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Microscopic proton two-particle neutron two-hole shell-model calculations have been performed for the
nucleus 5,"Te». Evidence results for the existence of a weak-coupling pattern obtained by coupling nuclear
low-lying levels in,',"Te» and, '(') Sn,o. Electromagnetic properties for the most important low-lying levels in

,',"Te«are also calculated and compared with existing experimental data. The limitations of proton two-

particle- (neutron two-hole-) core coupling calculations are also exhibited when proton and/or neutron
number only deviates from closed shell configurations by a small (+2) number.

NUCLEAR STRUCTURE 52 Te80 shell-model 2p —2h calculations, electro-
magnetic properties, T&~2, comparison with 2p(2h)-core coupling macroscopic

calculations.

I. INTRODUCTION

Recent experimental studies have indicated' '
that, if both proton and/or neutron number deviate
from a closed shell configuration by only a small
number of nucleons (+2, x4), the typical two-par-
ticle (-hole), four-particle (-hole) degrees of
freedom can still be clearly observed and are not
averaged completely into a collective excitation
pattern. Thus, also in the ",,'Te„nucleus, typi-
cal proton two-particle and neutron two-hole con-
figurations clearly stand out in the experimental
level scheme' ' and resemblance with a vibration-
al-like spectrum is only very crude, although such
calculations have been carried out before. ' '
Therefore, and because the basic building blocks

52 Te82 & 5p Sn8p p and 5ySbsi constituting the nucleus
under study are experimentally well known, ' "
we have tried to study the limits of a unified-mod-
el treatment where only proton two-particle-

(neutron two-hole-) core coupled configurations
are treated and all neutron (proton) excitations
are averaged out. Experimental evidence for
specific neutron hole configurations of the type
(2d, ~s '1h»» ') and (3s,~, 'lh»~, ') is definitely avail-
able through the occurrence of low-lying J' = 7
and 5 levels in ",,'Te„. Also, the proton
(lg, ~s),~',+ configurations clearly stand out in
the experimental spectrum. In Sec. II, the nuclear
Hamiltonian as well as the solution of the nuclear
secular equation are discussed whereas in Sec.
III, the necessary transition matrix elements are
obtained. Finally, in Sec. IV, the experimental
results are compared with the shell-model cal-
culations where different approximations have been
used. Also, comparison is made with proton two-
particle-(neutron two-hole-) core coupling calcu-
lations in order to point out in a clear way the
shortcomings of such calculations when performed
near closed shell configurations.

II. NUCLEAR HAMILTONIAN

The Hamiltonian describing the '»Te«nucleus, when both proton and neutron excitations occur,
can be denoted as

~aoeQa+ ~ V&gy g Qf)fg8ggoy+ V~~yba~a~a&a& .
cx ot, g, y, b a, y(&)

{W,V} (&s vl 8, h(V)

(2.1)

The basis configurations are specified by (see Appendix A)

(2 2)i (h,h, )j„(p,p, )Js; JM) =—[(Ast Ast )J„(As Ast, )Zs]Z Mi 0)N,

where (0) denotes the (50, 82) doubly-closed shell vacuum state. The diagonal term of (2.1) contributes,
within the basis (2.2), the single-particle energy Es +Es, +E» +E„,, whereas the proton-proton and neu-
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tron-neutron interactions give the following contribution:

( h,' h') J'„(p~p') Jp, JM I V» + V„„I(h~h2) J„(p p) Jp ', JM) = [(p' p', ; JpM I V» I p p„JpMp ) D(h' h', h h, ;J' )

+( h,'h,', J„M„IV„„Ih, h;, J„M„)D(P,'P,', P,P, ;Jp )]

with

D(ah) cd; J ) = 5 5M —(-1)~~'~& "5
~ 5~,

N —= [ (1+ 5p q )(1+5„„)]

x 6& &i 6«iNN',
P p n n

(2.3)

(2 4)

and N' equal to N with primed indices.
In calculating the proton-particle-neutron-hole interaction matrix elements, the coupling scheme for

particle-particle angular momentum coupling is better adapted to the basis (2.2) chosen than the particle-
hole angular momentum coupling scheme. Therefore, we can write the third contribution in (2.1) as

PoP~'Oi '0

J")(i; i. J)
U((p'p)(h'h);J')Ap~~A"„~A„A~ ~, , I, , (-1)~p™q"t,' ~-m,' m, -M') ~-m„' m„M'~

(2.5)

where U((p'p) (h' h); J ') stands for the angular momentum coupled matrix element of V» [V», the third
component of Eq. (2.1)]. Here we use the coupling scheme (p'p) J' and (h' h) J', as defined by Eq. (2.5).

