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The properties of the subspaces of the many-body Hilbert space, which are associated with the use of the
generator coordinate method in connection with one-parameter and with two-conjugate-parameter families

of generator states, are examined in detail. These families are obtained by letting unitary displacement

operators, having as generators canonical operators P and Q, defined in the many-body Hilbert space, act
on a reference state. We show that natural orthonormal base vectors in each case are immediately related to
Peierls-Yoccoz and Peierls-Thouless projections, respectively. Through the formal consideration of a
canonical transformation to collective, P and Q, and intrinsic degrees of freedom, we discuss in detail the

properties of the generator-coordinate-method subspaces with respect to the kinematical separation of these

degrees of freedom. An application is made, using the ideas developed in this paper, (a) to translations, (b)
to illustration of the qualitative understanding of the content of existing generator-coordinate-method

calculations of giant resonances in light nuclei, and (c) to the definition of appropriate asymptotic states in

current generator-omrdinate-method descriptions of scattering.

NUCLEAR STRUCTURE Properties of generator coordinate representations.
Qualitative application to giant resonances and scattering.

I. INTRODUCTION

The generator coordinate method (GCM) provides
a variational approximation to the dynamical be-
havior of quantum many-body systems which guar-
antees the linear completeness of the variational
space. In fact, the variational space of the GCM
can always be associated with a projection opera-
tor, defined in the many-body Hilbert space,
which can be constructed explicitly in terms of the
adopted set of generator states. '~ Characteristic
features resulting from the quantum superposition
principle are thus preserved, and this is the
foundation of the fully quantum mechanical character
of approximations based on the GCM." In the
GCM scheme the dynamical properties of the
many-body system are determined by the projec-
tion of the many-body Hamiltonian Q onto the GCM
variational subspace S, $HS, where S is the pro-
jection operator associated with the GCM varia-
tional subspace S:

S-S -S
One of the distinguishing features of the GCM is

the fact that the variational subspace S can be con-
structed with no reference to any collective dyna-
mical variable. Indeed, the choice of thegenerator
states is made on the basis of educated guesses as
to the nature of the collective properties under
consideration (see, e.g. , Refs. 5, 15, 16, and 18).
These generator states are put in one to one cor-
respondence with the points e of a label space.

The labels e are usually, but not necessarily,
equal or related to the expectation values of some
adequate dynamical variables of the many-body
system under consideration. However, once the
GCM variational space (or, equivalently, the cor-
responding projection operator S) is specified
through a definite choice of generator states, one
can find, a posteriori, natural dynamical variables
in $. These natural dynamical variables allow us
to describe the restricted dynamics of the many-
body system in terms of a small number of spec-
ialized degrees of freedom.

The quantum mechanical character of the GCM
does not stand by itself as a sufficient asset, how-
ever. Restricting the problem to a subspace of the
original many-body phase space brings about
truncation effects that are, in general, difficult to
assess. An obviousadditional formal requirement,
that the projection operator involved in the trunca-
tion should be, as nearly as possible, a constant
of motion, ' seems to be of little guiding value
when one is confronted with realistic problems.
These difficulties stem, of course, from the fact
that one is confronted here with a dynamical ques-
tion that cannot be ultimately settled as such with-
out reference to some specific Hamiltonian. As we
show in detail in this paper, however, this dyna-
mical question can be, so to say, reduced to a
"kinematical level" provided that collective dyna-
mical variables associated with the relevant col-
lective degrees of freedom are given in the many-
body phase space X. Here lies, of course, the
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ScX Xc SSQXJ (1.3)

In Eq. (1.3) we introduced the projection operator
onto the appropriate one-dimensional subspace of
the intrinsic space X„

sg = sg = si' =
j I) (Ii ~

Thus

Sc Sc = Sc = Ic (3 Sr

is the projection operator onto the ideal collective
subspace. We may also consider the complement-
ary projection operator

In terms of these operators, K can be written as
the direct sum of two complementary spaces

=S,X'R, K,
while the Hamiltonian H of the system under con-
sideration can be decomposed as

P=S,HS, + R,HR, +S,HR, + R,PS, . (1.4)

The last two terms represent the dynamical coupl-

dynamical part of the problem. What remains then
to be done is to set up a generator coordinate (GC)
scheme such that the resulting variational space is
well adapted to the unfolding of the corresponding
collective dynamics.

In order to clarify these ideas and gain some
general operational expediency, one may consider
such matters from the following point of view:
First, consider for definiteness the case of a can-
onical degree of freedom, i.e. , a collective degree
of freedom associated with a canonical pair suit-
ably defined in the many-body Hilbert space X:

[Q Pl=& ~

One can then introduce a canonical transformation
from the particle degrees of freedom p, , q, to P, Q
and to additional intrinsic variables w, , ],. (f =1,
3A —1). At the same time, we are naturally led to
consider X as the direct product of a collective
space X~ and an intrinsic space X„ i.e.,

K = X~ (3 3C~ .
We may also decompose the Hamiltonian describing
the systems as

H = H, (P, Q)+ Hs(&;, $;)+NQ, P, (;,m]), (1.2)

where the last term H' represents the coupling be-
tween collective and intrinsic degrees of freedom.
It is also useful to consider a subspace of the
many-body Hilbert space, to be called the ideal
collective subspace, which is given by the direct
product of the collective space and a one-dimen-
sional subspace of the intrinsic space:

ing of the subspaces.
'The conditions for the systems to sustain a well

developed collective mode can be stated in terms
of a weak coupling limit, which in the case of the
ideal collective mode, implies that the last two
terms in Eq. (1.4) vanish. The eigenfunctions of
S,H$, are then determined by the collective Ham-
iltonian H, (P, Q), and the projectors S, and H, are
constants of motion. 'The diagonalization of S,IIS„

S,HS, =S,(H, (P, Q)+ (I~|H ~I))S, ,

gives part of the exact energy spectrum of H.
We may now ask: How does the GCM variational

subspace S stand with respect to the product space
decomposition (1.3)'? In particular, we may ask:
How does the GCM Hamiltonian MS compare with

S,IIS,? On a purely formal basis, $H$ can be split
into three contributions,

SHS = SH,S + SH~S+ SH'S,

which originates, respectively, from each of the
terms in Eq. (1.2). Thus we see that in general
the GC dynamics can be ruled by the collective
Hamiltonian H, by the purely intrinsic part H, and

by the coupling term H'. Even in the case where
H' vanishes, the GC dynamics may still engage the
intrinsic degrees of freedom through $H,S. 'Thus

the use of the GCM willin generalgive rise to a spuri-
ous "kinematical coupling" (i.e. , resulting from the
GC scheme and not from H which, in this case,
does not couple the intrinsic and collective degrees
of freedom) between the intrinsic and collective
degrees of freedom. A typical manifestation of
such a kinematical coupling (see Sec. V) is the in-
correct translational mass that one in general ob-
tains when one uses the technique of Peierls-
Yoccoz projection. This amounts in fact to a par-
ticular GCM treatment of the true translational mo-
tion of the system as a whole.

