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pion-nucleus scattering using finite binding potentials
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A nonperturbative treatment of finite binding potentials in pion-bound nucleon scattering is developed.
Coupled differential equations in configuration space are derived from a model wave function broken into
two parts. Coordinates from the source of binding to the pion and to the nucleon are used in the elastic
channel, while pion-nucleon center-of-mass coordinates are used for the excited channels. The excited
channel equations are solved in closed form using a separable nonlocal pion-nucleon interaction. When the
solution is inserted into the elastic channel equation, a relativistically modified single-particle equation for
the elastically scattered meson is derived, which features an optical potential with both local and nonlocal
parts. This model is used in conjunction with first order multiple scattering theory to construct pion-nucleus
scattering. In the present application of the model the assumed pion-nucleon interaction is taken to be s
wave with threshold p-wave behavior. The region around the 33 resonance is numerically studied for both
the three-body model and for pions on ' O. A consistent, inclusive treatment of many effects familiar from
earlier work is obtained. Results from the three-body calculation show that the peak cross section is shifted
upwards by about the binding energy of the struck nucleon. However, nonlinear effects drive the peak
downwards when the three-body model is incorporated in the pion-nucleus formalism, so that several bound
nucleons simultaneously scatter the meson, Effects of this kind are not expected to be sensitive to the use of
an artificial I = 0 mN interaction. Resonances caused by the binding potential are found to be important in

both the three-body and the m-' 0 calculations. This suggests significant corrections to an impulse

approximation approach.

NUCLEAR REACTIONS O(~, 7i'), three-body model of 7i -nucleon interaction,
Oz (E) calculated.

I. INTRODUCTION

Most treatments of pion-nucleus scattering are
based on some form of the impulse approxima-
tion, in which the elementary scattering event is
the collision of the pion with individual target
nucleons that are treated as free, with at most
some energy or momentum correction for their
location in the nucleus. In this procedure, multi-
ple scattering theory is used to combine individual
amplitudes for pion-nucleon (wN) scattering, to
obtain an optical potential for pion-nucleus scat-
tering. Techniques such as the frozen-nucleus
approximation sometimes allow partial summation
of higher-order terms of the multiple scattering

i9-24series.
There has also been some interest in multiple

scattering theories that are based on collisions
of the meson with nucleons that are bound by the
shell model potential of the nucleus. In such
an approach the elementary event of the multiple
scattering procedure is a three-body collision,
in which the binding potential and the meson-nu-
cleon interaction act simultaneously. However,
previous calculations of three-body theories for
bound nucleons have used harmonic oscillator
binding potentials, which do not allow ejection of
the nucleon from the nucleus, and they have intro-

duced perturbative treatments of the binding po-
tentials at intermediate stages of calculation.

The present article considers a nonperturbative
evaluation of a model three-body Schrodinger
equation for the scattering of a meson by a bound
nucleon: The nucleon is bound to a fixed origin
by a Woods-Saxon potential and the meson inter-
acts with the nucleon by a single-term separable
potential that has angular momentum /0. Although
the formal development of the model treats lo as
a general parameter, the present evaluation is
limited to the artificial special case lo ——0, as in
several previous three-body studies. How-

ever, the calculation is made more realistic by
forcing the free phase shift for our lo ——0 interac-
tion to match the known energy dependence of the
l =1, 33-phase shift. The model is applied to the
scattering of pions by 0, in the resonance region,
using first-order multiple scattering theory to
combine contributions from individual struck nu-
cleons. The Coulomb potential is omitted. Ex-
plicit coupling to nuclear spins is omitted. Fur-
ther details of the present work may be found in
Ref. 38.

The Schrodinger equation is solved in configura-
tion space, to allow an easy discussion of the
Woods-Saxon wave functions and of the various
optical potentials that are derived. We work in
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the laboratory coordinate system, in which the
origin of the shell model potential is held fixed.

Two sets of position coordinates are used: The
r, s coordinates from the source of binding to the
nucleon and the meson, respectively, and the
R, p coordinates to the pion-nucleon center of mass
and between the two particles, respectively (see
Fig. l). Although these are the same coordinates
that would appear in a Faddeev configuration space
formulation, we do not proceed by that method.
The difficulties of a Faddeev approach for reac-
tions with a large nucleus are familiar. Each
set of coordinates is associated with many partial
waves. The multiplicity of couplings of these
partial waves in the Faddeev procedure leads to an
excessive number of coupled equations. (Of
course, Faddeev calculations of meson-deuteron
scattering converge much better. ')

