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Some convergence tests on medium-energy pion-deuteron elastic scattering amplitudes
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With the exact solution of a covariant multiple scattering model for elastic pion-deuteron scattering as a
standard, we test (a) the convergence of the multiple scattering series and (b) the sufficiency of the first
order and on-shell second order scattering amplitudes.

NUCLEAR REACTIONS «elastic scattering; convergence tests of several
expansions.

I. INTRODUCTION
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The only surviving terms are thus the single scat-
tering amplitude F ~ ' and that part of F ~ ), where
in the intermediate propagator G the system re-
mains on the energy shell (conserves energy).
Eikonal limits for both terms in (1}are implied
by the superscript Gl. Alternatively one may write
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The major part of pion-deuteron elastic ampli-
tudes for energies T, ~ 250 MeV is adequately de-
scribed by multiple scattering (MS) theories. "
Beyond that energy range it becomes extremely
difficult to exactly compute that MS component
of the amplitude, and approximations are called
for.

Mainly because of its simplicity the Glauber ap-
proach has been a frequently used tool. Regarding
elastic»d scattering, Carlson' (T, & 142 MeV),
Gabathuler and Wilkin' (T, =256 MeV), and Hoenig
and Rinat' analyzing the new Virginia-LAMPF
data' (515 ~ T, (MeV) & 230) observed agreement
in the forward hemisphere and reproduced at least
the correct order of magnitude for the large-angle
cross sections. In the following we scrutinize the
observed agreement.

The literature contains a number of investiga-
tions relevant to our topic. Most prominent is the
work by Harrington, ' who has shown how in the
eikonal limit (E -~, q-0) a complicated MS am-
plitude tends to the simple Glauber expression,
I e ~
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Equation (2) thus implies that in the eikonal limit
the off-shell double scattering term either cancels
the rest series Z„,,F'"& or that each part tends
to zero individually.

For 7td scattering T, «500 MeV, one is obviously
outside the eikonal limit for essentially all angles.
The fits obtained by Carlson' and Hoenig and
Rinat' thus imply that the following truncation of
the MS series apparently suffices:
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[Notice that the approximation (3) differs from (1)
in that no eikonal limits have been taken in (3}.
However, Gabathuler and Wilkin did use the stan-
dard Glauber amplitude (1). See Refs. 8 and 9 for
a discussion of the difference. ]

Since the Harrington mechanism is not operative
in the energy region under discussion one has to
explain the sufficiency of (3). We mention a num-
ber of possibilities:

(a) For a dilute system with weak»N forces,
F ~ ' will dominate. It is in that case by no means
clear whether the major correction is F ~""or
the full double scattering amplitude F@'.

(b) A second, far from trivial case for which

Eq. (3) apparently holds, is scattering from coin-
ciding scattering centers. Fanchiotti and Osborn"
and later Agassi and Gal" as well as Alexander,
Wallace, and Sparrow" numerically demonstrated
that the truncated amplitude F", Eq. (3), closely
approximates F even for relatively low energies.
Separation of the centers rapidly destroys the can-
cellations (2) unless of course the eikonal con-
ditions are met.

(c) Remler finally studied scattering of a pair of
free particles from an infinitely heavy target. "
Case (b} and case (c) do not apply to»d scattering
and we thus turn to convergence tests of the multi-
ple scattering series.
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II. MS CONVERGENCE TESTS FOR n'd SCATTERING

We are aware of only a few studies of the con-
vergence of the MS in general" and actually none
focuses on the truncated amplitude (3}. (The Pads
approximant techniques used by Qiraud et al. produce
the required expansion in principle, but these au-
thors, aiming at a calculation of exact amplitudes,
did not publish convergence results, nor did they in-
vestigate the part (3) above. ) Yet numerous calcula-
tions of gd elastic scattering have been based on the
single scatteringterm F~" in (3)." It is evidently of
interest to study the convergence of the MS series in

particular for md scattering, since available exact
solutions can serve as a standard. Indeed, scatter-
ing from a deuteron is particularly instructive, be-
cause its MS (Faddeev) expansion exactly accounts
for binding effects, Pauli blocking, etc. , all of which
can only approximately be assessed for heavier tar-
gets.