In order to obtain an adequate description of the
collective dynamics in terms of the GCM, the con-
struction of the variational space S, which we call,
in what follows, the GCM collective subspace,
must be such as to eliminate such spurious cou-
pling effects. In this paper we show how this can
be achieved once a collective canonical pair P and

Q is adopted as relevant. Specifically, we discuss
in detail the GCM collective subspace S generated
by one- and two-parameter families of generator
states obtained by letting unitary displacement op-
erators having P and Q as generators act on a ref-
erence state. These spaces can be immediately
related to Peierls-Yoccoz and to Peierls-Thouless
projections, respectively. 'This is done in Sec. II.
In Sec. III we discuss the relationshipbetweenthese
two spaces and give conditions under which they
are identical. Natural dynamical variables associ-
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ated with specific representations in these spaces
are defined in Sec. IV, where the expression of
SHS in terms of these variables is also given. In
Sec. V we discuss in detail the separation of col-
lective and intrinsic degrees of freedom in the
framework of the GC dynamics, and in Sec. VI we
illustrate the qualitative understanding that can be
gained, using the ideas developed in this paper, of
the content of existing GCM calculations of giant
resonances in light nuclei. 'The significance of our
results for the construction of asymptotic states in
scattering theory is also shown. Section VII con-
tains some concluding remarks.

II. REPRESENTATION FOR THE GCM COLLECTIVE
SUBSPACE

A. One generator coordinate

We define the one-parameter family (OPF) of
generator state as

I e& =e ' F10&. (2.1)

~ ) = (Ol e &
-"&

10& (2.2)

depends only on the difference of the generator
coordinates, and so it can be diagonalized by a
Fourier transform

(2.3)

The ketl 0) stands for a suitably chosen normalized
reference or "fiducial" many-body state, and P is
a collective Hermitian operator generating relevant
changes of the reference state.

The overlap kernel (al a'&,

10)
((01~k"10&)'" ' (2.6)

As shown by Eq. (2.6), they are equal to normal-
ized Peierls- Yoccoz projections of the reference
state 10) associated with the operator P. The rep-
resentation found above is the specific representa-
tion given by the diagonalization of the overlap
kernel. This is very convenient for sorting out the
kinematical oddities inherent to the generator co-
ordinate method, but other representations may be
preferable from a physical point of view. Thus it
is clear that a transformation theory in the sub-
space S, al1ows us to find, byaunitarytransforma-
tion, another representation which diagonalizes
any self-adjoint operator defined in Sy.

In what follows, we assume that A(k) decreases
monotonically as a function of III, i.e., that A(k)
has a maximum at k equal to zero and decreases to
zero at infinity. This hypothesis is not essential,
and it is made only to simplify the discussion. The
general case is discussed in detail in Ref. 1.

Following Ref. 1, one can find a representation in
the GCM collective subspace S, constructing base
states in terms of the eigenfunctions of the overlap
kernel (a I

o. '&. In this case the projection operator
in $, can be written as

+m

~x = d~
I 4& &r r( Pa I ~

OO

The states 1&l», „form a continuous orthonormal
base, and they are given as

1
Ie, &, =

&2,A(„&p. f&~ I~&( I»

The eigenfunctions and eigenvalues are, respec-
tively,

(&II)= ~ e'
~m

+ oo

A(k) = — do. (F10)e ' = (0 I
II', 10),

(2 4)

and Q, is the Peierls-Yoccoz projection opera-
tor'.

+ eo

d(ye ' e& ~=/(P y).
2n

(2.5a)

The properties of the scalar product in the many-
body Hilbert-space and the time reversal proper-
ties of P and 10) (P is a time odd operator and 10)
is a time even state) make A(k) a semipositive def-
inite even function of k. Besides, one has, from
Eqs. (2.4) and (2.5a),

B. Two-conjugate generator coordinates

%'e define the two-conjugate-parameter family
(TCPF) of generator states as

a p) =e ("eeieolO) (2.7)

[Q,P3=f.
The overlap kernel (o.P I

a'P') is given by

(op I
~'p'& = (op I Nl o'p')

= (Ole-'8oe '~ " &Peie 010& (2.8)

and its eigenfunctions and eigenvalues are deter-
mined by the equation

(~p IN I
~'p')(o'p'I &s)«'dp' = 2v~.(I )(~p I as) .

(2.9)

where P and Q are conjugated collective operators
in the many-body Hilbert space, i.e.,

dk'A k) =1. (2.5b)
In the Appendix we show that the eigenfunctions
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of (nP(n'P'& are
jka

(np(kn) = )j&„(p —k) (2.10)

and that the eigenvalues X„(k) are independent of k.
The functions )j&„(p) and g„are eigenfunctions and

eigenvalues of the semipositive definite Hilbert-
Schmidt kernel

(P (n(P') = (0(e ' 6(P)e' ' (0),

Jl ( p fnl p')@.(p')&p'= ~.y.(p).

(2.11)

(2.12)

The reduced kernel (p(nip') can have zero eigen-
values, and when they occur, there are two impor-
tant consequences: One is that the weight functions
defined in the null space of N give rise to vectors
of zero norm in the many-body Hilbert space.
Therefore, there is no loss of generality if we re-
strict the weight function space to the orthogonal
complement of the null space of g. The other is
that the existence of eigenvectors of N with zero
eigenvalue implies that the generator states are
not linearly independent, and the linear dependence
is expressed by

I&))&=f&& &)) I'))'&'Ri'&'))", ))), (2.13)

(2.15)

where the base states are

where the kernel R(np, n'p') is

~) )) )) ) pf ~)(=~)))).))).)')) )
ff, k. ff

ve0

(2.14)

which is seen to be equal to the projection operator
on the orthogonal complement of the null space of
N.