If we define the direct matrix element of V» within the configuration space (2.2) as

F(h'h,'J '„,p,' p,' J~; hh, J„,pp, Jp,' J ) = ( (h'h') J '„(p'p,') Jp, JMI V~J (h h) J„(pp, )Jp, JM )„,,
(n. sa. = non-antisymmetrized) one obtains after some Racah algebra (see also Appendix A)

(2.5)

Defining the matrix element where the ket side has been antisymmetrized as

F, (h'h,' J'„,P'P', J~; h, h, J„&PP, J~;J)=- ((h'h', ) J'„(P,'P,') J~;JMI V» I (h, h) J„(PP,)J~;JM)

(here, I. ..) denotes the antisymmetrized ket vector), one obtains

E, (h,' h,'J„'&p', p,'Jp, h, h, J„,pp, Jp ', J ) =E(. . . ) —(-1)~&i—+~& ~&2E(p -p, ) —(-1)~~i+'"2+ "F(h, h, )

+ ( I)4py+JP2+Jhy+Ph2+&P+ n E(p p h h )

Thus the total proton-particle-neutron-hole matrix element is obtained as

(2.7)

((h'h') J'„(P'p,') J~; JMI V» I (h h, )J„(PP, )J~; JM) = F, (h'h' J„',P'P', J~; h h, J„,P P, J~;J )

—(-1)4, 'Jn, '~P F, (p,'= p,') —(-1)~a "a, ' ~ F, (h,'= h')

+ (- 1) &x
' ~~2 ' "i ""2'

&
' " F, (p,' ~ p,', h,

' ~ h,') . (2.8)

As already mentioned, in using the representation of (2.5) for the particle-hole interaction, an important
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numerical simplification results as compared with the usual particle-hole coupled representation of this
interaction.

III. TRANSITION MATRIX ELEMENTS

If we call (ol[Qhll b& the independent particle reduced matrix element for the electromagnetic multipole
operator Q„, we can calculate the full reduced matrix element between the initial state

l J/M, ) and a final
state

l JISM&& as,

& JgllQ~IIJ. &
= Q cq(h, h, J„,P,P, Jh', J;)c~( h,

'
h', J'„,p', p,' Jh, J, )&fllQ„lli&, (3.1)

where (fllQhll i) denotes the basic transition matrix element that can be further separated into a proton
and neutron contribution and c,. (. . . ), c& (. . . ) denote the expansion coefficients of the initial and final state,
respectively, within the basis of Eq. (2.2). For the proton contribution, we find as the direct term contri-
bution

Qh(h' h' J'„, p'p'Jh, Jy, h, hJ„, PPJh, J, ) =—JhJh JJ~(-l)~ '//~ h'~ /'& ,h' h, ' h NN'&p'llQhllp&

Jp & J~ jp
~/ D(h,'h,', h, h, ;J„) (3.2)

i n f P ~PI P

(see also Appendix B), and for the matrix element taking into account the antisymmetry in initial and
final states,

&flIQ. lit&h =Qh(" ) - (- I)'""hh'" Qh(pl =pl) -(- I)"~ '"~'"Q, (p, =p, )

~( 1}Jl +/l +j// +jp +Jp+glQ (p/ p/ p p ) (3.3)

After similar calculations, one obtains for the neutron contribution

Q„(h,'h,'J„', P,'P,'Jh, Jy ', h, h, J„,P,P,Jh, J; ) = J„J'„J(Jg NN'
& hhllQhllh, ') (-1)'"2 '» '

j„'
+ J J J J' ' J/ bh h bg g/ +(Plpht plph/ J//)

&a Jn

(3.4)

with a similar expression for the total neutron matrix element (fll Qhlli&„as given in Eq. (3.3). The final
matrix element then results by making use of the equation (3.1) and using (fll Qh[li) =(f llQhlli&h+( fllQhl[i&„.

(3.5)

IV. RESULTS AND DISCUSSION

A. Energy spectra

In performing the calculations, based on Secs.
II and III, the proton-proton as well as neutron-
neutron interactions have been taken to be of
Gaussian shape with spin exchange admixture,

2i.e., V=V, e (Ph+tPr), in line with studies
of N =82 and N =83 nuclei within this particular
mass region. "" For the proton-neutron inter-
action on the other hand, an interaction of the
form V = V, b(Fh —F„) (Pz + t' P r), as discussed in
Sec. II and also used in the same mass region, "'"
has been considered. Here, P~ and P~ denote the
spin singlet and spin triplet projection operators.
In the Gaussian interaction a value of P = 0.325

fm ' was used throughout.
For this particular nucleus ",,'Te„, the separate

P-P, n-n, and P-n interactions were determined
by studying the adjacent nuclei ",'2Te82y 5OSn80,
and ",',Sb» and searching for the best agreement
with the experimental data. The parameters
V„V„ t, and f' as well as the proton and neutron
single-particle (-hole) energies thus determined
are given in Table I, and correspond to the ex-
perimental single-particle (-hole) energies as ob-
served in ",',Sb„and "„'Sn», respectively. ""
In Figs. 1, 2, and 3, the calculated and experi-
mental results for these three nuclei are given. ' "

Starting from the residual p-p, n-n, and p-n
interactions as well as the proton and neutron
single-particle (-hole) energies thus determined,
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Proton Neutron
A B

