model or RM Hamiltonian H(A) possesses
the cluster decomposition

H(A) =g [H(A) ]., (5.9)
e

where [H(A)], is the a-connected part of H(A) and

[H(A)], =—0 for age. It is shown in Ref. 4 that the
RM partition Hamiltonian also has the cluster
decomposition

H.(A) =P ~„,[H(A),]. (5.10)

Clearly H, (A) =—0 for a/8. Corresponding to Eq.
(2.8) we write

H(A) =H, (A) + V'(A),

where

(5.ii)

V'(A) =g Z„.[H(A), ]. (5.12)

We note that even if V(A, ) = V contains only pair
interactions, V(A) has, in general, terms of vary-
ing connectivities. In the case of a ferro-body reac-
tion mechanism (i. e. , n, ~4, all ac= 8), the sums
in (5.10) and (5.12) are restricted to a few highly
connected terms. Equations (5.9)-(5.12) reduce
to the usual pa. rtition decomposition (cf. Sec. II)
of the full Hamiltonian when A:Ap.

The operator V'(A} represents an (approximate)
interaction among the clusters of partition a and
generates full N-body dynamics except when 8 is
restricted to a single two-cluster partition. Then
V'(A} —= 0 and the two clusters cannot interact. 4'6

This corresponds to the trivial reaction mecha-
nism of Ref. 4.

Some of the essential aspects of the set of parti-
tions associated with an RM can be represented
in a concise manner if we make use of the devices
of the union and the intersection of partitions. '
The former idea has been defined and used ex-
tensively in the Appendices. The intersection,
a gb, of two partitions a and b satisfies a g b a c
for all partitions c such that c L a, cc b. In other
words an b =bn a is the partition with the fewest

number of clusters which is contained in both a
and b. The unions and intersections of several
partitions have obvious meanings. Thus, if we
call

G(A) =[s-H(A)] ',
G.(A) = [z —H.(A)]-'.

(5.12)

(5.14)

It is important to realize that G,(A) and G(A) are
operators in the full Hilbert space. Specifically,

(a) (b)
FIG. 1. Exact Problem. Horizontal lines represent

particles and the blobs denote the interaction of the en-
closed particles. (a) A pair interaction of connectivity
1 2 (3 4) 5 6. (b) A 3-particle force of cannectivity 1 2
3 (4 5 6). (c) A fully connected force of connectivity
(1 2 3 4 5 6).

0=- n
aeA

1=— U a,
acA

then a nontrivial RM is one for which 1=1 and a
zoell;structured RM is one for which 0(= (t.

The partitions 0 and 1 can be called the lou)er
and upper bounds of the set Q. We note that we
need not have 0, 1C 8. The partition 0 has been
introduced and called the dominant partition in
Ref. 19 in a somewhat different context. The
meaning of the partitions 0 and 1 becomes more
evident if we realize that [H(A)], —= 0 if either 0 g a
or a g 1. Thus, 0 represents the most disconnec-
ted partition of the model; its clusters behave as
indivisible objects within the framework of this
approximation. In the same sense, 1 represents
the most connected partition. If 14 1, the sys-
tem can be regarded as several independent smal-
ler systems; this corresponds to the idea of the
trivial reaction mechanism. ' Reasons for con-
fining oneself to a nontrivial, well-structured RM
are discussed in Sec. VI. Also, it is important
to note that, in contrast to the exact problem, the
structure of the Hamiltonian H(A) is such that
[H(A)], c 0 for partitions a composed of several
distinct particle clusters. This difference be-
tween the exact and approximate problems is
illustrated in Fig. 1 and Fig. 2.

In what follows we always assume that the RM
in question is nontrivial. Also, for the sake of
simplicity, we suppose that there are no N-body
forces. This restriction is easily removed.