As in the previous OPF case, we can find a
representation for the GCM collective subspace $,
in terms of eigenfunctions of the overlap kernel
(nP I

n'P'). In the TCPF case the projection opera-
tor in 9, is given by

III. RELATIONSHIP BETWEEN THE SUBSPACES

The generator states (n) and ( nP) are vectors
defined in the GCM collective subspaces S, and S„
respectively. 'Therefore, we can find the projec-
tion of these states along the base states I)&&,&„and
()j), „&r. Using Eqs. (2.3), (2.6), (2.9), and (2.16),
one has

(nl y.)r= f2vA(k)l'"(nlk)

(np I y. ,.&. = (2v~.p'(np lkn) .
The generator states (n& are, moreover, con-

tained in the set (np) since (n) = (n, p=0). Then,
using Eq. (3.2), one has

(3 I)

(3 2)

(n(t(, „),= (2vz„)'"(nlk)y„*(k), (3.3)

where we use the property

yN-p) =y„(p),
which can be obtained by time reversal Q being
taken as a time-even operator.

Inserting Eq. (3.3) into Eqs. (2.6) and (2.4), we
can write the states

I &(, &„as a linear superposi-
tion of the states (ij~ „&r:

and, as shown by Eq. (2.16), they are equal to the
normalized Peierls-'Thouless projection of the
reference state (0) associated with the operator
P. Furthermore, they are labeled by two quantum
numbers, one discrete, n, and other continuous,

The number of discrete labels is equal to the
number of eigenvectors of the reduced kernel with
nonvanishing eigenvalues. As this kernel is of the
Hil. bert-Schmidt type, this number can be finite or
infinite, and in the last case ~„has a single limit
point at ~=0.'

The representation specified by Eqs. (2.15) and

(2.16) is the one obtained by the diagonalization of
the overlap kernel, and by unitary transforma-
tions in $„one can find another representation
which diagonalizes any self-adjoint operator de-
fined in g.

d &pl p&( plk )
1

Iia.'. I o)
vs„

In Eq. (2.16), I, „ is the so-called Peierls-
Thouless double projection operator'

n, X„&0
(v„(k)('=I

(&~a&, = Q v„(k)lti, „&„
n, k a'0

n

~i„y„(k)
(Z. ~ ..~. l e.(k) I')'" '

which shows that

(3.4)

(3.5)

The states I)j, „)r are normalized as

()(&, „(y,. „) =6(k —k')6

The projection operators in the GCM collective
subspaces generated by the one- andtwo-conjugate-
parameter family of generator states therefore
satisfy the equations
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S IPo&r=lfa&r~

s, ly, „&,=v„"(k)I4,&„.

(3.6)

(3 7)

Equations (3.6) and (3.7) show that S, is always
contained in S, but that, in general, the converse
is not true. S, is contained in S, only when the re-
duced kernel (2.11) has a single eigenvector with
nonvanishing eigenvalue g.

In fact, considering Eq. (3.5), one has

I0) is the vacuum of the boson operator

b = ~ +iPbo

in which case
I aP& reduces to a coherent state.

IV. GCM COLLECTIVE OPERATORS

A. OPF case

I v, (k) I'=1,
and the phases can be chosen such that

v, (k) =1.

(3.8a)

(3.8b)

The base states
I p, )r, depending on a continuous

labe) k, can be associated with a pair of canonical
operators in $„defined by

Pil 4a&r=kl 4o&r ~

I~I)= f s~ l~')r(~'', 0), (3.9)

where

(, )
dk;o(~ I o) go(k —P)
2v 4, (k)

It may still be advantageous to use the redundant
two-conjugate-parameter family since the genera-
tor states I aP& have in this case very useful math-
ematical properties. For example, it can be easily
shown that in this particular case the weight func-
tion always exists as a regular function, and we
can find a representation in the collective subspace
which is diagonal in the generator coordinate
states. Ne can view this particular case as a slight
generalization of the concept of coherent states. '
The property discussed above is called "global re-
dundancy" in Refs. S and 9. The concept of a

local redundancy, "which is a particular case of
global redundancy, is also introduced there. It
corresponds to the fact that the action of P on the
states I oP& is equally expressed by the action of Q
on I np&, which in our case demands

f(P p}lop&+ ',-' Iop&=o,2 (3.10)

where

Thus Eq. (3.'I) becomes

Sx I ta, o&r I Po.o&T ~

In this special case the two-conjugate-parameter
family is redundant in the sense that it gives rise
to the same collective subspace as the one-param-
eter family. As a consequence of this redundancy,
the two-conjugate-parameter family can be written
as a linear superposition of the one-parameter
family since, in this case, the states I go)r are al-
so a base in S, . Thus, using Eqs. (3.2), (3.4), and

(2.6), we have

A, a
qz I 4'a&r & li('o&r ~ (4.1)

A A

(Q»Pxl =&Sr ~

The definitions (4.1) yield

P~= dk Pq ~kygq

@x — dkdk' g~ ~t5' k —k') „P,r

Thu s Qy and Py are natural col Iective dynamic al
variables associated with the representation
{Ip,)r} in Eq. (2.6}.

Instead of directly using the representation given
by Eq. (2.6}, other representations may be pre-
ferable. They can be found in general by unitary
transformations in $, . For example, the Fourier
transforms of the states I go&r,

I
lk ) — ~ e Iko&r~ (4.2)

define another base in $, in which the operator Q,
is diagonal:

qil4. &
= xld. ),

P~I4' ) =~

Another representation is obtained by transforming
(4.2) by means of harmonic oscillator wave func-
tions. This is a discrete representation which dia-
gonalizes a boson number operator constructed
from P, and Q, .

The relationship between the GCM collective op-
erators Qy and Py in the collective subspace S, and
the collective operators Q and P in the full Hilbert
space can be exhibited in the following way. Since
Ig, &„ is the Peierls-Yoccoz projection of the ref-
erence state I0) associated with the operator P,
one has, by construction, that

k.' =2 (oI O'I 0& .
Equation (3.10}holds true only in the case where

P I tj'o) „—k I Qo&r ~

This equation shows that

(4.3)
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A A A

i =$i@$i ~ (4.5)

Moreover, it can be shown by a straightforward
calculation that, in general,

[Q, S, ] &0. (4.6)

In summary, this discussion shows first that the
pair of canonical operators P, and Q, in S, are
equal to the projection in $, of the canonical opera-
tors P and g in the full Hilbert space, second, that
P is diagonal in the representation given by the or-
thonormal set of Eq. (2.6), and finally, there is no

representation of $, where Q is diagonal since the
collective subspace 9, in general is not an eigen-
space of Q.