1g 7/2

2d5/2

1h11/ 2

2dg/ 2

3s1/ 2

Vp

0.0

1.0

-50

0.0 E2d /2

1.0 +1/ 2

2 ~ 0 E1h 11/2

2.4 E1
7/2

2.0 E2d 5/2

Vp—39

0.0

0.3

0 4

—50

0.0

0.3

0.4

2.4

2.8

-39

TABLE I. The parameters for the proton-proton,
neutron-neutron, and proton-neutron interaction as
well as the proton single-particle and neutron single-
hole energies. Values for the small space (A) and the
full configuration space (B) are given separately (see
also Sec. IV). For the proton single-particle energies
and full space (B), calculations with E2d~/2=0. 75 MeV
and Efh11/2 3.0 MeV have also been performed.
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FIG. 2 ~ Comparison for '&p Sn8p between experimental
data (Ref. 5) and theoretical results using the neutron
single-hole energies force strength parameters of Table
I(B).
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FIG. 1. Comparison for &2Te82 between experimental

data (Refs. 9 and 10) and theoretical results using the
proton single-particle energies and force strength par-
ameters of Table I (B) (calculation I). Also, the calcul-
ation with changes in the proton single-particle ener-
gies E2d

——0.75 MeV and E1h ——3.0 MeV have been2d g/2 "11/2
performed (calculation II).
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FIG. 3. Comparison for
&& Sb81 between experimental

(Hef. 12) and theoretical results using single-particle
(—hole) energies and force strength parameters of Table
I (B). The unperturbed proton-neutron configurations
are also drawn.
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FIG. 4. The important low-lying levels in ~ Te,
Sn, and in the nucleus ~ Te, indicating the weak-

coupling pattern.

one can solve the secular equation corresponding
to the Hamiltonian discussed in Sec. II and calcu-
late transition rates, using the formulas of Sec.
III. Already by studying the separate results for
the proton two-particle and neutron two-hole nuclei
in some detail, we expect, through the coupling
of both subsystems by means of the 5 proton-neu-
tron interaction, to observe both proton and neu-
tron excitations in a pronounced way in the final
'»'Te» nucleus.

In obtaining these final results, we also have
made some approximations in truncating the con-
figuration space available for both proton and neu-
tron single-particle (-hole) configurations, to the
most important ones. We used

(i) approximation (A): proton levels lg, /„2d, /,
and neutron levels 2d3/, 1, 3sl/, -1, 1hl, /, 1

(ii) full space (B): all proton and neutron levels
in the 50-82 shell, i.e., 1g,/„2d, /„2d, /„3s, /„
and 1Pll 1 / 2 One has to remark that in conside ring
the full space, matrices of a typical dimension
1000' 1000 occur and have been diagonalized.
Moreover, because the force strength parameters,
given in Table I(B), were determined for the com-
plete configuration space for either protons (neu-
trons) separately, some renormalization in ap-
proximation (A) will have to be incorporated on
force strengths in order to regch an overall agree-
ment with the experimental data. These parame-
ters [approx (A)] are also given in Table I.
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FIG. 5. Comparison of the experimental data in
Te (Refs. 3—6) with the microscopic proton two-par-

ticle neutron two-hole calculations within approxima-
tion (A) and using the full space (B). The results of
unified-model calculations where, respectively, proton
two-particle (or neutron two-hole) configurations are
coupled to quadrupole vibrations of a core nucleus, are
also given. Dashed lines connect levels with definiteJ' assignment.

Before studying in detail the correspondence
between calculated and experimental level
schemes, one can very clearly distinguish a weak-
coupling pattern in constructing states in ",',Te8p,
starting from the '"Te and ' Sn adjacent doubly-
even nuclei (Fig. 4}. The states in '"Te with
specific proton and neutron configurations stand
out very clearly. A new level, recently found,
at 1665.3 keV (Ref. 3) in "'Te can very probably
be associated with the J '; = 2; (or 2;) theoretical
level.

In comparing approximations (A) and (B) with

experiment, up to E, = 2 MeV, good overall agree-
ment occurs although three extra low-lying levels
[J,' =0;, 0.;, 2,' (or 2,')] result in the calculations
(see Fig. 5). Above E„=2 MeV, no detailed com-
parison is possible due to the growing density of
proton two-particle coupled to neutron two-hole
configurations. In studying the wave functions
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corresponding with the J Oy 2] 4f 6 5 7y,
8'„and 10; levels (see Table II), one immediately
recognizes that in coupling the ",',Te„and ',",Sn„
subsystems by means of the residual p-n interac-

tion, a weak-coupling mechanism seems to be
acting. Therefore, one can try a decomposition
of the wave functions in a direct coupling repre-
sentation.

TABLE II. %ave functions for the lowest-lying states in Te as obtained in both approxi-
mation (A) (first column) and the full space (B) (second column). The 2h —2p configurations
are always indicated within the (jgf jq2)J„{jt f jp2) Jq basis space. Excitation energies (MeV) are
also indicated as the numbers between parentheses. A dash means that the corresponding
amplitude squared (intensity) is less then 0.04. This criterion is also used to leave out (only
in the table) the other configurations constituting the complete wave functions.

