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On the basis of a simple macroscopic model, we calculate the isoscalar giant-resonance energy as a
function of mass number and multipole degree. The restoring force is determined from the distortion of the
Fermi surface, and the inertia is determined for the incompressible, irrotational flow of nucleons with unit
effective mass. With no adjustable parameters, the resulting closed expression reproduces correctly the
available experimental data, namely the magnitude and dependence upon mass number of the giant
quadrupole energy and the magnitude of the giant octupole energy for ' 'Pb. We also calculate the isoscalar
giant-resonance width as a function of mass number and multipole degree for various macroscopic damping
mechanisms, including two-body viscosity, one-body dissipation, and modified one-body dissipation. None of
these damping mechanisms reproduces correctly all features of the available experimental data, namely the
magnitude and dependence upon mass number of the giant quadrupole width and the magnitude of the
giant octupole width for ' Pb.

NUCLEAR ST RUCTURE Pb; calculated isoscalar giant-resonance energy
and width as functions of mass number and multipole degree and compared
with experimental values. Boltzmann equation, distorted Fermi surface, ir-
rotational flow, two-body viscosity, one-body dissipation, wall formula, multi-
ple reflections, modified one-body dissipation, nuclear fission, heavy-ion

reactions.

I. INTRODUCTION

Following the discovery of the isoscalar giant
quadrupole resonance in 1971 by Pitthan and Wal-
cher, ' the energy and width of this resonance
have been measured for many nuclei throughout
the Periodic Table. Also, the energy and
width of the isoscalar giant octupole resonance
have been measured for "Pb, although with great-
er uncertainty than for the quadrupole mode. The
search is on to find the isoscalar giant octupol. e
resonance in other nuclei, as well as to find evi-
dence for higher multipole resonances.

Most theoretical interpretations of giant multi-
pole resonances are based on microscopic calcula-
tions of one kind or another. ' These range all
the way from non-self-consistent calculations in-
volving particles in a deformed harmonic-oscil-
lator potential to full self-consistent calculations
involving specific nucleon-nucleon interactions
treated in the random-phase approximation.

Although a detailed description of giant multi-
pole resonances requires a knowledge of the under-
lying nucleon-nucleon interaction, Bertsch,
Blaizot, ' and Sagawa and Holzwarth have shown
that the energies of isoscalar giant quadrupole
resonances can be understood on the basis of a
simple macroscopic model involving the distortion
of the Fermi surface. Attempts have also been
made by Aperbach and Yeverechyahu' ' and by
Hasse and Nerud"' to describe the widths of
giant quadrupole resonances in terms of viscous

hydrodynamical flow in nuclei with rigid bounda-
ries.

In our work, we extend the distorted-Fermi-
surface macroscopic model to calculate the ener-
gies for isoscalar giant resonances of arbitrary
multipole degree n. An isoscalar giant resonance
is viewed as a small-amplitude collective oscil-
lation of multipole degree n in which the neutrons
and protons undergo in-phase, incompressible,
irrotational flow with unit effective mass. The
nucleons remain in orbitals characterized by their
original nodal structure, which introduces an anis-
otropy into the Fermi surface of their momentum
distribution. Nucleons whose orbitals are com-
pressed by the flow increase their energy, whereas
those whose orbitals are expanded by the flow de-
crease their energy. The net result of this aniso-
tropy is an increase in the total energy of the nu-

cleus, which provides a restoring force against
the oscillation. The inertia associated with the
oscillation is determined for the incompressible,
irrotational flow of nucleons with unit effective
mass. We also calculate the widths of isoscalar
giant resonances of arbitrary multipole degree
n for various macroscopic damping mechanisms
in nuclei with deformable boundaries.