B. TCPF case

The collective subspace generated by the TCPF
has a base given by the states l(t(» „&r. These
states have two quantum labels —one continuous and

the other discrete. In what follows, we focus our
attention on the continuous label. We could also
use the discrete label n to define additional dyna-
mical variables, commuting with those to be as-
sociated with the continuous label k, but for ease
of presentation, we defer this discussion until Sec.
V.

As in the OPF case, we define a pair of canoni-
cal operators in $, by

(4.4)

which, using the canonical commutation relations
between Q and P, gives

the projection in $, of the canonical collective op-
erators in the full Hilbert space Q and P. How-
ever, unlike in the OPF case, here both operators
commute with $, . Therefore, the GCM collective
subspace $ is an eigenspace of Q, and by unitary
transformation in $„we can find a representation
of $, where Q is diagonal. 'This can be achieved
by means of a Fourier transform:

1
l((t~, &r = ~ e I((&». )r ~ (4.10)

Using Eqs. (4.9), one can in fact show that l(1», „r
obeys the equations

(4.11)

One can also relate the states (4.10) directly to
the generator states. Using Eq. (2.16), one has

iB(x cK)

y„(x- n). (4.13)

Here (j&„(x) itself is the Fourier transform of (t&„(k).
The states I (j&, „)r can thus be written as

11."..10&
I&"& = 'i.—

„,&„.f l~(4&( (&I~&4 4(&, (4»&1

where (nplxn) is the Fourier transform of (nplkn):

(44(41 l 4,I- f (=l 44&(&4

a
&alt»..&r= ~,k I((»..&r

The definition (4.'I) leads to

(4.7)
where IIPT is the Peierls-Thouless double projec-
tion operator associated with the operator Q:

e" igx

II, „= dndp ((4&„(x- n)e' oe '
2m

». =F f4(»i4..& ( 4(4
(4.8)

These equations yield

P2 =P$2 =$2P,

Q2 =@$2=4Q-

Thus the canonical collective operators in $, are

q, =P f4444 l4„&, ( '&4,,(44„,„4,1.-
n

The fact that I4» „)r is the Peierls-Thouless Pro-
jection of the reference state I0) associated with
the operator P [see Eq. (2.16)] gives now

Pl((&», )r =0 I((&» „)r
(4.9)

The functions (nP Ixs) are also eigenfunctions of
the overlap kernel (np I

n'p') with eigenvalue 2s».„.
This is indeed possible owing to the degeneracy of
the problem (X„ is independent of k), which implies
that any wave packet in k (with fixed n) is also an
eigenfunction of the overlap kernel with eigenvalue
2n'x„.

C. Dynamics in the GCM collective subspace

Once a representation in the GCM collective sub-
sp@ce is found, one can immediately write down the
restriction of the Hamiltonian to the collective sub-
space by just taking matrix elements with respect
to the adopted representation. The collective dyna-
mical problem reduces then to the diagonalization
of this restricted Hamiltonian.

In the OPF case, the collective wave equation in
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the momentum representation reads

dk'h(k, k'}kt&(k', t) = tkJ sk»(k, t) (4.14)

where

h(k k') = &&&I&«lff I &t«&r

II'
2» k/A(k) v'A(k'}

(4.15)

and

kt& (k, t) = „(&t, I k}&(t}&,

with

s, I 9&(t)& =
I y (t)& .

The matrix elements of any other operator A be-
tween states defined in 5, can also be written in
terms of a matrix A{k,k') which is given by an ex-
pression analogous to Eq. (4.15), where, in place
of H, one has the operator A.

We can also try to express any operator defined
in S, (or the restriction of any operator to the col-
lective subspace Sy) in terms of the "fundamental"
dynamical variables Q, and p, . Considering the
Hamiltonian as for example, one has'

and

y„(k, t) =,&&t, „I(p(t}&.

We can also write the matrix elements of any op-
erator between states in $, in terms of the matrix
elements of this operator in the base representa-
tion I&t&« „)r.

V. SEPARATION OF COLLECTIVE AND INTRINSIC
DEGREES OF FREEDOM

The construction of the OPF and TCPF in the
preceding sections was based on the consideration
of a canonically conjugated pair of collective oper-
ators Q and P defined in the full many-body Hilbert
space. We may thus consider a canonical trans-
formation, e.g. , from microscopic coordinates and
momenta to a new set of operators that includes
the collective operators Q and P. Considering, to-
gether with Q, the remaining &-1 coordinate op-
erators,

0} (ilk (2k ' 'I t&&& 1}t

which, by the canonical nature of the transforma-
tion, must commute with both Q and P, we can ar-
rive at a coordinate representation of the full
many-body space defined by the kets

S,AS, = g P& &(ff& &(q, )j,
m=0

(4.16)

and H' &(f& )i&s&

«' '(k& & f+", &=kk...i. l«lkk, -.i &

dk;&q, d I

r(&&&a+&k/« Iff I t'r-&&«r/«l r=onjf dK

{4.17)

In the case of the TCPF, the wave equation in
the collective subspace is

Q tdk'k„„.(k, k'lk, .(k', ) = lk
ff

(4.18}

where

h„„,(k, k') =,(&(, „IBI&t„„,&,

dadPda'dP' (knl aP)
2» vz„

„(a'p'Ik', n')
(4.19}

where A' '(B} is the mth anticommutator of A and
gk

A' '(B}= (A, (A, . . .(A, B} ~ ~ }},
m anticommutators

chosen as eigenkets of Q and the operators $. This
representation is actually a product representation
in the sense that we can write

le, t &= le& lr&,

where the
I 1&&& span a Hilbert space for one single

degree of freedom, the collective space, and the

I
t'& are likewise associated with a Hilbert space

for N-1 degrees of freedom, the intrinsic space.
In what follows we shall make a formal use of this
representation of the full many-body Hilbert space
in order to exhibit the factorization properties of
the GCM collective subspaces S, and S„con-
structed in terms of the OPF and TCPF of genera-
tor states, respectively. We shall refer to Q and

$ as the collective coordinate and intrinsic coordin-
ates, respectively. Unless otherwise stated, we
understand them as a representation of the full
many-body space. It should be always kept in
mind, moreover, that both S, and S, carry all the
N degrees of freedom of the many-body system un-
der consideration. They are distinguished from the
full many-body space in that they contain various
imposed correlations among the N degrees of free-
dom. The following discussion will be aimed pre-
cisely at exposing the general nature of these cor-
relations in each of the two cases.