Configuration (0.0) 0+
1 (0.0) (1.322) 0+

2 (1.467)

(2~3/2) 0

(3~1/2)0. ( &7i2)0'

{1h1 1/2) 0+ (1@7/2)0+

(3~1/2) 0+ (2d5/2) 0+
-2 2

0.68

0.51

—0.50

0.62

—0.47

0.43

—0.85

-0.26

0.36

—0.82

-0,22

0.24

(1.038) 2'
1 (1 ~ 109) (1.307) 2'

2 (1.306)

')/~) 0' ( &7/2) 2+

(3s f /2) p+ (1@7/2)2+
-2 2

ii/2) 0+ ( +7/2)2+

'( ~7/2)0+'

(24 3/ 2) 2+ ( 1@7/ 2) 0

~3/2 3~1/2 )2+ (1+7/2) 0+
-i 2

0.67

0 ~ 48

—0.47

—0.25

0.42

0.24

—0.30

0.22

—0.49

0.43

—0.22

0.59

—0.73

0.51

0,33

—0.37

0 ~ 27

-0.49

(1.412) 4+ (1.582)

{2(g3/2) p+ (1g 7/2)4+

(3~1/2) o+ (1g7/2) 4+

(1h 1 1 /2) p+ (1g 7/ 2)4+

0.68

0.52

—0.49

0.68

0.42

—0.48

(2~3/2) o+ (1&7/2) 6+
-2 2

{ Sf/2)p+ (1@7/2)6+

(1hii/2) 0,
—

( g7/2)6

(1.547)

0.68

0.52

—0.49

(1.70 5)

0.68

0.42

—0.48

if/»8 '( &7/2)0.
'

h 1 1/ 2) 8+ (2~5/ 2) 0+

(161f/2) 8
1h, f 1/2) 0+

-2 2

(2.778)

0.94

(2.697)

0.31

—0.26

(2.800) 10
1 (2.704)

(1h f 1/2) 10 ' (1g7/2) 0+

(1h 1 1 /2) 1pi (2d5/2) p+

(1h 11/2) fo+ (lh f f/2)p+

1 1/2) 10+ (1~7/2) 2+

0.93

—0.28

0.84

0.31

—0.26

-0.22



21 SHELL-MODEL DESCRIPTION OF THE NUCLEUS &32 Te 411

TABLE II. (&0&&~~d) .

Configuration (1.827) 7 f (1.823)

d3/2 h 1 1 /2 ) 7 ( +7/2) p+

(2d3/2 lhf f /2 ) 7 (1+7/Q) 2+

(2d3/2 1h f f /2 ) 7 (2+5/2) p,
-f 2

(2d3/P lh f f/g ) 7 (lhff/2) P+
-f 2

0.96

—0.25

(2.065)

0.87

—0.20

0.25

-0.26

(2.035)

(2d3/2 f f /p ) 5
—(i@7/~) p+

(3Sf/2 lhf f /o ) 5 (i/7/2) p4

(2d3/p lhff/2 )5 —(lhff/2)p+

-0.72

0.65

-0.68

0.56

0.20

By means of diagonalizing within the proton
space, the proton particle-particle interaction
V» and, in the neutron space, the neutron hole-
hole interaction V„„(in both cases, all configura-
tions in the 50-82 shell are considered) as well
as directly diagonalizing within the full two-pro-
ton-particle-two-neutron-hole space [approx (B)],
the total interaction V»+ V„„+V~h, the wave func-
tions

I J„(v),k&= 2 h" (h, h„J,}l(h,h.,)J„), (4.1)
hi ~h2

(4.2)

1J,&= g c,. (h, h, J„,pp, J~;J)
h,.h„g
Pie P2~ dp

x1(h,h, )J„(p,p, )J;J,' (4.3)

x
~
J„(v)kSJ (w}, l) . (4.4)

The wave functions (4.4) for some of the important
l.ow-lying levels in '"Te, are shown in Table III.
Here, the weak-coupling picture, at least for the
lowest states, becomes immediately clear. The
levels J) 22 4i 6i are the proton excited J,"

2 i 4 i and 6i states in '"Te coupl ed to the
'"Sn J'=0 ground state, whereas the J,"- =5, , 7„
B 1 and 10 i are mainly the '"Sn excited Jj 5i,
Vy Bi and 10 i states coupled to the '"Te J' = 0'
ground state. The structure of the 4,'- = 2', level is
mainly the neutron '"Sn J"= 2' first excited state

in ' Sn, "Te, and "'Te are obtained. Inverting
the relations (4.1) and (4.2), one can express the
states (4.3) within the coupled basis of (4.1) and

(4.2) as

a,. [J„(v), k; J~ (w), 1;J ]z„(».z& (~ )

B. Comparison with unified-model calculations

Within the unified-model type of calcula-
tions, ' ' "'" taking only explicitly into account

TABLE III. The wave functions for some of the low
lying levels of Te, expressed in the basis (4.4). The
same truncation as in Table II is used to limit the ex-
pansion of the wave functions as given in the table. The
first column gives the theoretical excitation energy in
MeV (approximation B only).