II. GIANT-RESONANCE ENERGY

A. Moments of the Boltzmann equation

To calculate the anisotropy in the Fermi sur-
face introduced by a small-amplitude oscillation
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The distribution function f (r, v, t) specifies the
probability for finding a nucleon moving with velo-
city v at position r and time t. It is normalized
so that the nucleon number density n(r, t) is given
by

(, t)= jfd
(Use of the same symbol n to denote multipole
degree and nucleon number density should lead to
no confusion. ) The collision integral I(f ) specifies
the time rate of change of the distribution function
arising from collisions between nucleons, U(r} is
the single-nucleon potential, and m is the mass of
the bound nucleon. In Eq. (1) and succeeding
equations, until otherwise noted, we use the con-
vention that repeated indices are summed over.
We note that it is possible to derive, from the
Schrodinger equation, equations of similar form
to Eq. (1) for the Wigner function or the n-body
density matrix. ' '

The mean velocity in the ith direction is

1 3
u, (r, t) = — fv, d v,

n

and the ij component of the pressure tensor is

P„(,tl= ff id

where

Q) ~ =V ~ —Q] .

The equations satisfied by n, u;, and P&~ are
obtained by taking successive velocity mo-
ments ' of Eq. (1). This leads to the equa-
tion of continuity

Bn 8—+ (nu }=O
Bt BXg

the conservation- of- momentum equation

(2)

a a aU—(mnu() + (mnu(u& +P(z) + n = 0, (3)

and the pressure-tensor equation

az„a ~Q) ~ ~Q

+m fzo&m&so~d v=m ~ f v&v&d v.

It is convenient to write

of multipole degree n, we start with the Boltzmann
equation

D Bf Bf 1 BU Bff (r, v, t) = —+ v; —— =f(f) .Dt ' ' Bt 'Bx; mBx; Bv,

2P() ——omno(v )o6() + K(), (5)

BQ BQ BQ
+rmno(v ), + + 6„

BX) BX BXg

+ m fK]Kg'wpd v =m ~ f v]v)d v 6
BX+

which is still an exact equation.

B. Specialization to incompressible flow

For our present application to isoscalar giant
resonances, we consider small-amplitude collec-
tive oscillations in which the neutrons and protons
undergo in-phase, incompressible, irrotational
flow with unit effective mass. This type of flow
pattern is expected to arise when the nucleons
remain in orbitals characterized by their original
nodal structure.

It follows from Eq. (2) that for incompressible
flow,

Bu, /Bx, =O.

We use this result and neglect the three terms in
Eq. (6} that are second order in the amplitude of
the excitation, as well as the terms involving the
third moment and the collision integral. This
leads to the simplified equation'

BK BQ; Bu„=--.mno(v )o
' +,

BXy Xf
(6)

which is valid only for incompressible, small-
amplitude flow without collisions between nucleons.

For describing small multipole distortions about
a spherical shape, we specify the nuclear surface
by means of the equation

= R(8 }= (R /X) [I +o(„P„(cos 8 )],
where

Rp —goA Z/3

is the equivalent-sharp-surface radius of the
spherical nucleus. The quantity & is determined
in terms of the coordinates &„by requiring that
the volume remain constant; to first order it is
unity.

We write the displacement dx; of matter at a

where K,
&

is the deviation of the pressure tensor
from its isotropic, diagonal value for stationary
nuclear matter at equilibrium density np. The
mean-square velocity (v'}o is related to the Fermi
velocity vF at equilibrium density by

2 3 2(v )0 = ovr

Substitution of Eq. (5) into Eq. (4) leads to

BK B ~u BQ ~

Bt Bx ("+ ("Bx»Bx
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point r inside the nucleus as

dx, = a",(r)do.„,
or, alternatively, the mean velocity as

(9)

In this equation and succeeding equations, there is
no summation over n.

For incompressible, irrotational, small oscil-
lations about a spherical shape,

u; =a";(r)dn„/dt.