In analogy with the exact problem we define the
RM Green's functions
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(78)
(a) (b) (c)

FIG. 2. Approrimate Problem. The l.ine groupings
correspond to bound-particle clusters. The 0 partition
is (1 2 3) (4 5) 6 (7 8). (a) The blob represents an effec-
tive two-body, 5-particle force of connectivity
(1 2 3 4 5) 6 (7 8). (b) An effective three-body force.
(c) A force of the type not found in the standard exact
problem in that it represents a simultaneous action of a
pair of two-body interactions. Diagrams of this type

A

arise from the projectors P(v, ), a &0.

we see that

G,{A)= s.{A)G.(A, ) + q.(A) (5.15}

where Q,(A) = 1 —S',(A).
From Eqs. (5.13) and (5.14) we obtain the resol-

vent identity

G(A} =G, (A) + G, (A) V'(A)G(A) . (5.16)

The RM transition operators T,+(A) are defined
in a manner consistent with the interpretation of
G(A), namely, '

T„~(A) = V'(A) + V'(A)G(A) V (A}, (5.17}

in analogy with Eq. (4.1). The operators T„,(A)
satisfy the RM-BRS equation

that subset of Eqs. (5.18) which couple together
those T„~(A) operators with a, 5 c 8. Evidently
only the transition operators indexed by reac-
tion set partitions are of physical relevance in
the model defined by H(A}. These remarks can
be made manifest by introducing a projector P(A)
onto the reaction set 8 of partitions. By (5.19)
and (5.21) we infer

~{A)P(A) =V, (A) . (5.22)

Thus using (5.22) the set of integral equations (5.18)
can be reduced to a set for the reaction set opera-
tors P(A) T(A)P(A):

P(A) T(A)P(A) =P(A) &(A) G (A)

& [~ G (A}P(A) + P(A}T(A)P(A)1.

(5.23)

The major results of Sec. IV depend upon the
reduction of (4.8) to the form (4.12). We next
investigate the possibility of performing a similar
reduction of Eqs. (5.18). An immediate difficulty
is the definition of the counterparts of M and Go.
(We recall that sit -=0 in the present instance. )
Unless 8 =80 we have Og8 and the introduction
of the quantity Go{A) =z ', e. g. , is rather contri-
ved.

The partition symbol 0 plays a unique role in the
exact theory as the most disconnected partition
corresponding to a physical channel. In a well-
structured RM this role is taken over by the par-
tition 0. In this case we define

or in matrix form

(5.18a)

T„~(A)=Q 'U~N(A)G (A)[G~ (A) + T„~(A)),
M~„(A) =—[V (A)G{A)GO (A)]„

and then we obtain for a well-structured RM

T{A)=M(A)G&(A)(sG '{A)+ (P, + r)T{A)].

(5.24)

(5.25)

T(A) =U(A)G(A)[SG (A}+T(A)],

where

V,'{A)= V;(A)C,

and

V, (A) = Q Z„q[H(A)]qA, q .

(5.18b)

(5.19)

(5.2O)

The derivation of Eq. (5.24) is given in Appendix
D, where it is also shown that (5.25) has a con-
nected kernel after one iteration if A is nontrivial.

It is easy to show that the quasiminimal coupling
property (5.23) is preserved in (5.25). Since

M~„(A)Gg(A) =Z~„Q 5„~„~[V(A)],[G{A)g,
cod

The main result of Ref. 4 is that Eqs. (5.18) are
connected-kernel equations and their solutions
satisfy a unitarity condition consistent with the
RM.

The number of equations (5.18) which are coupled
together in practice depends upon the property

we see that

M~„(A)Gg(A) =0, if ag'8,

so

M(A)GD(A)P(A) =M(A)GO(A) .

(5.26)

(5.27)

(5.28)
v;{A)= 0, u c g 8, (5.21}

which follows directly from definition (5.20). Be-
cause of (5.21) it is necessary to consider only

In order to deduce the counterpart of the form
(5.23) for (5.25) one needs besides (5.28) the iden-
tities P,P(A) =P(A)P, and P(A)I'=P(A)I'P(A).
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These are easily proved and we see that (5.25}
implies a set of integral equations which couple
together only reaction set transition operators.

The approxiinate transition operator T(A) is
related to the exact one via an imbedding equation.
Qne form of the imbedding equation found in Ref.
4 is given by

VI. MULTIPLE SCATTERING IN FEW-BODY MODELS

,~& (A) = T„„(A)—V', (A), (6.1)

We now wish to consider the multiple-scattering
structure of the various scattering operators in
Sec. V. We start by considering the operator

T„,= [C, '+ G, 'C(A) G, ']

+ G, 'G(A)TG(A}G~
th

where T is the solution of

T = To ~ o(A ') + H(A ')G(A)H(A) G(A') T,

(5.29)

(5.30)

and restrict ourselves to a nontrivial, well-struc-
tured RM. Following the development of Secs.
IV and V, we find in Appendix D the RM equivalent
of the PLMS equations:

,(A) = W„,(A) +M(A)cn(A)(P, + r), (A), (6.2)

where
and A' =Ao —A is the RM comPlementary to A.
The term in brackets in Eq. (5.29) is on-shell
equivalent to T„,(A).