We chose a covariant version of the MS theory
with a dominant P33 wN amplitude and applied it
around the highest energies permitting accurate
computation. ' We shall use standard separable
interactions, which is in particular justified for
the resonating P33 channel and solve first the
coupled integral equations (for a [12,32] grid; cf.
Eq. (3.7) Ref. 1):

rd, rd rd, Nh, 6 Nhrrd

Nh, rd BNh, ,rd 8N4, rdGdTrd, rd

+BE„,N4GA, Nh, rd '

In (4), 8 s is a single particle exchange ampli-
tude between channels tr, t} (Ref. 16),

+ --- (a)

(b)

FIG. 1. Graphical representation of the elastic
amplitude T,d. (a) MS series which, if t,N is dominated

by &, coincides with the solution of Eq. (4). (b) Lowest
order and on-shell second order term of truncated
series (3). Cross indicates that pion is on its mass-
shell.
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where the superscript "on" reminds one to compute
B with (Fig. 1) the exchanged pion on its mass
shell. Using Eq. (5}, the form t =g G, g for
Separable t matriCeS aS Well aS gdG, = Qd, One re-
traces the form (3):

Finally, G in (4) represents the propagator of
the interacting pair ~ in the presence of a spec-
tator.

The exact solution T,„„cannow be compared
with the iterative expansion. (Notice [Eqs. (3),
(7), and Fig. 1] that in the expansion of T„„first
order in t,„means second order in B, etc.) In

particular we are interested in the following trun-
cated series [cf.Eq. (3)]:

TMs T tr
rd, rd rd, rd

B a =g.Gags (5)

where g, is the vertex function (form factor) for
the dissociation of the pair z and where G, is the
unperturbed propagator. If, as shown in Fig. 1,
fp, 6~, and 6 ]& y ]

are energies of respectively the
initial and final spectator (i.e., a particle not in
an interacting pair) and of the particle exchanged
then" (s is the squared total energy)

We emphasize again that the off-shell scattering
matrix t,„above (containing binding effects) is not
replaced by its on-shell, eikonal limit.

We return to T", Eq. (7) which is evaluated by
a standard partial wave analysis. ' In particular
the on-shell part of the partial wave representa-
tion of T s ' in (3) reads (B« =B„»,etc.)-
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where I.SJ are channel angular momentum, chan-
nel spin, and total angular momentum. Y in (9) is
that part of B«which describes an exchanged

pion on its mass shell and from Eqs. (5) and (6) its
construction is seen to amount to the replacement
in (6) of
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TABLE I. Some partial wave amplitudes (in 10+ fm) to first, second, and third order [see
remark after Eq. (6)] their exact values and the truncated amplitude (3).

nm~

T,=180 MeV, PD=6.7%, Hulthen
1', 1 1, 0 2', 1 4', 3

1
2
3

exact
trunc.

487 + 901i
499 + 904i
476 + 894i
477 + 894i
592 + 994i

568 + 1699i
531 + 1658i
498 + 1629i
500 + 1630i
621 + 1636i

576 + 2086i
465 + 2041i
455 + 2028i
456 + 2027i
661 + 1869i

1316+ 4548i
933 + 4372i
840 + 3944i
934 + 3968i

1092 + 4061i

170+ 585i
173 + 593i
173 + 593i
173 + 592i
226 + 631i

T,= 265 MeV, PD= 6.7%, Hulthbn

1
2
3

exact
trunc.

-152 + 807i
-155 + 815i
-146 + 796i
-146 + 797i
-232 + 887i

-421 + 1091i
-401+ 1064i
-396 + 1042i
-397+ 1043i
-378 + 1122i

-684+ 1460i
-661 + 1383i
-654+ 1376i
-654+ 1377i
-524+ 1481i

-1147+ 2581i
-1074+ 2358i
-803 + 2338i
-907 + 2356i
-912 + 2378i

-228 + 486i
-235 + 489i
-235 + 489i
-235 + 489i
-256+ 531i

T, =256 MeV, PD= 5.76%, McGee

1
2
3

trunc.