0.000 I 0 f) = —0 98 10'f(v)(30 f(~))

1.467
I 0$ 0.861 03(V) 801(v) )+ 0.491 02(v) 80 f(7I))

0.831 0'2(v) 8 0 t(v)) —0.471 03(v) 8 0'~(z))

0.961 1g(v)8 Of(m)) —0.2412f(v)82 i(v))

0 9412'&(v) 82'f(z)) +0.2411f(v) 80'f(7I))

0.751 0 ( ( v) 8 2
g (p) ) + 0.601 2 f(v) 8 0 f (7I ))

0.7812 ((v) 8 0 g(v)) + 0.611 of (V) 82 f(7C))

0.9712 ~(v) 82 g(w))

0.97
I 0 f (v) 4 f (m))

0.6114 g(v) 8 0 g(z)) —0 461 2f(v) 82'f (w) )

0.8412 g(v)82 f(7f))+ 0.4914f(V)80$(7I))

0.97 I 0 f (v) 6 f (7())

0.96I 8 f(v) 0'f(7())

0.9812 f(V)86 f(w))

0.95I10 f(v) SO f(7t)) 0 24I10 f(v)(32 f(7())

0.971 5 t(v) SO', (v))

0.96I 7 f(v)0f(z)) —0.22I7f(v)2 f(71))

1.566

1.977

2.425

1.306

1.109 l2f& =—
2.408

I 3 f) =

14'& =

143) =

142& =

I 6'f& =

I8f& =

I
8',) =

I 5f) =

l7f) =

1.582

2.480

2.310

1.705

2.697

2.764

2.704

2.035

1.823

coupled with the '"Te J"= 0 ground state. The
multiplet 12', ( v} Ov 2', (m)& (J' = 0;, 1'„2'„3;,4;) is
observed as a weak-coupling multiplet of states
near the unperturbed energy of E, (2 „'"Te)
+E, (2 „'"Sn)= 2.478 Me V.
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the proton two-particle (neutron two-hole) con-
figurations coupled with the core excitations of the
'"Sn ('"Te) nucleus, important simplifications
have to be made. Results from both types of
macroscopic particle (-hole)-core coupling cal-
culations are compared with each other and with
the fully microscopic calculations in Fig. 5,
thereby showing some of the apparent shortcom-
ings in the unified-model calculations. Within the
proton two-particle-core coupling calculations,
the parameters of Ref. 7 have been used. No low-
lying negative parity levels (J"= 5, 6, 7 ) occur
and also, a low-lying J"= 0' state originating
from neutron two-hole configurations is not re-
produced.

For the neutron two-hole-core coupling calcu-
lation, the same neutron single-particle energies
as discussed in Table I, full space (B), have been
considered. The core was specified with k~,
equal to the experimental J,"- = 0', to 2,' energy sep-
aration in ",4Te„, the residual neutron-neutron
interaction was a surface delta interaction (SDI)
force with force strength 0 =0.21 MeV, whereas
the hole-core coupling strength (,= 1.0 was taken,
a value consistent with the experimental B(E2;
2;-0;) value in '"Te. In this calculation, the
low-lying J' = 4' and 6' levels'are missing as
compared with experiment and with the fully
microscopic approach.

C. Electromagnetic properties

Because only very few experimental transition
rates are known, w" have calculated the electro-
magnetic properties of some selected levels,
such as the lifetime for the J,". = 6, level deexcit-
ing via an E2 transition towards the J," = 4, level.
In calculating transition rates, the effective
charges e =1.5e, e„=0.5e, g"'=0.5 g'cc have
been used throughout. In approximation (A),
a value T,y, (6;) = 257 nsec [226 nsec in full space
(B)] results, which is to be compared with the ex-
perimental value of 145 nsec. In trying to calcu-
late the lifetime of the J,'- =7, level, deexciting
towards the J," = 6, level, within the model spaces
(A) and (B), no El transitions can occur. The
lowest multipolarity contributing in model space
(A) is M4, whereas in the full space (B), M2
transitions can occur with T,g, (7, ) =0.038 sec.
These results point towards a small but definite
admixture of proton and/or neutron excitations
out of, respectively, the Z = 50 proton and/or
R = 82 neutron closed shell configuration, making
E1 transitions possible. The 5, -7, E2 transition
results in a value Ty/p(5, ) = 0.21 p. sec in model
space (A) [0.23 y. sec in full space (B)].

A possible explanation for the recently observed
T, ~, =3.9 p, sec isomeric state' "at 2.701 MeV

20 30
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FIG. 6. Calculated half-life for the J';=10& level
within both the full space (B) (dashed line left-hand
scale) and the pure neutron two-hole (1h&&y&) config-
uration (full line) as a function of the deexcitation gamma
energy Ey. Both results for e„=0.5e (right-hand scale)
and 1.0e (left-hand scale) are given.

as well as for the exact diagonalization in the full space
(B), the T,&,(10') value as afunction of E„(seeFig. 6),
taking into account the theoretical conversion
coefficient ! one~++c(„(Ref 23). In .this cal-
culation, one observes that for E =50 keV, half-
lives of the desired order of magnitude occur and
can explain the experimental half-life of a J,'
=10; level close to and above the J,' =8, 2.701
MeV level in ',",Te«. In the further deexciting
mechanism, the J,'- = 8, level will proceed via the
J, = 6,' and 7, levels. Half-lives for the corre-
sponding transitions were calculated with as a
result for particles half-lives T,~, (part. ; 8;- 6;)
= 10 nsec (B) and T, ~, (part. ; 8;- 7, ) = 23.4 nsec
(B). Therefore, one can conclude that within a

could be provided through an E2 transition between
levels of the almost pure (Ih»~, )„.' and

(Ih»~, ),+
' neutron configurations. Since the ex-

perimental J' = 10' level is not known experiment-
ally in a unique way, an upper limit could, how-
ever, be deduced when associating the 3.9 p, sec
isomeric level with the J,'- =10,' level" feeding the
2.701keV J,'. = 8, level with a low-energy transition.
We have calculated for pure configurations

B(E2;10;—8;)
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consistent microscopic calculation of the ",',Te~
level scheme, transition rates for some interest-
ing low-lying levels as well as a recently dis-
covered 3.9 pace isomeric state" can qualitative-
ly be accounted for, except for the 7y 6yE1
transition rate.