Upon substituting this result into Eq. (8), we find
that for small distortions from an initially spheri-
cal shape, ' "'

Ba", &a",
K;g= ——,mn, (v )o +

BXy BXg

C. Stiffness coefficient

The increase in energy E of the system associa-
ted with small distortions from an initially spheri-
cal shape is

a",. = „., [r"P„(cose)].1 (9

nRp
'

BX,

For this type of flow, Eq. (14) can be readily
evaluated because the integral appearing in it is
identical to the one evaluated in calculating the
Rayleigh dissipation function for ordinary two-body
viscosity. The result is

8v(n- i)C„=-
3n

mn()(v ) OR,

12 (n —1)&
5 n

E =- F,.dx, d'r, (i2) where

where E; is the force per unit volume in the ith
direction. According to Eq. (3),

(9v )
2 /38- 2

Ep —~m p~ 28mrp

aa, , av-a;"a, (i3)
is the Fermi energy, with 6 denoting Planck's
constant divided by 2r.

After being substituted into Eq. (12), the second
term of this equation leads to the Coulomb, sur-
face, and single-particle energies. These are
small compared to the distorted-Fermi-surface
energy that results from the first term and are
consequently neglected here. This distorted-Fer-
mi-surface restoring force is the same as the
nuclear elastic force introduced by Bertsch.

Substitution of Eq. (9) and the first term of Eq.
(13) into Eq. (12) yields

E = "a",d'r ~„,

which becomes, after an integration by parts,

For incompressible flow, substitution of Eq. (5)
and use of Eqs. (7) and (10) leads to

E=- a~ d ra„.8 cP)

After substitution of Eq. (11), this becomes finally

D. Inertia and energy

For incompressible, irrotational, small oscilla-
tions about a spherical shape, the inertia associa-
ted with an oscillation of degree n is

MRn
—

(2 +1) 0 0

where

Mp =A. m

is the total mass of the nucleus.
The energy of the isoscalar giant resonance of

multipole degree n is therefore

z.=a(')
'"

2h Ez ' [(n —1)(2n + 1)]'n
5m g 1/3

(9v)' 8 [(n —1)(2n+ 1)]'
~10m

(i6)

For the values of the three constants that appear,
we use' ' '5&i52

E=3mno(v}0 ' '+ ' dr&„
BXg BXg BX~

The stiffness coefficient associated with an os-
cillation of degree n is and

rp —1. 18 fm,

8 = 197.328 58 MeV fm/c,

d'E
2 ad,' aa", ad,'C„=,= —',mno(v )0

' + ' d r.
de„ BXg BX) BXg

(14)

m =931.5016 MeV/c,

where c is the speed of light. Insertion of these
values into Eq. (16) leads to
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and

E2 ——64. 7 A ' 'MeV,

F3 —108.2 A ~ MeV,

84=150.3 A '~'MeV.

(17)

Our result for the giant quadrupole energy has
been obtained previously by Bertsch. ' Al-
though the general result derived in Ref. 32 gives
the correct value for n =2, the dependence upon
multipole degree calculated there is incorrect.
In an earlier paper, the correct dependence upon
multipole degree was obtained, but an overall
factor of twas missing from the energy expres-
sion, which led to the erroneous conclusion that
calculated giant quadrupole energies are 30% low-
er than experimentally observed values.

E„=28.92 [(n —1);(2n+ 1)] A ' MeV.

For the isoscalar giant quadrupole, octupole, and
hexadecapole resonances, this gives

4O J

35--
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LLJ
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O
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t
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Distorted -Fermi- surface
restoring force

~
n=4~

3

E. Comparison with experiment

The above predictions for the energies of the
isoscalar giant quadrupole, octupole, and hexade-
capole resonances are shown as functions of mass
number in Fig. 1. The solid points give experi-
mental values for the giant quadrupole energy '

and are to be compared with the solid curve. The
calculations reproduce, with no adjustable param-
eters, both the magnitude and dependence upon
mass number of the giant quadrupole energy. How-
ever, for light nuclei, the theoretical curve lies
slightly above the experimental points, and the
calculated proportionality factor of 64. 7 MeV in
Eq. (17) is 3% larger than the experimental val-
ue ' of 63 MeV.