An alternative form of -the imbedding equation
can be obtained by a procedure analogous to that
used in Ref s. 5 and 6. We define an auxiliary
operator J(A) as the solution of

j(A) = 1 + M(A)G1(A) (P + 1')J(A}, (5.31)

so

r(A) =J(A)M(A)c&(A)SG '(A) . (5.32)

The operator Z(A} is related to its exact counter-
part, J(A,) = J, by the imbedding equation

J=J(A) + j(A)[MG —M(A)cg(A)](P + I'}J.
(5.33)

T is obtained from J, using (5.32) for A=AD. The
imbedding relation (5.33) is analogous to the two-
potential formula and may be simpler to apply
in practical calculations than (5.29) because of
this resemblance.

Polyzou and Redish prove that (5.30) is a con-
nected-kernel integral equation and thus this im-
bedding algorithm is well defined in that no dis-
connected-kernel integral equations have crept in
surreptitiously. It is a rather straightforward
exercise in the techniques used in Appendices
A and D to show, using the form of J(A) im-
plied by (5.31), that the kernel of the imbedding
equation (5.23) becomes connected after a single
iteration. Thus the imbedding algorithm (5.31)
(5.33) is also well defined and allows one, in prin-
ciple, to calculate in a constructive way correc-
tions to a model problem defined by an RM A.
This feature is probably the one which is most
markedly different from conventional approxima-
tions in nuclear reaction theories where one often
has no systematic procedure for calculating cor-
rections to low- order approximations.

and

x; (A) = g (n ')„g:(A),
oc6

(6.5)

f.(A) = V'.(A)[1+G.(A) V:(A)]. (6.6}

Clearly X, (A) is the c-connected part of the model
elastic scattering operator T, (A). Equations

W", (A)=g W"'(c~A), (6.3)
C

and W"(c ~A} is the c-connected part of r"'(A).
By the arguments of Sec. IV it is clear that
W"~(c ~A) corresponds to scattering within the
clusters of the partition c, and vanishes unless
cc8.

Equations (6.1)-(6.3) comprise that version of
the reaction theory of Ref. 4 which possesses an
explicit multiple-scattering structure, and, as
such, represent one of our principal results. In
the remainder of this section we explore the prop-
erties and the physical interpretation of various
facets of this structure. Before doing this we
observe that for a nontrivial RM the kernel of
(6.2} becomes connected upon a single iteration.
Also in the same way that we were led to Eq.
(5.23} it follows that Eqs. (6.2} can be reduced to
a set which couples together only the reaction set
of operators P(A)T(A}P(A}. Finally, in Ref. 10
the significant advantages that the PLMS equations
offer over the original BRS equations are explored
at length. These advantages are particularly
striking in applications such as the optical model
where a succession of multiple-scattering type
approximations are often useful. For very simi-
lar reasons these advantages are also realized
for RM-type few-body reaction theories as well.

We now note that for a(=g we have, for the spe-
cial case of the nonrearrangement scattering of
two fragments,

W' ' (c i A) =X, (A), (6.4)

where
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(6.4}-(6.6} are the RM equivalents of the multiple-
scattering expansions of Sec. III.

To illustrate the meaning of the various terms
in the expansion (6.3), we note that any partition
a(=& can be constructed from 0 by joining two or
more of the clusters of the partition 0. Further-
more, since there exists no partition c(=- I, c( 0,
the clusters of 0 cannot be further divided in a
reaction model described by the set 8, and there-
fore they behave as particles with internal struc-
ture in the scattering process. This is evident if
we recall that Htl(A) =Po(A}H» and Po(A} projects
onto the space of the maximally connected eigen-
states

~ $0(vo)) of Ho. Thus the spectrum of Ho(A}
includes only those states in which the clusters of
0 are in bound configurations. For a few-body

a
reaction mechanism, no ~ 4 ~ Now t; (A) =-0, and
for a partition a &0, f, (A) corresponds to the
scattering of two (ij), three (ijk) ~ ~ ~ ns —n, (ijk )

clusters of the partition 0:
1

T (A)=Q t,)(A)++ t;)I,(A)+' '

i(f j&A

In the "impulse approximation" to (6.7) we have

(6.7)

(6.6}

where i' = (ij ) refers to a pair of clusters and

f, (A) = V, , (A)(1+ [z —Htj(A) —V; (A)] 'V( (A)j.