We begin by considering the wave functions as-
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sociated, by the representation
l Q$&, with the

TCPF base vectors. These are easily found to be

(5.1)

(Qt(0&= Z ~x. y.(Q)x.«).
The states ()(), „&r of Eq. (5.1) thus come out as
products of a collective wave function (a plane
wave in the collective variable) and an intrinsic
wave function (depending on the intrinsic variables
$ alone); this is true even when the reference
state (0) does not factor in the representation

The state l)j)Q&„, on the other hand, which are a
base in the subspace generated by the OPF of gen-
erator states are associated by the (Q$& repre-
sentation with the wave functions

(5 3)

1
&Q(l)(.&r- ~ e'"A'Q($), (5.4)

where the orthonormal states (X„], which depend
only on the intrinsic coordinates, are given by

x.(~)= ~1

The functions )t)„(Q) are the Fourier transforms
of the )j)„(k) [see Eq. (2.12)]. Using our previous
results, it follows that the number of orthonormal
states y„ is equal to the number of eigenvectors of
the reduced kernel (2.11) with nonvanishing eigen-
values. We see now that they span a subspace of
the intrinsic space associated with the N- 1 de-
grees of freedom $. Furthermore, using Eq.
(3.2), the reference state (0) can be naturally ex-
pressed in terms of the X„($) as

When such a particular reference state is used to
generate the TCPF, moreover, one finds that the
states (g, &r are equal to the states lg»&r, and the
subspaces S, and S become identical.

It follows from these properties that the natural
representation ()j), „)r for the subspace S, gener-
ated by the TCPF is itself a product representa-
tion. In fact, S, appears as the direct product of
the collective space K, with an intrinsic subspace
spanned by the wave functions X„(g). The dimen-
sionality of this intrinsic subspace is given by the
number of eigenvectors of the reduced kernel
(2.11) with nonvanishing eigenvalues. This product
decomposition of S, holds for an arbitrary refer-
ence state (0). For reasons to be made clear be-
low, we refer to this factorization property as the
Galilean invariance of the GCM collective subspace.
On the other hand, the nature of the natural repre-
sentation ()j)„&r for the subspace S, shows that, in

general, S is not decomposable onto collective and
intrinsic parts (i.e. , it is not Galilean invariant).
ln the special case when the reference state (0)
itself factors in a product of an intrinsic wave
function and a collective wave function, however,
the GCM subspace S„which, in this case, isident-
ical to the subspace S„ is in fact Galilean invari-
ant. It is given by the direct product of the collec-
tive space X, and a one-dimensional subspace of
the intrinsic space.

To discuss the properties of the restricted dyna-
mics of the GC scheme, consider first the concept
of an ideal collective subspace which was discussed
throughly in Sec. I. The ideal collective subspace
S, is equal to the product of the collective space X,
and a one-dimensional subspace of the intrinsic
space (I) such that

where [S,IJ] =0. (5.7)

X())=
)2 ~l~))r. fdQ "~(Q)IQ)

& Qt'(0) = )j).(Q) Xo(t) '

and by Eqs. (5.5) and (3.8), one has

x„(&)= x.(&) .

(5.6)

V„(k)x„(g) . (5 5)
e, X.„&0

These wave functions appear as the product of a
collective wave function and an intrinsic wave func-
tion which, however, depends on the eigenvalue k
of the operator P. Consequently, the states ()j)Q&r

factor into independent collective and intrinsic
parts only when the reduced kernel (2.11) has just
one nonvanishing eigenvalue. In this case, in fact,
the reference state (0) itself admits a similar
factorization, i.e. , [see Eqs. (5.3) and (A5)],

Equation (5.7) shows that there is no coupling be-
tween intrinsic and collective degrees of freedom
in S, and that the spectrum of S,HS„which, in
what follows, we will call the "collective spec-
trum, " reproduces part of the exact energy spec-
trum of H. The "noncollective spectrum, "which
is described by the restricted Hamiltonian R,HR,
where R, is the complementary projection operator

is, in this case, completely decoupled from the
collective one. The GCM collective Hamiltonian
S,HS, will thus have all the properties of S,HS,
provided the ideal intrinsic state (I) is a. vector
defined in the GCM intrinsic space spanned by the
states [x„].The presence of more than one in-
trinsic mode in S, will cause the GCM Hamiltonian

~S, to have, besides the collective spectrum, a
noncollective spectrum completely decoupled from
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the collective one. On the other hand, had we con-
sidered the GCM collective subspace S„which in
general does not factor into a product space, we
would have found that, as a result of the kinemati-
cal coupling between the collective and noncollec-
tive states

I
see Eqs. (5.5) and (5.11)), its spec-

trum had a "hybrid" character and can differ con-
siderably from the exact collective spectrum.

A simple illustration of these facts is provided
by the translation of a Galiliean invariant system.
Here the Hamiltonian is

H=Hc + H

The collective Hamiltonian H, is just

g 2

Hc=
2M ~

M=Am (5.S)

and we set up GC schemes using P and the conjug-
ate center of mass position operator Q as collec-
tive variables. As discussed above, when the Q
dependence of the reference state factors the GCM
collective subspaces $, and $ (corresponding to the
OPF and TCPF, respectively) coincide and the
GCM collective Hamiltonian becomes

j8
x(x, x')=(x~ (x.(((, Ix. ))()(x —x'). (5.9)

We see that the description of the translational mo-
tion is exact, and this fact stems from the Galilean
invariance of the collective subspace. However,
even in the case where the reference state does not
factor in a product wave function, the collective
subspace generated by the TCPF is still Galilean
invariant, and the projected Hamiltonian is

x. „,(x, x')=(x x„„, (x„lxx, (x ))x(x —x').

(5.10)

generator states. A good choice should give rise to
a Galilean invariant collective subspace. This re-
quirement is always satisfied by the TCPF.