An approximate system of coupled equations is
adopted instead, based on the observation that the
r, s coordinates are primarily required for the few
shell model bound states of the target nucleons,
and especially for the nuclear ground state, which
defines the entrance channel. On the other hand,
the R, p coordinates are well adapted for the ana-
lysis of effects caused by the strong meson-nu-
cleon interaction. We therefore use projection
operators to separate the wave function into two
parts: The entrance channel part is described in
r, s coordinates, and the remainder of the wave
function, especially the three-body breakup chan-
nels, is described in R, p coordinates. This sepa-
ration of the wave function allows the development
of a series of approximations that lead to manage-
able coupled equations. (Similar approximations
appear in articles by Lenz and co-workers. ' ')
The equations based on continuum excited states
of the target nucleon are readily solved, leading
to a single complicated Schrodinger equation for
the elastic channel, with an optical potential that
is summed over intermediate nucleon excited
states.

The three-body analysis of pion bound nucleon

scattering is developed in Sec. II, and the approxi-
mations used to obtain manageable coupled equa-
tions are discussed. Approximations taken from
first-order multiple scattering theory are applied
in Sec. III, to express scattering from a closed
shell target nucleus as a sum over three-body
collisions with the individual nucleons. In parti-
cular, the optical potential is computed as a sum
over occupied nucleon orbitals. (These separate
contributions to the optical potential interfere
with each other in a complicated nonlinear fashion
when the Schrodinger equation for elastic scatter-
ing is solved. We see later that several familiar
effects in pion-nucleus scattering are caused by
this nonlinearity. )

Section IV presents the potentials used in our
calculation. Section V outlines the calculational
details necessary to reduce the formal expres-
sions of Secs. II and III to tractable equations for
numerical solution. Relativistic modifications are
introduced. Section VI presents and discusses
results for meson scattering by a single bound nu-
cleon and by O. We measure the effects of bind-
ing by changes in the location of the total cross
section maximum in the 33-resonance region. We
also examine the elastic and reaction contributions
to the total cross section and look for changes in
the magnitude and shape of the cross sections.
Section VII is a brief statement of conclusions.
The Appendix discusses limiting approximations
of the optical potential for the closure limit, which
is equivalent to an impulse approach, and for the
ze ro-binding limit.

II. THREE-BODY MODEL

A. Configuration space method

In this section a technique for solving pion scat-
tering from a nucleon bound in a finite potential
is given. A simplified presentation —nonrelativis-
tic kinematics, spinless nucleon, and a fixed
potential that supports only one bound orbital —will
exhibit the features of the method.

We place the origin of coordinates at the site of
the binding potential and introduce two sets of
coordinates. One is the fixed or r, s system where
r locates the nucleon and s the meson, the other
is the center-of-mass or R,p system where R
locates the mN center of mass and p is the relative
&N displacement, see Fig. 1. The transforma-
tions between the two systems are given by

R=vr+ vs, p=-s-r (la)

or

FIG. 1. The two sets of coordinates in the three-body
model. The source of binding is fixed.

r=R —vp, s=R+ vp,

with

(lb)



M. SILVER AND N. AUSTER N 21

v =m, /(m„+ m, ), v = 1 —v . (lc) becomes

The time independent Schrodinger equation for
this model is

(E —K- U)PC =PV4,
(E K- U)qe=qve.

(5a)

(5b)

(E —K- U)% = V4', (2)

[» —U(r) —K;]g, (r) = 0.
Then P becomes

(3a)

P(r, r') = P,(r) d r'tjo (r'). . . , (4a}

where g0 is the ground state wave function. We
define

Q=1 —P. (4b)

Both P and Q commute with K+ U. We also need
nucleonlike wave functions P, (R), defined by

{e—U(R) —Kn]tl, {R)= 0, (sb)

where Kg contains the total mass —pion plus nu-
cleon —instead of only the nucleon mass as in K;.

In terms of the projection operators, Eq. (2)

where 4 is the complete wave function for the pion
and nucleon motion relative to a fixed core, K is
the kinetic energy operator for both particles,
U(r) is the nucleon binding potential, and V(p) is
the pion-nucleon interaction. Equation (2) does
not contain any meson-core interaction. However,
the effects of such an interaction do appear when

we consider scattering by a nucleus, when all the
nucleons can affect the meson simultaneously.
We approach the solution of Eq. (2) in configura-
tion space. The kinetic energy operator K sepa-
rates in either the r, s or R, p coordinates.