(6.9)

Clearly f;. (A) is an effective two-body transition
operator.

The development leading to Eqs. (6.7)-(6.9}
closely resembles the formulation of an exact no-

body problem. However, there are several sig-
nificant differences. First, we note that the free
propagator Gp of the exact problem is replaced by

Gts. Since Hg in our model possesses a spectrum
more complicated than that of the ordinary
kinetic energy operator, the "two-body" operators
t; (A) have a rather complex pole-cut structure
corresponding to the bound states of the individual
clusters of partition O. . Such a structure would
be entirely absent if the np bodies really were
elementary. It is in this sense that the model
problem resembles the problem of np particles
u}ith internal structure,

This feature of the model problem requires the
reinterpretation of the impulse-closure type
approximations. Normally what is referred to as
the closure approximation amounts to the replace-
ment of the two-cluster propagator G by, e. g. ,
the approximate propagator s (z —Ho)

' or (z —Hq ) ',
where z is a parametric energy, and, in general,
z 4z and i refers to a pair of particles. The dif-

ficulty with the literal transcription of this to an
RM model is that Ho(A) and H, , (A) may vanish for
a particular choice of A so that G is replaced by
i . This clearly is not consistent with the picture
of the RM model as an np-body system. A correct
equivalent of the (z —Ho) propagator in our model
then is [z —HD(A)], the equivalent of the two-
particle propagator is [z —Ho(A) —V;, (A)] ', and so
on. These remarks can also be understood in a
somewhat different context. We recall that the
RM assumption is that there exists a dominant
set of channels. In contrast, the replacement of
G by Gp assumes that the various eigenstates of
H are equivalent in the scattering process.
Clearly, these two assumptions are not compatible
with each other. This point is important, e.g. ,
in the development of a consistent theory of an
optical potential.

The above discussion illustrates that various
rather trivial approximations often made in the
exact problem must be treated with some caution
in the RM cluster model in order to ensure a con-
sistent approximation scheme. Various other
features of the model problem are absent from
the exact one. Inparticular, in the model problem
all interactions are nonlocal, energy-dependent
and multiparticle. Thus, even if the model leads
to an effective three-body problem, its solution
is considerably more difficult than that of the
"standard" three-body problem.

An interesting possibility arises if ng =3. In
this case it is possible to write the RM equivalent
of the Watson equations of Sec. II, viz. ,

t((A) = V(, (A,)[1+Gg(A)t;, (A)], (6.12)

and t, (A) is recognized as the RM equivalent of
the two-particle scattering operator of the exact
problem. We note that in order tv determine
t; (A) it is necessary to calculate the (microscopic)
interaction V; (A). An alternative to this is to

(6.10)

where the cluster pairs i',j ' g u, and

t; (A) =f;, (n~A) = V, .(A/1+ G (A)t (,(A)j. (6.11)

Equations (6.10) and (6.11) represent the cluster
generalizations of the Watson equations' for the
three-body problem and thus have connected ker-
nels after one iteration. As in the exact case,
t;(A) is a many-body operator. Various impulse-
closure type approximations on the intercluster
degrees of freedom allow us to replace t, (A),
e. g. , by the operator t; (A) given by (6.9}. We
have
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replace the (nonlocal energy dependent) potential
V,. (A} by a local optical potential U, . for cluster-
cluster scattering. Unfortunately, it is not clear
how to do this consistently so as to obtain a unitary
theory. Finally, in analogy with the results of
Sec. III, it is also possible to write down the RM
correlative expansion. Since this is quite straight-
forward we will not do so here.

unlike the corresponding equations found in Ref. 4.
The results obtained in this paper suggest sev-

eral important avenues of practical applications to
nuclear reactions. One of these applications is
the development of the optical potential and we
intend to explore this topic elsewhere.