VI. APPLICATIONS

A. Giant resonances and sum rules

Extensive calculations of the properties of the
giant resonances in light nuclei were performed by
Flocard and Vautherin' in the framework of the
generator coordinate method. Taking these very
complete calculations as an example, we illustrate
the qualitative understanding of the content of a
GCM calculation that can be gained using the ideas
developed in this paper.

l. Isoscalar quadrupole and monopole oscillations

Nuclear collective monopole and quadrupole os-
cillations are described in Ref. 5 in terms of a
family of Slater determinants of harmonic oscilla-
tor wave functions, where the size parameter of
the oscillator in the z direction, y,

and the size parameter in the plane perpendicular
to the z direction,

y, = m (d, /)f = m (o„/h,

are treated as generator coordinates. These gen-
erator states can be written as

Iy„yg =exp(i[in(y, /yo)'i Do

+in(y, /y, )' '(D, +Do)lll0) (6.1a)

where D,. is a dilation operator in the i direction,

«;(j)p, (j)+p, ( j)«, (j)

Thus we see that the description of the translation-
al motion is exact, whereas the intrinsic states are
approximated by the diagonalization of HI in the
subspace spanned by the orthonormal states ()t„).
In the OPF case, 9, is not Galilean invariant and
the projected Hamiltonian is

h(k, k') = 6(k —k')

x
x

~ Qv:( )( l lxx. x)v.rx(x)) .
ff off

(5.11)

As a result of the kinematical coupling, the trans-
lational mass, defined in terms of the coefficient
of k2, comes out wrong in the above equation.

This discussion shows clearly that this defect is
not to be ascribed to the generator coordinate
method itself but rather to the bad choice of the

and the reference state I0) is a Slater determinant
of harmonic oscillator wave functions for which the
size parameter has the equilibrium value yo.

It was shown in Ref. 1 that the collectivesubspace
is invariant by a change of labels of the generator
states. Here we use this freedom to rewrite Eq.
(6.1a) in terms of new generator coordinates n, and

a2 defined by

'Y /'Yo =e ' yi/yo =e

in terms of which

Iy.yb —
I &,&.) =exp(iI~D, +a, (D +D.)))I».

(6.lc)

As D, and Dy+D2 are commuting operators, the
above states are a trivial generalization of a stand-
ard OPF, and so all the properties previously dis-
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(6.1d)

where D is the dilation operator:

cussed hold.
Nuclear monopole oscillations are described in

Ref. 5 by isotropic oscillators given by

~o&= ~o, =n, a, =a&=e'" (0&,

P = —'(P, —P ),

)
[1+r,(i)]

p i)
$=

g=(, )
[1 —T, (i)]

1 2

(6.1g)

3

D=Q D, .
j=l

There is a representation in the collective sub-
space S,' associated with the generator states (n&

in which D is diagonal. The base vectors defining
this representation are the normalized Peierls-
Yoccoz projections of the reference state (0& as-
sociated with the dilatation operator D. Although
an operator canonically conjugated to the dilatation
operator D in the full Hilbert space is not given,
we can find, using Eqs. (4.1), an operator conjug-
ated to D in the collective subspace pj.

Nuclear quadrupole oscillations are described by
the anisotropic oscillators (6.1c) in which we im-
pose the volume conservation condition

In this case the operator which is canonical to P
is immediately given as

A

Q =R —R~. (6.1h)

which are a standard TCPF.
For the popular choice which consists in taking,

for the reference (fiducial) state (0), a double
closed shell Slater determinant of harmonic oscil-
lator wave functions, one immediately sees that it
is the vacuum of the boson operator

'Thus the dipole oscillations can be described by
the states (o.'&, which are standard OPF, as is
done in Ref. 5 or by the generator states

~
o, P&,

(n, P& =e ' e3e'so ~0&, (6.1i)

2 = 3
Y J. Yg Yp

which, in terms of ej and a„yields

a, =-o.,/2.

b = +sP3bp

where

(6.1j)

The generator states
(
o.', a,) of Eq. (6.1c) become,

using this condition,

[o) =
( a, =-2o, o,= a)

=exp[io(D, + D, —2D, )] (0&. (6.1e)

Again, these generator states are a standard OPF,
and there is a representation in the collective sub-
space S,' associated with the generator states (o)
in which D,

Dg =D, +D2 —2D3 j

2. Dipole oscillations

The generator states are, in this case, chosen
to be

l~&=e ""I0&, (6.1f)

where I'3 is the z component of the relative mo-
mentum between protons and neutrons which, for
self-conjugate nuclei, is

is diagonal.
The case of coupled isoscalar monopole and quad-

rupole oscillations are described by the generator
states (6.1c). Thus there is a representation in the
collective subspace Sj~ associated with the genera-
tor states

( o„a ) in which the commuting opera
tors Dj and Dj+D3 are diagonal.

3. Sum rules

In the case of sum rules, the important question
to investigate is: Under what conditions is the sum
rule exhausted in the GCM collective subspace'7
For ease of presentation, consider the positive
sum rules mj and m3 which are given by

m, =-,'(y,
~ [A, [fI,A)] (g,&, (6.1k)

(P, j [A, [H, [ff, [Ff, A 1]] ] fq, & . (6.11)

These sum rules will be exhausted in the GCM col-
lective subspace provided one has'

This fact shows that the TCPF (6.1i) is locally,
redundant in the sense of Ref. 8 and, as discussed
in Sec. V, implies the factorization of the refer-
ence state (0&. The consequence of all this is that
the collective subspaces associated with each of
the families of generator states are identical.
Furthermore, one can find a representation in the
collective subspace in which Q3 or p, is diagonal.

Although the discussion had, up to this point,
only a kinematical character, one can treat the dy-
namics following the ideas of Sec. IVC. Once one
has a representation in the GCM collective sub-
space, one can construct the GCM collective Harn-
iltonian and find its spectrum. This actually has
been done for monopole" and dipole oscillations. "
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[S,A] =0, (6.1o)

and for rn~, one must have, in addition to (6.1o),

[S, [ff,A]] =0.
According to Ref. 5 [Eq. (C.3)], one has

[S'„r']=0,

[~;,Ql =0,

where r"' and Q are the square radius and quad-
rupole moment, respectively:

Assuming a local two-body interaction (except for
possible spin and isospin exchange terms), one
has" '~

[P, r'] = [T,r'] = — D,

[» Ql =[» Ql =- —Do

which gives

[S,', [V, r']] =0,

Cs,', [H, Q)]=0.
thus showing that m, and m, are completely ex-
hausted in the respective collective subspaces $',
and $,'.