The three open points in Fig. 1 give experimen-
tal values for the giant octupole energy for
"Pb and are to be compared with the dashed

curve. The calculated value reproduces, with no
adjustable parameters, the giant octupole energy
for ' Pb to within the experimental uncertainty.

0 I I

0
I I I I I I I I I I I I I I I I I l I I I I

50 IOO I 50 200 250
Mass Number A

quadrupole and octupole vibrations.
In the harmonic approximation, isoscalar giant

multipole resonances satisfy the equations of
motion

M„a„+g„e„+C„+„=0,
where g„ is the damping coefficient. Since the
width for a giant resonance of multipole degree n
is given by

FIG. 1. Comparison of experimental isoscalar giant-
resonance energies with values calculated in a distorted-
Fermi-surface macroscopic model. The solid circles
give experimental values of giant quadrupole energies
(Refs. 4 and 5), and the open points give experimental
values of the giant octupole energy for Pb. The
downward-pointing triangle is taken from Ref. 7, the
upward-pointing triangle is taken from Ref. 8, and the
open circle is taken from Ref. 9.

III. GIANT-RESONANCE WIDTH

We now calculate the isoscalar giant-resonance
width as a function of mass number and multipole
degree for various macroscopic damping mechan-
isms, including two-body viscosity, one-body dis-
sipation, and modified one-body dissipation. While
our goal is to discriminate between these possible
mechanisms, we must bear in mind from the out-
set that the small-amplitude oscillations involved
in isoscalar giant resonances are different from
the large-scale motion involved in fission and
heavy-ion reactions, as well as from ordinary

our task is to evaluate g„ for the various damping
mechanisms.

A. Two-body viscosity

For ordinary two-body viscosity, Auerbach
and Yeverechyahu" as well as Hasse and Ne-
rud ' have calculated the widths of both iso-
scalar and isovector giant quadrupole resonances
under the assumption that the boundary of the
nucleus is rigid. Although their approach takes
into account the deviation of the hydrodynamical
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where W is the ordinary two-body viscosity coeffi-
cient. Upon substituting this result and Eq. (15)
into Eq. (18), we find that

8vhrop(n —1)(2n + 1)
tt 3m''" (19)

flow from irrotational flow that is caused by vis-
cosity, the assumption of a rigid boundary is
inappropriate for our macroscopic model.

We therefore calculate the widths for nuclei with
deformable boundaries, under the assumption of
incompressible, irrotational, small-amplitude
nuclear flow. The adequacy of this approximation
is discussed in the appendix of Ref. 49. For this
type of flow, the damping coefficient is given by

' '

8m(n —1) ft ~
Ro P,

n

12

4
$10

O

0
C0

K

C:
O

C9

I I I& I I I I I

\

I I I I I I 1 I 1 I I I

Tv)fo- body vlscosI ty

p , =0.03 TP

i
n =4l l

The value of the two-body viscosity coefficient
that is obtained from comparisons of calculated
and experimental fission-fragment kinetic ener-
gies, when account is taken of the rupture of the
neck at a finite radius, is

p = 0.03+ 0. 01 TP,

where

1 TP = 10 dyn s/cm

= 6. 24&& 10 MeV s/fm'.

Insertion of this value, along wi;th the values of the
other constants given in Sec. II, into Eq. (19)
yields

I'„' "=ll. |6(n —1)(2n+ 1)A MeV.

For ordinary two-body viscosity the integrals
that appear in the stiffness coefficient and the
damping coefficient are identical. Therefore,
for this particular damping mechanism, the width
of a resonance is related to its energy according
to

80(9w)'"mr, 'gE„'
276

= 0. 01405E„ /MeV .
The above predictions for the isoscalar giant

quadrupole, octupole, and hexadecapole widths
are shown as functions of mass number in Fig. 2.
The solid points give experimental values for the
giant quadrupole width ' and are to be compared
with the solid curve. The calculated values are
somewhat smaller than the experimental values,
except for a few light nuclei, and the calculated
dependence upon mass number is more rapid than
is observed experimentally.