This work was supported in part by the National
Science Foundation under Grant No. PHY78-26595.

VII. SUMMARY

In this paper we investigate the multiple-scat-
tering structure of various scattering operators
and the integral equations they satisfy for many-
body Hamiltonians consisting of terms of definite
but arbitrary connectivities. This refers to those
situations which involve various kinds of ordinary
multiparticle forces but more importantly, it also
includes the effective interactions which arise
in few-body models of nuclear reactions. In these
models interactions with somewhat unusual struc-
tural characteristics are encountered. The prin-
cipal objective of our work is to extend the ap-
plicability of multiple- scattering approximations
under certain physical circumstances to few-body
models of nuclear reactions.

Our results fall into two main groups. First,
we find the modifications of multiparticle scattering
theory, with particular regard to multiple scat-
tering, which arise because of the presence of
multiparticle interactions. This extends previ-
ous work which was confined to only pairwise
forces. ' This first group of results represents
a nontrivial extension of a wide variety of impor-
tant aspects of multiparticle scattering theory as
it applies to nuclear reactions. These aspects
include the Watson theory, the Bencze-Redish-
Sloan equations, and various resummations of the
multiple-scattering series.

Our second group of results consists in the ap-
plication of the methods which were used to obtain
the preceding results to the particular few-body
model of nuclear reactions proposed by Polyzou
and Redish. One of the major features of this
is the refinement in the idea of a reaction mecha-
nism which is required in order to obtain a con-
sistent description of multiple scattering within
these models. The particular versions of the
impulse-closure approximations which emerge in
this few-body model of nuclear reactions are
found, and their physical significance is pointed
out. Several new properties of the models pro-
posed in Ref. 5 are investigated, including a new
method of imbedding the approximate theory within
the exact theory and a new set of connected-kernel
equations for the model transition operators which
possesses a multiple- scattering substructure,

=n[v]n', (A I)

where (Ve)„~ = V~ and

[v]-=Q,[v]+p, [v],sp, .
We note that SP,&' =8 and since [V]Qq ——[V] we
have

(A2)

(AS)

Equation (4.6) can then be rewritten as

= PzCQ

and thus Eq. (4.7) becomes

T = VeQgCG(30 '+ T}.
It follows from (AS) that

V„QtG =X[V'G]Qgn Qg,

where

IV G]..-=26 ....[Vl. ,,[G]..
cod

(A4)

(A6)

(A6)

In Eq. (A7) the notation e Ud = due refers to the
union of partitions e and d. ' The union of e
and d is itself a partition such that e U d & e, d
and if a is such that a&e, d, then a2eU d as well.
Thus e Ud is the partition with the greatest num-
ber of clusters which contains both a and d. The
power of this concept in multiparticle scattering
theory derives from the circumstance that the
product of two operators of well-defined connec-
tivities a and b, respectively, has connectivity
a Ub. ' We see then that (A7) is a sum of b-con-
nected operators. In obtaining (A7) we use the
fact that by (A2) the operator [V]„, is a connected
and the decomposition

G.=g ~.,[G]„ (A8)

of G, into the components [G], which are the d-

APPENDIX A: REDUCED SCATTERING EQUATIONS

In this appendix we show that the Eq. (4.8) can
be placed in the reduced form (4.12). We also
review several technical devices which are useful
in multiparticle scattering theory.

Let

V„=V„+nP, [V],3
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connected parts of the full Green's function.
If we call [Eq. (4.11)]

M. , =[V'GG, '],5, ,„ (A9)

w„,=MG, sG ' v-„+MG, (p, + r) v„

-=g w(y), (A22)

one can show using (2.8), (AI), and (A8) that

6[V ' G]QiGO ——M + EPg[ V]gSQg .
The square of the kernel K= V„Q&GC of the inte-
gral equation (A5) is

K =K[V G]Qi'u[V'G]Q»'CQi

(A10)

(A 11)

where

(Q,~),.=-5, , , 12)

From Eq. (A12) we see that K2 is a fully connected
operator. In deriving (A10) we have made use of
the sum rule'

as shown in Appendix B. Equations (A20} and
(A21) then yield Eq. (4.20). We also note that in
(A22) there is no dependence on the fully connected
intera. ction [V]&. Since r satisfies the same equa-
tion as & if [V]~= 0, Eqs. (A20) and (A21) lead
directly to Eq. (4.16) when we setSR —= 0.