B. Scattering: "Cluster" states and the proper definition
of channel states

From a rather formal point of view, one may
quite generally associate a possible continuous part
of the spectrum of the collective Hamiltonian gFE9

for a finite system to scattering processes that
survived the truncation of the original Hilbert spa. ee
by means of the projector $. In order to discuss
the possible significance of this scattering, how-
ever, it is essential to have at least an adequate
understanding of the allowed asymptotically free
states or channels. We shall see below how the
procedures we will discuss for the construction of

~'~"= l (eo"I[A [fizz»]]le. '"& (6, )
= l ( P."'I [A, [If,&]l I t.'"&,

l"= -'(el" I [A, [fi„,[If„,[II...A] 77] I e."'&

= -'(~!"I CA, Cff, Ck CH, ~] 7 7] I~."'&.

(6.1n}

It can be easily shown that for m, it is sufficient
that

~(xx~ ~o }=~[ei(zi &x)Vz(~'W)].

Owing to the overall Galilean invariance of the total
Hamiltonian 0, it is useful to introduce mean posi-
tion and relative generator coordinates A and a,
defined as

A= Mx+x + M2a
Mi +M2

and G = Q'i —Of

where M, and M, are the masses of the two clus-
ters. Now

collective spaces can be naturally brought to bear
on this matter. The main point is that properly
defined channels must sustain a twofold Galilean
invariance, namely, invariance under translations
and boosts of the overall center of mass and
asymptotic invariance under changes of relative
distance and (asymptotic) relative momentum. In
current applications of the GCM to scattering
problems, these conditions are met by requiring
adequate factorization properties of the many-body
generator states. " Many of the developed tech-
niques, however, are based directly on the consid-
eration of the GCM equation rather than a Schro-
dinger equation based on a suitably constructed
collective Hamiltonian. ""The use of Peierls
Yoccoz collective spaces is sufficient to construct
a collective Hamiltonian when the factorization
properties of the generator states are adequate.
More general cases can, in principle, also be
handled, however, through the consideration of
Peierls-Thouless type collective spaces.

A more delicate problem in the GCM treatment
of scattering problems concerns the nature of the
interactions allowed after truncation of the many-
body phase space in relation to the dynamical be-
havior of the unrestricted system. This cannot,
in general, be decided in terms of the simple argu-
ments developed here.

We will, for definiteness, develop the discussion
around the consideration of many-body states which
are written as the (suitably antisymmetrized} pro-
duct of localized cluster states displaced relatively
to each other. States of this kind are extensively
used to study the structure of light nuclei, for in-
stance, "in addition to their obvious appeal for
GCM treatments of collision problems involving
the systems supposedly mell represented by the
considered clusters. In order to keep the resulting
collective dynamics as simple as possible, we re-
strict ourselves, moreover, to the case of cluster
pairs only. Using the notation e, (i=1, 2) for the
cluster positions (to be taken as generator coordin-
ates} and the collective symbols x, for the set of
particle coordinates in each cluster, we thus con-
sider states of the type
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C (x, a, ; x, a, ) -e(x,x, ; Aa)

—Q p~ gg~A+ p2 QyA

which can also be written, in terms of the cluster momentum operators P„as
P

D(,x, ;A (=(e,.(e p -( A ' p, e, ( „D}exp -' A — ™'a
p, p, (x, D)

= exp(-f A ~ P) 6[exp(-ia ~ p )p, (x, .0)p, (x„0)], (6.2a)

where total and relative momenta have been intro-
duced as

M~ M~P =P~+P2, p= P, — ' P2.1+ 2 1+ 2

Since A ~ 0 is a, symmetric operator, the corres-
ponding exponential can be taken out of the antisym-
metrizer brackets.

The generator states (6.2a) thus have quite gen-
erally very simple overlap properties with respect
to the mean position generator coordinate A. In
fact, their form alone guarantees that the overlap
kernel will be a function of the aifference A —A'
only. The dependence of the overlap kernel on n
and e' is, however, more complicated. This
comes about due to the effects of the antisymmetri-
zation and is related to Pauli blocking effects at
finite cluster separations. For asymptotically
large values of

( a( and (
a'( in fact, only direct

(as opposed to exchange) terms survive, and the
overlap kernel retains a dependence on e- e' only.
We may thus write

(4(A, a) ~C (A', a')) =N„(A A', a —a')—
—N,„,„(A A', a, a'), —

where N,„~is a short-range kernel (i.e., vanishing
in the asymptotic region). The effects of this
short-range kernel are, of course, of fundamental
importance for the description of the scattering,
although, by its essential short-range character,
they do not influence the asymptotic structure of
the channels. Since we focus on this latter prop-
erty, we are justified in neglecting pf,„,„here.
Once the asymptotic nature of the channels is es-
tablished, exchange effects can always be handled,
in principle, using tools which have been repeatedly
discussed in the literature" or by just considering
suitable energy-dependent nonlocal effective poten-
tials as done in the resonating group method or in
earlier applications of the GCM to scattering prob-
lems. "

We concern ourselves thus with the simpler set
of generator states

4„(x,x, Aa) =e '" pe ' 'pep, ( „0)y (x„0).

t

Noting that they are a Peierls-Yoccoz family with
respect both to mean position and to relative posi-
tion of the two clusters, it is immediately clear
that they will generate a subspace with the two re-
quired types of Galilean invariance only in the
special case where the cluster product factorizes
into a center-of-mass function times a function of
the separation between the centers of mass of the
two clusters and a single "intrinsic" wave function
for the two clusters. This double factorization has
actually been required, in practical calculations
done so far, with the GCM. '5' '

To deal with less well behaved cluster product
states, one can fix the desired properties of the
collective subspace by enlarging the generator
family so as to include boosted states such as

(x x ' ABag) —e-i~ PeiB Q& i(x'PeiB ((

x q, (x„0)ip2 (x„0), (6.2b)

where now Q is the center of-mass position opera-
tor canonically conjugate to P, and a similar rela-
tion holds between q and the relative momentum p.
Again, the overlap of these nonantisymmetrized
states differs from the full overlap kernel by
short-range exchange terms only.