The open point in Fig. 2 gives the experimental
value for the giant octupole width for Pb and

0 I I I I I I I I I I I I I I I I I I I I I I I I

0 50 100 150 200 250
Mass Number A

FIG. 2. Comparison of experimental isoscalar giant-
resonance widths with values calculated for an ordinary
two-body viscosity coefficient p. = 0.03 TP. The solid
circles give experimental values of giant quadrupole
widths (Refs. 4 and 5), and the open circle gives the ex
perimental value of the giant octupole width for oaPb

(Ref. 9).

is to be compared with the dashed curve. The
calculated value is somewhat smaller than the
experimental value.

B. One-body dissipation

Because of the Pauli exclusion principle, the
mean free path of nucleons inside a nucleus at
low excitation energy is long compared to the nu-
clear radius, which invalidates the conditions that
are necessary for the applicability of ordinary
two-body viscosity. An alternative damping mech-
anism is one-body dissipation, which arises from
collisions of nucleons with the moving nuclear
surface. "

Under the assumption that the velocity distribu-
tion of nucleons striking the moving nuclear sur-
face is completely randomized, Swiatecki and his
colleagues have derived a wall formula, in which
the rate of energy dissipation is proportional to
the integral over the nuclear surface of the square
of the normal velocity of the surface. ' ' The
corresponding damping coefficient is' '
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1I„—
( )

mn4vrR4

g(gv)1/3~4/4

8(2n+ 1)

Upon substituting this result and Eq. (15) into
Eq. (18), we obtain

This becomes, after insertion of the values of the
constants given in Sec. II,

=34.3r& ' ' MeV.

The resulting predictions for the giant quadru-
pole and octupole widths are shown in Fig. 3,
along with the experimental values. ' ' By com-
paring the solid curve with the solid circles (giant
quadrupole) and the dashed curve with the open
circle (giant octupole), we see that for both reso-
nances the wall-formula predictions are about
3.0 times as large as the experimental values.

20

I8—

It has been recognized from the outset that for
shapes with high symmetry, such as quadrupole
shapes, the randomization assumption breaks down
and the wall formula predicts too much dissipa-
tion. ' ' Koonin and Randrup have taken into ac-
count the symmetry of the nuclear shape, in the
limit of zero-frequency oscillations, by following
the multiple reflections of nucleons inside the
nucleus. ' According to their calculations, the
effect of multiple reflections is to simply multiply
the wall formula prediction for a given multipole
degree n by a factor f„. For quadrupole, octupole,
and hexadecapole oscillations, these factors are"

f2 ——0.00,

f4=0. 85,

and

f4 ——0.45.

The corresponding predictions are shown in
Fig. 4, along with the experimental values for the
two lowest modes. " By comparing the solid
line at zero with the solid circles (giant quadru-
pole) and the dashed curve with the open circle
(giant octupole), we see that the inclusion of multi-

I ' I I I I I I I I I

'~

l4— n=3

I4
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O
(3

One-body dissipation

Multiple reflections

l I I I I l ) I I I I l ) I I I ) I ) I I I I l

0 50 I 00 I 50 200 2 50
Mass Number A

FIG. 3. Comparison of experimental isoscalar giant-
resonance widths with values calculated for one-body
dissipation by use of the wall formula. The experimental
points are the same as those in Fig. 2.

2
0 I I I I I I I I I I I I I I I I I I I I I I I I

0 50 100 I 50 200 250
Moss Number A

FIG. 4. Comparison of experimental isoscalar giant-
resonance widths with values calculated for one-body
dissipation by taking into account the multiple reflec-
tions of nucleons inside the nucleus, in the limit of
zero-frequency oscillations. The experimental points
are the same as those in Fig. 2.
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pie reflections in the wall formula, in the limit
of zero-frequency oscillations, does not reconcile
the discrepancies. The calculated giant quadru-
pole widths are reduced to zero, and the calculated
giant octupole width for Pb is now 2. 5 times
the experimental value.