V. CONCLUSION

Starting from the recent experimental data on
the ",,'Te„nucleus, it has become interesting to
perform more refined shell-model calculations in
order to explain both the proton and neutron excita-
tions, clearly observable in the experimental
data. We have pointed out that both a proton two-
particle-(neutron two-hole-) core coupling calcu-
lation does not yield a satisfactory explanation for
both types of excitations, i.e., the core excitations
deviate too strongly from the underlying harmonic
quadrupole assumption.

In a shell-model calculation treating both types
of excitations (protons and neutrons) on equal foot-
ing and considering the p-p, n-n, and p-n interac-
tions, it becomes possible to explain both the low-
lying negative parity states J," = 7„5, as neutron
two-hole excitations and the Jg =4y 6y levels as
mainly proton two-particle excitations. Moreover,
the p-n interaction results in being fairly weak in
order to clearly establish these features. The
problem of low-lying J"= 2' states originating from
the

~
2;(v)IS 0;(w)) configurations also can find a

probable solution in the recently discovered low-
lying 1.665 MeV (2 ) level, although the excitation

energy of the 2,' level is not reproduced correctly.
The J' = (3, 4) level at 2.107 MeV probably corre-
sponds to the (2;(v)2', (v);4') configuration.
Thereby, all important levels below E„& 2.1 MeV
find a simple explanation in terms of weak coupling
of the ",',Te„and ",,'Sn„nuclear systems, even if
the excitation energies are not always reproduced
correctly (J' = 2;, levels). The weak-coupling
quintuplet

~
2;(v}t32;(w); J ') has also been calcula-

ted although no clear experimental evidence for
definitely locating these levels is available as yet.
Concerning the electromagnetic transition proba-
bilities, the half-life of the J",. = 6, level was re-
produced as 257 nsec [226 nsec in full space (B)],
a result that is still too slow compared with ex-
periment. Also, no important E1 transitions can
occur within the model space as considered here,
therefore the p. sec lifetime for the J,'. =7, level
remains unexplained. A recently discovered iso-
meric level with T,~,(expt. ) = 3.9 psec can find a
probable explanation as a J,". = 10,' level, feeding the
underlying Jg 8y level through a very low energy
[& 50 keV] transition.
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APPENDIX A

We first point out that the operators A [see Eqs. (2.2) and (2.5)] stand for creation operators for parti-
cle or hole states, i.e., they are defined as follows:

A~ =— a for particle excitations and

At~=— (-1)~o' ~ a, for hole excitations.

V» = Q (P'h' ', JJV»[Ph ', J,)Ap Aq A„Ap(jq m~ j„m~ [ J M )(ypmqj„m„[ J,M, ).
P P~ g ~

7}'

J'~, N~

The matrix elements of V» between the two-hole-two-particle wave functions of (2.2) result in a sum of

(Al)

Here, we use the greek letter u for a = (a, m, }. Also, the single-particle (-hole) energies Z, denote the
positive quantities E, -=~, for particle excitations and E, =——e, for hole excitations. These numbers are
given in Table I. Whenever, in two-body matrix elements, the quantum numbers corresponding with hole
configurations occur, we explicitly indicate if the hole configuration occurs as such by using the notation
h '. Furthermore, to simplify the formulas, we use the following notation for the quantum numbers p'
=— (p', m~ ), q' =— (h', m„' }, p =— ( p, m~ ), q =(h, m„), respectively.

We shall now derive the relation (2.6) from expression (2.5) and we also show the advantage of using the
representation (2.5) for the particle-hole interaction. Usually, the particle-hole interaction can be expres-
sed in terms of the two-body particle-hole matrix element (p'h' ', J,(V» ~ph ', J,), i.e. ,
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16 terms. The use of (Al) leads to the following expression for the quantity F of expression (2.6) (see
also Ref. 24):

x (-I)4( +ppe +'p + &n,
' ~p'~~+~ ee+~p g j'(p'Tp' ' j,~

V „~p,h, ' j )

x J j„
Jp Jp

ip,

jq J,
~h2

(A2)

The quantity between square brackets in the summation is a 12-j symbol of the second kind following the
notation of Ref. 25, p.62. The 16 terms of the total matrix element can then be generated as indicated by
relations (2.7) and (2.8). Let us now start from the expression (2.5),

~p ~p J ja ~a

Vpp = g U((p p)(Tp h) eel ) At AetAT& Ap( —1) p p p™p+ -m~ rn~ -M' —m~ m„M'