One can now, in a straightforward way, apply the
TCPF procedure given in Sec. IIB to the states
(6.2b) to obtain the orthonormal basis for the col-
lective space

(x,x, ( P-„-„) =
~—n„—„„p,(x„0)Cp,(x„0) (X„g0)

(6.2c)

with the doubly Peierls-Thousless projector II
given here as

d& cg dA dB

e~K. A

x p„(P —k; B —K)
2n 2ir

& e '"'Pe'~'~e '" e' '~

The function p„(p, B) is chosen as an eigenfunction
of the reduced kernel
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with eigenvalue X„[cf.Eqs. (2.11) and (2.12)]. We
thus see that, by means of Peierls-Thouless pro-
jections, we obtain in general several (asymptotic-
ally) orthogonal channels labeled by the index n
from a single cluster product. They correspond to
subspaces of the collective space having the proper
decoupling of different orthogonal, intrinsic states
associated with the g„. Whenever the special fac-
torization properties stated above apply, only one
of the eigenvalues ~„will fail to vanish, and one
recovers the subspace that can in this case be also
obtained from the OPF and Peierls-Yoccoz projec-
tions. The factorization, e.g. , of the overall cen-
ter-of-mass dependence of the cluster product,
on the other hand, implies the factorization of the
B,B' dependence of the reduced kernel. In this
case the extra generator coordinate B does not en-
large the collective subspace, and different chan-
nels p„become associated with the coordinate P
only.

We see in conclusion that the collective Hamil-
tonians obtained from the GCM can be used directly
to discuss scattering situations, subject to the
usual warnings concerning the significance of the
retained collective degrees of freedom. The ad-
vantage in their use, rather than the use of pro-
cedures based directly on the consideration of the
corresponding Griffin-Hill-Wheeler (GHW) equa-
tions, "probably hinges on the asymptotic informa-
tion being immediately expressed in familiar lang-
uage and on the avoidance of the unpleasant kine-
matically generated instabilities usually present in
direct solutions of the GHW equation. It probably
is also worth stressing that the consideration of
vector generator coordinates leads to a rotation-
invariant collective subspace. The angular mo-
mentum analysis of the collective scattering prob-
lem can thus be obtained with familiar partial wave
decomposition techniques applied to the dynamical
problem defined by the collective Hamiltonian.

VII. CONCLUDING REMARKS

The application of the GCM to the dynamics of a
quantum many-body system amounts to the con-
sideration of the truncated problem that one obtains
by restricting the system to a complete subspace
of the many-body Hilbert space. In the preceding
sections we discussed properties of the subspaces
associated with a class of generator states of fre-
quent usage, namely, generator states obtained by
applying generalized translations (and boosts) to a
given reference state. The use of such a family
in fact implies a decision which has a strong dyna-

mical content in favor of some collective dynam-
ical variable (and its canonically conjugate pair)
as the relevant one. A clear and trivial example
is the use of the total momentum (and the center-
of-,mass position) to describe translations. A less
trivial and well exploited case is the use of dilata-
tion operators to generate nuclear shape vibra-
tions. "'

Using tools developed earlier, "we examine in
detail the properties of the subspaces generated by
one- [Eq. (2.1)] and two-conjugate-parameter
[Eq. (2.7)] families of generator states. It may be
noted that the construction of these families in-
volves only the one-parameter unitary groups hav-
ing the chosen collective dynamical variables as
generators. This guarantees that the extension of
the discussion to cases in which these groups exist
while the corresponding generators are rather
awkward objects (such as rotations) is, in prin-
ciple, straightforward. In fact, it merely involvep
the consideration of a Weyl system instead of the
canonical pair of generators.

Orthonormal bases in the GCM collective sub-
spaces can be constructed naturally in terms of
Peierls- Yoccoz and Peierls- Thouless projections
of the reference state, respectively, in the case
of the one- and two-parameter families. In the lat-
ter case, we show that the GCM collective sub-
space is always an eigenspace of each of the cano-
nical generators (i.e., they both commute with the
projection onto the GCM collective subspace). The
same is, in general, not true for the space con-
structed from the one-parameter family which is,
in general, an eigenspace of one of the generators
only. We also explicitly show, however, that the
two types of GCM collective subspace actually do
coincide when the reference state involved in the
construction of the family of generator states has
special factorization properties. The two-param-
eter family becomes in this case redundant, "a
fact which can be exploited, e.g. , in terms of the
existence of well-behaved "continuous representa-
tions" in the sense of Ref. 7 (see also Ref. 1'I).

The truncated dynamics is ruled by the GCM col-
lective Hamiltonian which is defined as the re-
striction of the many-body Hamiltonian to the GCM
collective subspace. When the GCM collective
subspaceis not an eigenspace of the two members
of the chosen canonical pair of collective genera-
tors, we show that the GCM collective Hamiltonian
contains spurious (i.e., kinematically generated)
couplings between the corresponding collective
variables and other "intrinsic" variables. This ef-
fect is responsible, e.g. , for the incorrect trans-
lational mass that one, in general, obtains by
means of Peierls-Yoccoz projections. The use of
GCM collective subspace generated from two-con-
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jugate-parameter families completely avoids this
difficulty.

Ne believe that making these results explicit
considerably improves the qualitative understand-
ing that one has of the content of existing GCM cal-
culations such as those of Ref. 5. Also, the defin-
ition of appropriate asymptotic states in current
GCM descriptions of scattering situations" "is
considerably enlightened by them. In fact, in both
cases, the use of families of generator states of the
kind considered here is widespread.
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APPENDIX

'The eigenfunctions and eigenvalues of the semi-
positive definite Hermitian kernel

Equation (A3) yields

y, ,„(p) = y„(p —k)

and A,„(k) independent of k.
The reduced kernel n is a Hermitian, semiposi-

tive definite Hilbert-Schmidt kernel. That it is
Hermitian is obvious. It is semipositive definite
because it has the same eigenvalues of the semi-
positive definite kernel N. Finally, it is of the
Hilbert Schmidt type since

trn=1, (A5)

are determined by the equation

(ep ~ a'P')(a'P' kn)da'dP'=2wA. „k)(aP kn). (A2)

Inserting the ansatz

eiko'
(apIkn)= ~ y, „(p)

into Eq. (A2), one has

P - k n P'- k, „P' dP'=X„k P, „P, A3)

where

(p —kInIP' —k) = (0Ie "s "d5(P)s'& ' "BIO)

1
dn(p —k, oI 0, p'- k) . (A4)

(op I&I o'P') = (~p I
~'P')

4
(P I & -iBO&i « -a'&Ps i8'5 IP) (A1)

and, as n is semipositive definite,

trn2~ (trn)2~ 1. (Ao)
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