APPENDIX B: W IDENTITY

The operator y= T —V„has the components

= V'"+ V'GV'

or

~'C~ = Q,~. (A 13) 5 ~ 0 EGG 1 yb (Bs)

If we call

Su —= 4P&[V]&s Qy,

and make use of the decomposition

Q,'u =P,&+ Q, (Q, 'u)

(A 14)

(A 15)

We call W'"(f) the f-connected part of r ", i.e. ,

w"&) =r'~.AVP "i
+ &g„V G V 4, g5,„q„,y.

eA~c

K'=(M+5|i)G, (P, + r)K, (A 16)

and the product rule (A13), we see by referring to
(A10) that K assumes the compact form

(B2)

By definition, W'"(f) vanishes unless f& tt(S),
f q.

' a, 5, and we have

where boa gybe O

f
(B3)

I"—= Q26 CQg. (A 17)

We recall that P2 is the projector on the set of
two-cluster partitions and that Q2

—I-P2. In de-
riving (A16) we have also used the elementary
properties

a Qi=p2C=p~

The partition sums in (B2), (B3) and in the equa-
tions to follow are over the set 8(S).

From (Bs) it follows that

(B4)

If we use (B3}in (B4}we obtain the identity

Equation (A5) can be written as g W"(f) =g W(f)G, G'- V'
f f

(B5)

T =KSG +KT .

Thus, using (A16) we see that

KT =(M+Sit)G (P + r}T.

(A18)

(A 19)

After a few manipulations the disconnected part of
(B5) can be written as

Z W"(f)=Q W '(f)G, G. '

Also by the same sort of manipulations which were
used to obtain (A16), it follows that

KSG ' = (M + SR}G 0 . (A20)

Equation (4.13) follows from Eqs. (A16)-(A20).
If we call y= T —V„, then

r = (M +mt)G, (Q, SG +(P', + I') V„

—v„+ (p, + r),] . (A21)

We are only interested in Q, 7Q& and on the Q& sub-
set of partitions

+ Q W ' (f)GDV, —V, , (B6)
- f „coun

where the prime indicates that. the 1 partition
has been omitted from the sum.

Let us consider the sum

g w"(y)G, V.= Q w(y) vG. „5,,

+g "W(y)( G(V. ,„V+;),

(BV)
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where y denotes a two-cluster partition. The con-
nected part of (B7) is then

g W"(f)G,V.5„,, + p W"(y)G, V,r
- f i 001m

=Z 5, ...w"(f)o,I v),6. .2~. .f

Let u be a stable two-cluster partition. From
(C4) we have on-shell with the aid of Lippmann
identity

(Mo, )„&o. IA.&=+ (& ), V'.{G.o. Iy. &I

(C5)

+Q W '
(y)GOV,". (B8) where again we require fel. From Eqs. (Bls) and

(C5) we conclude that half-on-shell
A comparison of the definition (A9) of M with

Eqs. (Bl) and (B3) reveals that w„', ly. & ={Mo,(P, + r)v„)...Ie. & (c6)

Mq, y
——W ' (f) .

We also note that (Qf, :0I Pg Pp)

e, ,,tV],n. =[VI,(~'}..

(B9)

(Bio)

I,et us refer to Eq. (4.20). Since & does n«
possess any 6-function singularities, 9RGDSG
vanishes on-shell and we find from Eq. (C6)

(.4..1~. & =C(M+~}o,(P, + r}v.h..l ~. &

Using (B8)-(B10)and (A14) we obtain (ac 1)
I

W ' (f)GDV,6„,2
f COml

= (MGOF V~)~„,

(B11)

+g w"(y)o, v& v'. . (BI2)

The term in (B7) containing V„& has been dropped
since it contains no fully connected parts.

Equation (B12) can be written in a matrix form
as

w„, =Mo, (so-'+ p, + r) v„- v„. (Bls)

Equation (Bls) is the basic identity needed to de-
rive the PLMS equations of Sec. IV. We remark
that the considerations of this appendix are valid
whether or not [V]& ——0.