(A3)

The quantities U((P'P)(h' h); J'), defined by the previous relation, can be calculated once for all and

stored for computer calculations. Obviously, the U((P'P)(h'h); J' ) and the (P' h' ', J,~V» ~ ph ', J,) are
related. We obtain

~p Jz ~h
U((p'p)(lhp) J'e)= j"QJ,'(-1)~p "&' '

& . e
(p'h' ', J,~Vp„~ph ', j,). (A4)

Using (2.5) or (A3) we can calculate the matrix element of Vp„between two-hole-two-particle wave func-
tions. The quantity F of expression (2.6) can be written compactly using graphical methods for operations
with sums of products of Wigner coefficients (Ref. 25, Chap. III) with, as a result,

F(h +2j'„e P,' P2 eIp, h, h, el„,P, P, clp ', J ) =—cT p cl'„cTp eI„6„,p 5p p eiffel 'g U ((P,
'
P, )(h,' h, );j )9, (A5)

where 8' is the diagram of Fig. 7. This diagram is the product of three 6-j symbols and a phase factor,
since it is easily separable (see Ref. 25; pp. 47 and 50). The separation lines a.re shown by dashed lines
in Fig. 7. Then formula (2.6) follows immediately as

x I, ee&i pip, )(eel h); J )I~, '

+g+J + g +++ g +y+p +y +y g
( J l f) n & p p2 a2 (A6)

From a computational point of view, we have only to deal with a product of three 6-j symbols instead of a
12-j symbol of the second kind as was the case in (A2). In the former case, much less time is needed for
the calculation of the two-hole-two-particle matrix elements.

One can now easily prove the equivalence of (A6) and (A2) by substituting the explicit form of the U-ma-
trix elements (A4) into (A6) and using relation (19.3) of Ref. 25 giving the summation over four 6-j sym-
bols as a 12-j symbol of the second kind.

APPENDIX B

Here, we shall derive the reduced transition matrix element. The transition operator consists of an
operator acting in neutron space D~(n) and an operator acting in proton space Q~(P). We deal first with the
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proton operator. Using relation (15.27) of Ref. 26, one gets

Q~(h,'h,'J'„, P', P', J~,Jq, h, h, J„,P, P, Jp, J;)

= J J& 5& &
~ D(h& h2, h& h2,

' Jz) [(1+5& & )(1+ 5&pl)] (—1)

Jp & Jp
x(p,'p.', J,' llflzllp, p. , J, &

n f

The proton reduced matrix elements is the sum of four terms. One of them is, always using relation
(15.27} of Ref. 26.

K~ =— 6~,p( (- 1)'&1 "p~+ p
' J~JI [(1+6& & )(1+ 5&. ~i)]

jpi A, jp
x

'
. ,

'
&p', Ilfl, llpg .

~P~

We can use (B2) and (Bl) to obtain the relation (3.2)

Q~ (h,' h', J'„, P,'P', J~, Jy, h, h, J„,P, P, J~, J, ) —= J, Jy J~J~ 5~ p 5~,~i D(h,' h,', h, h, ; J„)NX'(- 1) 4 "~2

x . &plllfl lip, & ~Ji J„Jf Jp 2p, JPI

The relation (3.3} then generates the four terms of the proton contribution. The neutron contribution is al-
so the sum of four terms which are obtained in the same way. Making use of relation (15.26) of Ref. 26, we
have first

—:JJ& 5 gi D(P P P P ' J&)[(1+5p p )(1+ 5Ir &&)] ( 1)

J' A, J„
x &h,

' h'„J'„ll n „llh,h„J„&.
f

(H4)

One of the terms of the reduced neutron matrix element, using (15.27) of Ref. 26, and also taking into ac-
count that the neutron states are hole states, is obtained as

~h ~A

3R„=6...;(-1)"'4,' ' [(1+6„,, )(1+5,., )] "'J„J„' . , &h, lln, llh,'&.

Combining now (B4} and (85), expression (3.4) is obtained,

f|tm(h& h2 Jzi p[p2 J~ J~ & h& h2 J„& p& p2 J~ & J& ) =—J~ J~ JzJ+ 6~ &i 5~ ~i D(p& p2& p&p2& J&)NN (—1)

(H6)

Then the four terms of the neutron contribution are generated in the same way as in the proton case.

APPENDIX C

Rewriting the residual interaction Hamiltonian of
Eq. (2.1) that acts in the one particle-one hole
space, one obtains, specializing to the notation of
Appendix A, the following expression for V»,

I'~pa =4 ~g &q~p qg p& p &q&g&p .
-ps p e 8 a '0

(Cl)

Here, we use the notation P=—(P, -m~), etc. , and

moreover, use the definition of s, =-(-1)~p
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V» = —2 g F(P'h', Ph; J)(j~m~, j,'m„'~ JM)
P.P'. n. 7t'

x(j,m»j„m„~ JM)A~~. A~t A„A„
(C6)

FIG. 7. The summation of 3-j symbols, resulting in
Eq. (A6), carried out in a graphical way.

being equal to our expression (Al) since —2F(p'h',
ph; J) is equal to (p'h' ', J ~V)ph ', J) (Ref. 28).