C. Modified one-body dissipation

We calculate finally, for completeness, the
widths corresponding to a modified one-body dis-
sipation that attempted to incorporate self-con-
sistency" into the wa11 formula. For modified
one-body dissipation and incompressible, irrota-
tional flow, the damping coefficient is

g modified
Stt(n —1)'

mnv &R2 2

(2n+ 1)

9(97f) t~s( 1)~A/2/2~s

8(2n+ 1)~,'

l4—

~'
I 2

~IO

O

0
C0

LL
I

4

Modified
one-body
dissipation

I I I I I I 1 I I

n=4

l

where the effective distance & specifies the magni-
tude of the dissipation. Upon substituting this
result and Eq. (15) into Eq. (18), we obtain

3(9~)'"(n —1)'nn'~'

8m rod

The value of A.
' that is obtained from compari-

sons of calculated and experimental fission-frag-
ment kinetic energies, when account is taken of
the rupture of the neck at a finite radius, is'

~ =3+1 fm .

Insertion of this value, along with the values of
the other constants given in Sec. II, leads to

r "~"' =73.9(n —1)s~ ' Mey.

The resulting predictions for the widths of the
isoscalar giant quadrupole, octupole, and hexa-
decapole resonances are shown in Fig. 5, along
with the experimental values for the two lowest
modes. " By comparing the solid curve with the
solid circles, we see that the calculated quadru-
pole widths are smaller than the experimental
values and that the calculated dependence upon
mass number is significantly more rapid than
is observed experimentally. By comparing the
dashed curve with the open circle, we see that the
calculated octupole width is smaller than the
expe rimental value.

IV. SUMMARY AND CONCLUSION

We have calculated the isoscalar giant-reso-
nance energy as a function of mass number and
multipole degree by use of a simple macroscopic
model that takes into account the distortion of the
Fermi surface. With no adjustable parameters,

0 I I I I I I I I I I I I I I I I I I I I I I I I

0 50 IOO I 50 200 250
Mass Number A

FIG. 5. Comparison of isoscalar giant-resonance widths
with values calculated for a modified one-body dissipa-
tion coefficient A. =3 fm . The experimental points are
the same as those in Fig. 2.

the resulting closed expression reproduces cor-
rectly the available experimental data, but these
data are limited to giant quadrupole energies for
nuclei throughout the Periodic Table and to the
giant octupole energy for Pb. Clearly, addi-
tional experimental measurements that include
the isoscalar giant octupole resonance in other
nuclei, as well as higher multipole resonances,
are needed to further test the predictions of the
model.

We have also calculated the isoscalar giant-
resonance width for various macroscopic damping
mechanisms that are currently being studied in
nuclear fission and heavy-ion reactions. The
calculated dependence of the width upon mass
number and multipole degree is substantiaIly dif-
ferent for each of the mechanisms that we con-
sidered. The giant quadrupole and octupole widths
calculated for ordinary two-body viscosity are
somewhat smaller than the experimental values,
and the calculated dependence upon mass number
of the giant quadrupole width is more rapid than
is observed experimentally.

The giant quadrupole and octupole widths cal-
culated for one-body dissipation by use of the wall
formula are about 3.0 times the experimental
values. The inclusion of multiple reflections, in
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the limit of zero-frequency oscillations, does not
reconcile the discrepancies, since the calculated
giant quadrupole widths are reduced to zero and
the calculated giant octupole width for Pb is now

2. 5 times the experimental value. Finally, the
giant quadrupole and octupole widths calculated
for a modified one-body dissipation are smaller
than the experimental values, and the calculated
dependence upon mass number of the giant quad-
rupole width is significantly more rapid than is
observed experimentally.