-59 + 886i
-63 + 895i
-86 + 872i

-156 + 974i

-383 + 1108i
-353 + 1079i
-356 + 1065i
-334+ 1135i

-689 + 1554i
-675 + 1474i
-674 + 1460i
-510 + 1583i

-1220 + 2732i
-1123+ 2478i
-945+ 2523i
-960 + 2506i

-217 + 480i
-224 + 484i
-224 + 484i
-224 + 526i

ls (pp+ 6p + 6
~

~) ] $71'5(s (ep+ 'Ep + 'E[p+y
~
) )

In Table I we show a few dominant amplitudes
for T, =180 and 256 Me7, calculated by exact so-
lution of (4), by finite order iterations, and finally
by evaluation of (7). Generally we employ a Hul-
then deuteron wave function with 67% D state prob-
ability but results have also been obtained for a
more realistic McGee d-wave function. ' In Table
II we test Eq. (2) and give on- and off-shell parts
of F(, F e =+ F "' and F~x"' In Table III we
entered some tensor polarizations' computed for
corresponding approximations. Finally we display
in Fig. 2 differential crosssections and can then
make the following conclusions:

(1) Although the partial wave MS series conver-
ges rapidly for peripheral L values, the conver-
gence is slower for low L in particular for the

TABLE II. Qn- and off-shell parts of some partial
wave amplitudes in 10+ fm (T,=265 MeV), the rest am-
plitude F '=Q 5'"' and F~~'

relatively small real parts ReF. Both IReF
I

and

IImF
I

always decrease to the exact values with
increasing order n.

(2} For the dominant J', L =2', 1 amplitudes
there is no doubt that F'", Eq. (2), is an excellent
approximation to F and of better quality than F ~ '

+Fe' (FN'=F"+F"'}. We thus infer (Table II)
that effectively a Harrington cancellation (2) takes
place, while neither F e ""nor S~„„F'"'is par-
ticularly small compared to F""".Although less
obvious the same is the case for the other large
partial wave amplitudes. The fact that the suf-
ficiency of F" is better for 256 MeV than for 180
MeV is presumably not related to closer proximity
to the eikonal region. We rather blame the sen-
sitivity of ReF around the resonance region.

(2) Deviations of F'" from F often affect real
and imaginary parts in different directions but

IRe(F -F"}I« IReF
I

or
I

F
I

f(ReF + j lmF) ~
I
.

I
Im(F —F )

I
~~

I
lmF

I
(10)
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TABLE III. Some values. for the analyzing power
computed in various approximations with (Pz)H&t~(PD
= 6.7%).

10 24- 77i
161 + 22i -137—99i

20 — 27 i
43 + 31i -23 —59i

7 — 6i -654 + 1377i

4 —21i -397 + 1043i
Third order

exact
trunc.

T, =180 MeV

t2p (90') t2p(180')
T, =256 MeV

t2p(90 ) t2p (180 )

2'1 73 -223i
235 —202i -162 —21i 167 — 2i -907 + 2356i

-0.325
-0.373
-0.211

-1.125
-1.073
-0.838

-0.225
-0.241
-0.190

-1.164
-1.138
-1.316



20 SOME CONVERGENCE TESTS ON MEDIUM-ENERGY. . . 327

IO

10

IO

—IO

the approximation (3) suffices for do/dG and also
indicates the lesser quality (still surprisingly
good) predictions for polarizations. (The latter
are strongly affected by genuine absorption cor-
rections" which we have disregarded altogether.
The comparison made holds only for the pure MS
contributions to F„)T.o a lesser degree the same
results when the eikonal limit, i.e., the Glauber
amplitude
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FIG. 2. Differential cross section for nd elastic
scattering (T,=180, 256 MeV, Hulthen wave function,
Pz ——6.7%). (-) exact solution of (4); (—-) same up to
and including second order in E; (- —) same with only
first order and on-shell second order included.

Since the differential cross section is dominated
by a few partial waves, (10) readily explains why

Ftr F61
g ~
q ~ Q

is used.
The reported results are numerical observa-

tions and do not explain the mechanism which
brings about the approximate Harrington cancel-
lation. In particular, the relatively large pn sep-
aration in the d, although definitely working in the
desired direction, cannot be the complete answer
because agreement of comparable quality has been
obtained for pion scattering on heavier targets.
Successful Glauber fits seem hardly related to
eikonal conditions as expected, but bear on the
convergence of selected Pa~ts of lowest order
terms. An analysis as performed above for A ~ 3
targets would be much more complicated and has
until now not been performed. %'e are thus still
ignorant of whether a full lowest order expansion
or one with on-shell parts only is actually prefer-
able above a standard first order optical potential
fit."
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