APPENDIX C: HALFAN-SHELL EQUIVALENCE THEOREMS

Let us consider the operator

7-, —= V~+ V,G,V, = V,G,G(} (cl)
We note that ~', =r', so that from (Bs}we have

where l and V„are defined in Appendix A. Com-
bining (B6) and (Bll}we get

g N'(f) =g w '0(f)G G, +(MGDI'V„) „
f f

+ terms containing r. (c7)

let alone the impulse approximation. These mat-
ters are investigated further in detail in Ref. 10.

APPENDIX D: RM SCATTERING EQUATIONS

We present here the details underlying the deri-
vation of Eqs. (5.25) and (6.2) for a well-struc-
tured RM A. Since Oe 8 in such a case we have
from (5.11) as the analog of (2.3)

H(A) =HI(A) + V(A),

The significance of Eqs. (C6) and (C7) is that
they explain the lack of multiple-scattering struc-
ture in the half-on-shell version of the integral
equation (4.12) for T. If we make use of our pre-
vious results, especially (C5), we find that T is
half-on-shell equivalent to the integral equation

T,„,= v„+ (stt+M)o, (P, + r)T, „,. (c8)

Equation (C8) is the general version of the BRS
equation. We then conclude as in Ref. 10 that
the multiple-scattering structure of T»8 is re-
covered in the second Born approximation to T»s
as obtained from (C8). This is hardly a trivial
observation since from (C8) it is not at all obvious
how one could recover the first Born approxima-
tion

~'.=g w"(f)n. ,„f
(c2)

where again the sum is over C(1), Thus if fo 1,

where

V(A) = V (A) . (D2)

g(n, '), &'. = W"(f) =(Mo,), ,o,-',

and using (Cl), we obtain

(Mo,), ,=g (n'), V'.G. .

(cs)

(c4)

We note that V'. (A) = 0 for all bee .
Let [cf. (6.1)I

r"(A) = T.,(A) V,'(A)

= V" (A}+ V'(A)G(A}V (A) .
Clearly

(Ds)
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r" (A) = V {A)G(A)Go{A) ',
and we are led to the identification

M, ,(A) =[r" (A)], .
Since b Uo=b for bc 6 we have

(D4)

(D5)

Q W" (f IA) =Q W"(f IA)GO(A)G, (A) —V~(A),
f f

we can follow the same analysis as in Appendix B
to obtain, in matrix form

W~ (A) =M(A)G0(A)SG(A) V~(A)
M„(A)G (A) = [V'(A)G(A)], .

It should be noted that M, g{A) —= 0.
The kernel of Eq. (5.18} is

K{A)=v(A)G(A) .

{D8)

(DV)

where

+M(A)GO(A)(P2+ I') V (A), (D13)

(D14)

[V(A) .G(A)].=g 5...„,[V{A)],[G(A)], . (De)

Also

By analogy with the development in Appendix A
we find that

K(A)2 =M(A)QO, )G)(A)(Qg'u)[V(A) 'G(A)]Qg&'CQg,

(D8)

where

Equations {D3) and (D13) when used with (5.24)
yield the RM-PLMS equations (8.2).

The appropriate specializations of the half-on-
shell equivalence theorems of Appendix C are
straightforward to obtain. Let u{= g be a stable
two-cluster partition. Then one finds that half-
on-shell

[M(A)GD(A)]„,gG, (A) 'I4 & =5y..V'{A) IA. )

(D15)

K{A}SG(A) =M(A)G)(A)Q)SG(A) (Dlo) and

W"(y IA)
-=[,"'(A)]„ocy

and we note that [r"{A)]o=0 and

M, {A)= W"{y I
A) .

Since

(D11)

(D12)

With (D8) and (D10) we obtain Eq. (5.25) from
(5.18).

The derivation of the RM version of the P LMS
equations also follows the development in Appendix
A. We set

W ' (A) I@ )=]M(A)G"{A)(P, + I')V (A)},.Iy. & .

(D18}

We also deduce that

[r(A)], I P &
= [M(A)Go{A)(P, + F)V~(A)], . I@.) .

(D17}

The significance of Eqs. (D14}-(D15) is similar
to their counterparts (C5)-(C8) and we refer to the
discussion in Appendix C.
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