While none of the macroscopic damping mecha-
nisms that we considered reproduce all features
of the experimental widths, we must bear in mind
once again that the small-amplitude oscillations

involved in isoscalar giant resonances are differ-
ent from the large-scale motion involved in fission
and heavy-ion reactions. Clearly, further theo-
retical work is required before we can claim to
understand the mechanism of nuclear damping.

ACKNOWLEDGMENTS

We are grateful to G. F. Bertsch for his colla-
boration on some of the initial aspects of this re-
search and to G. E. Brown, E. R. Flynn, 8. E.
Koonin, J. W. Negele, and W. J. Swiatecki for
stimulating discussions concerning it. This work
was supported by the U. 8. Department of Energy.

R. Pitthan and T. Walcher, Phys. Lett. 368, 563 (1971).
R. Pitthan and T. Walcher, Z. Naturforsch. 27A, 1683
(1972).

G. R. Satchler, Phys. Rep. 14, 97 {1974).
G. R. Satchler, in Proceedings of the International
School of Physics "Enrico Fermi, "Varenna, Italy,
1976, Course LXIX, Elementary Modes of Excitation
in Nuclei (Societa Italiana di Fisica, Bologna, 1977),
p. 271.
F. E. Bertrand, Annu. Rev. Nucl. Sci. 26, 457 (1976).
R. Pitthan, H. Hass, D. H. Meyer, F. R. Buskirk, and

J. N. Dyer, Phys. Rev. C 19, 1251 (1979).
7M. Nagao and Y. Torizuka, Phys. Rev. Lett. 30, 1068

(1973).
8R. Pitthan, F. R. Buskirk, E. B. Dally, J. N. Dyer,

and X. K. Maruyama, Phys. Rev. Lett. 33, 849 (1974).
M. Sasao and Y. Torizuka, Phys. Rev C 15, 217 (1977).
B. R. Mottelson, in Proceedings of the International
Conference on Nuclear Structure, Kingston, Canada,
1960, edited by D. A. Bromley and E. W. Vogt (Univer-
sity of Toronto Press, Toronto, Canada, 1960), p. 525.
A. Bohr and B. R. Mottelson, Phys. Scr. 10A, 13 (1974).
A. Bohr and B. R. Mottelson, Nuclear Structure,
(Benjamin, Reading, 1975), Vol. II, pp. 507-512.
B.R. Mottelson, Rev. Mod. Phys. 48, 375 (1976).

4T. Suzuki, Nucl. Phys. A217, 182 (1973).
T. Suzuki and D. J.Rowe, Nucl. Phys. A292, 93 (1977).

~G. F. Bertsch, Phys. Rev. Lett. 31, 121 (1973).
~G. F. Bertsch and S. F. Tsai, Phys. Lett. 508, 319
(1974).
G. F. Bertsch and S. F. Tsai, Phys. Rep. 18, 125
(1975).
S. Shlomo and G. F. Bertsch, Nucl. Phys. A243, 507
{1975).
G. R. Hammerstein, H. McManus, A. Moalem, and

T. T. S. Kuo, Phys. Lett. 498, 235 (1974).
D. H. Jakubassa, Z ~ Phys. 268, 409 (1974).
P. Ring and J. Speth, Nucl. Phys. A235, 315 (1974).

23S. Krewald and J. Speth, Phys. Lett. 528, 295 (1974).
4S. Krewald, J. Birkholz, A. Faessler, and J. Speth,
Phys. Rev. Lett. 33, 1386 {1974).

~D. Zawischa and J. Speth, Phys. Rev. Lett. 36, 843
(1976).

A. Faessler, in Proceedings of the International Con-
ference on Selected Topics in Nuclear Structure, Dubna,
USSR, 1976, Joint Institute for Nuclear Research Re-
port No. JINR-D-9920, 1976 (unpublished), Vol. II, p.
242.
H. Flocard and D. Vautherin, Phys. Lett. 558, 259
(1975).