(iii) Using a third angular momentum coupling
scheme for (p', p) and (q', q), again using Ref.
27, one obtains

V& „„—&q
—=

~ g E(p'p, h'h; J)s&s-„

in order to simplify the expressions. We can now,
as shown by Baranger, "use three different meth-
ods of vector coupling the V' matrix elements:

(i) Using the standard particle-particle coupling
of angular momentum, i.e., (p', q) and (q', p), one
obtains

V gq q&
——-2—Q G(p'h, h' p; J )

x(j~m~, j~ —mp~ JM)

x (j„' —m'„, j„m„)JM), (C6)

Making use of the symmetry relations for the
E-matrix elements and using 3-j symbols we ob-
tain for V» the resulting expression

V» =2 Q F(PP'& hh', J )(2J+1)
P P s 7) ~ 7)

I I

x(j~&m~&,j„—m„~ JM)

x(j„'-m„',j~m~~ JM), (C2) (
jp &n J &a &a ~

X
-mp mp -M —mq mq M

and then the resulting particle-hole interaction
reads

V „=-2 g s~s„.G(p'h, h' p; J)
PsP e7)~ ft

x s~ s„(-1) " A~&A"&A ~A ~ . (C7)

Then, a relation with our U-matrix elements
results in

U(p'p, h' h; J ) = 2E (pp', hh'; J )(2J+ 1),

x( jump & j„—m JJM)

x ( j&, m'&, i &, m&, l
JM)-

X APIARY A„A (C8)

thus one also has

U(p'p, h'h; J)= —(2J+1)(pp' ', J~V~hh' ',J).
(C8)

(ii) Using the angular momentum coupling
scheme (p', q') and (p, q). According to Ref. 27,
one obtains

V&—.= --,' p F(p'h', ph; J)(j,'m,',j„'m„'~ JM)

Next to Eq. (A4), one can also give the relation
with the usual particle-particle coupled matrix
elements as

U(p'p, h' h; J )

, &~ jp
= —(2J + 1)Q (2J&+ 1)(-1)'&+&'~

ja ja ~'

x j&m» 1&m&& [ JM) s& sz»

and the interaction V» becomes

(C4) x(p'h, J'~ V~ph', J') .
(C10)

APPENDIX D

Here, we would like to prove explicitly the equivalence of our expressions (2.6) and (2.8) with the two-
particle-two-hole matrix element as given by Ma and True" in their Eqs. 5 and 6. Taking the expression
(2.6), and filling into it the relation (C10), relating the U-matrix element with the particle-particle coupled
matrix element, one gets
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j,' J' j,
(2J'+ 1)(2J "+1)(p', h„J"

I VI p, h,', J")
s J

X ~ 5 ( I)J~ +P~ +g~ +gp +gp +gg +J +gp+g+1 +J + j +J
j& j j jI ~ J&& h1h1 p2p2 1 2 1 1 2 2

&2 ~n
2

We then also get, after reordering the 6-j symbols, the expression

(Dl)

-Q(2J"+1) Q (2J'+1) 1 1
g Ph8SC+ P(- &)

Jp Jp jp

x(pih2~ J
I Vl p~h2~ J') 5q a'5q~ (D2)

[calling (-1)""""~ = (- 1)~4' ' ' '~& of Eq. (Dl)].
Applying now, Eq. (19.1) of Yutsis et at. (Ref. 25), one easily gets

-Q (2J"+ 1

JI
p n ~A ~p

ja,

(D3)

obtaining a 12-j symbol of the first kind. In these expressions [(Dl) to (D3)], we left aside, and will do so
further on, the norm NN' as well as the factor JpJp J„J'„.

Now, the result (D3) has been obtained starting from the two-hole-two-particle configuration, denoted

((hgh2} J', (pg p2) Jp ~
J Ivl (h, h,)J„(p,p, )J„J), (D4)

and calculating our first term as (D3). Conforming to the notation of Ma and True" (for the analogous
matrix element) in calculating

( (H,H, )J,(P,P,)J„JI v I (H, H, )J,( P, P,)J„J), (D5)

this corresponds to the 7th term of Ma and True's Eq. (6}, giving after some reordering the resulting
contribution of

P, P, J, J,
-Q (2J"+ 1) P, J" H, J, (P,H„J"

I VIP,H2, J")5„,„5p p, .
J, H, ~ a,

(D6)

If we now make the substitution of corresponding quantum numbers from (D4) and (D5), one gets the result

(D7)

ja,

This points already to the equivalence of (D7} and (D3), since the 12-j symbol defined according to Roten-
berg [see Eq. (Al) of Ma, and True, Ref. 24], is also a 12-j symbol of the first kind (the notation of Roten-
berg, however, differs from Yutsis et al."). This can be seen explicitly from the equation (Al) of Ref. 24,
since

2 1

z" z' Z ' ' ' ' " "

I
" * t21' 1) (-1)'2p h2 n

Jp Jp jp J. J'. J ja, ja ja
p ~h ~h

n n 2 2 1
2 1

(D8)

a definition that exactly corresponds to the one as used in (D2). Thereby, we have proven the complete
equivalence of our Eq. (2.8) and Eq. (6) of Ref. 24.
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