SJ. Martorell, 0. Bohigas, S. Fallieros, and A. M.
Lane, Phys. Lett. 608, 313 (1976).
M. Golin and L. Zamick, Nucl. Phys. A249, 320 (1975).

~ L. Zamick, in Proceedings of the Sendai Conference on
Electro- and Photo-Excitations, Sendai, Japan, 1977,
Tohoku University Laboratory of Nuclear Science Re-
search report, Vol. 10, Supplement, 1977 (unpublished),
p. 85.
G. F. Bertsch, Nucl. Phys. A249, 253 (1975).

32G. F. Bertsch, in Nuclear Physics neith Heavy Ions and
Mesons, 1977 Les Houches Lectures, edited by R. Ba-
lian, M. Rho, and G. Ripka (North-Holland, Amster-
dam, 1978), Vol. 1, p. 175.
J. P. Blaizot, Phys ~ Lett. 788, 367 (1978)~

H. Sagawa and G. Holzwarth, Prog. Theor. Phys. 59,
1213 (1978).
N. Auerbach and A. Yeverechyahu, Ann. Phys. (N. Y.)
95, 35 (1975).

~N. Auerbach and A. Yeverechyahu, Phys. Lett. 628,
143 {1976).
R. W. Hasse and P. Nerud, J. Phys. G 2, L101 (1976).
R. W. Hasse, Rep. Prog. Phys. 41, 1027 (1978).
C. Y. Wong and J. A. McDonald, Phys. Rev. C 16, 1196
(1977).
G. Holzwarth and G. Eckart, Z. Phys. A284, 291
(1978)

4 E. A. Rexnler, Ann. Phys. (N. Y.) 119, 326 (1979).
K. Huang, Statistical Mechariics (Wiley, New York,
1963), pp. 95—99.

43F. H. Harlow and A. A. Amsden, Los Alamos Scienti-
fic Laboratory Report No. LA-4700, 1971 (unpublished).
S. E. Koonin, Ph. D. thesis, Massachusetts Institute of
Technology, 1975 (unpublished) .

5P. Moiler and J. R. Nix, Nucl. Phys. A296, 289 {1978).
4~J. R. Nix, Ann. Phys. (N. Y.) 41, 52 (1967).
J. Schirmer, S. Knaak, and G. Sussmann, Nucl. Phys.



J. RAYFORD NIX AND ARNO LD J. SIERK 21

A199, 31 (1973).
R. W. Hasse, Ann Phys. (N. Y.) 93, 68 (1975).
SK. T. R. Davies, A. J. Sierk, and J. R. Nix, Phys.
Rev. C 13, 2385 (1976)~

A. J. Sierk, S. E. Koonin, and J. R. Nix, Phys. Rev.
C 17, 646 (1978).
W. D. Myers, At. Data Nucl. Data Tables 17, 411
(1976).
C. Bricman, C. Dionisi, R. J. Hemingway, M. Mazzu-
cato, L. Montanet, N. Barash-Schmidt, R. C. Craw-
ford, M. Roos, A. Barbaro-Galtieri, C. P. Horne,
R. L. Kelly, M. J. Losty, A. Rittenberg, T. G. Trippe,
G. P. Yost, and B. Armstrong, Phys. Lett. 75B, i

(1978).
G. F. Bertsch, Ann. Phys. (N. Y.) 86, 138 (1974).
K. T. R. Davies, R. A. Managan, J ~ R. Nix, and A. J.
Sierk, Phys. Rev. C 16, 1890 (1977).
J. Byfocki, Y. Boneh, J. R. Nix, J. Randrup, M. Robel,
A. J. Sierk, and W. J. Swiatecki, Ann. Phys. (N. Y.)

113, 330 (1978).
~~J. Randrup and W. J. Swiatecki, Nordisk Institut for

Teoretisk Atomfysik Report No. NORDITA-78/38,
1978 (unpublished) .

~S. E. Koonin and J. Randrup, Nucl. Phys. A289, 475
(1977).