To solve Eq. (2) in configuration space suggests
choosing between the two sets of orthogonal co-
ordinates r, s or R, p. However, U is a function
of x—a member of the first coordinate set-while
V is a function of p—a member of the other coor-
dinate set. We particularly need the R, p coordi-
nate set to take advantage of the separable mN

interaction that is introduced later. However, we
also require a correct description of the entrance
channel, for which the nucleon is in its ground
state. This is best done in r, s coordinates be-
cause the nucleon ground wave function is an
eigensolution of the binding potential U(r). To
resolve this conflict, we introduce projection
operators that split Eq. (2) into two coupled equa-
tions: One isolates the entrance channels and is
solved in r, s coordinates, the other features nu-
cleon excitations caused by V and is solved in
R, p coordinates.

The nucleon ground state projector P is expres-
sed in terms of nucleon wave functions g, , which
satisfy

The first equation is solved in r, s coordinates to
allow correct handling of the incoming flux. The
second equation is solved in R, p coordinates to
accommodate the p dependence of the p¹interaction.

Therefore, we expand the full wave function 4
in two parts, each in a different coordinate sys-
tem. We adopt the form

CO

q' = go(r)p(s)+ go(R)G, (p) + de(, (R)G, (p)
0

Here the &o(R)Go(p) piece is a bound-state counter
term that is introduced because eigenstates con-
structed in one set of coordinates are not neces-
sarily orthogonal to eigenstates constructed in the
other coordinate set. We adjust the factor Go(p)
to produce orthogonality between &o(r)E(s) and
the expression in brackets. This means the first
term in 4' assumes the meaning of PC' and the part
in brackets Q4. That is, the overlap of tj,(r) with
the terms in brackets is compelled to vanish:

J
d 0, ( )0 tR'tG, (p'|+f ~„~, I I

x d&g, R)G, p)=0. (7)
0

This equation of orthogonality now implies that
Q4 fulfills the required outgoing boundary condi-
tion.

An explicit calculation of the bound-state counter
term shows that it resembles the 4=0 partial
wave of the elastic-channel wave function E(s), but
it has a much smaller amplitude. For small pp
the magnitude is reduced by the approximate or-
thogonality of go(r) and g, (R). At large p, inte-
gration over the oscillations of g, (R) reduces the
counter term. Hereafter, this term is dropped.

It is interesting to note how free pion-nucleon
scattering can be recovered from the system of
coupled equations described here. Although the
binding potential cannot go to zero without de-
stroying the structure of the coupled equations, we
can let the potential become weak enough so that
the nucleon binding energy goes to zero. The
formal structure of the equations remains intact,
but now as the energy goes to zero the ground state
nucleon wave function occupies more and more
volume outside the range of U(r); i. e. , the nucleon
becomes more and more free. In turn, upon en-
countering the pion, the nearly free nucleon re-
coils and is scattered out of the elastic channel.
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The recoiling nucleon is described by the Q4 part
of the wave function and its motion is governed by
the second coupled equation (5b). As the binding
potential becomes weak, U in (5b) is of diminished

importance and this equation takes on the appear-
ance of the relative motion Schrodinger equation
for free vN scattering (with the remaining coup-
ling necessary to describe the incoming flux).
A more detailed description of the free scattering
limit is given in the Appendix.

To solve the coupled equations, we premultiply
Eq. (5a} by (})0(r) and integrate over r, to obtain

(Z —& —K;)F(s) = ((lr (r), V(p))1) (r}F(s})

+(l4( 1, v(s) f d s(dR)G(p)). ,
0

(Sa)
Premultiply Eq. (5b) by 7(),(R) and integrate over
R, to obtain

(E —~ —K;)G, (p) =((}),(R), Q(r, r')V(p')@)

+ ()j),(R), [U(r) —U(R)]Q4) . (Sb}

The derivation of (Sb) requires that U(r) in the
left-hand side of (5b} be replaced by U(R}, thus
allowing the insertion of the eigenvalue E for the
nucleonlike Hamiltonian U(R) +Ka when premulti-
plied by P, (R) in (8b). This step replaces one
three-body continuum by another. Instead of r, s,
Eq. (Sb) uses the more convenient variables R, p
and the associated outgoing boundary conditions.
However, this simplification of the structure of
(8b) introduces what we call the frame potential,
U(r) U(R}, on the right--hand side of (8b).

Another complication in (Sb) is the presence of
the projector Q(r, r'), which we replace by 1
—P(r, r') Both the f.rame potential term and the
contribution from P(r, r') are now seen to be
small corrections in (8b), for similar reasons.
Both correction terms are negligible at the impor-
tant point p =0, which dominates the subsequent
application of G, (p) in (Sa); also, both correction
terms have rather smooth behavior at large p,
therefore they do not alter the outgoing boundary

B. Partial wave analysis

To solve coupled Eqs. (Sa) and (9), we introduce
partial wave expansions of P4' and Q4,

P@(r, s) = s 'g F'(s)')}~ (r, s), (10a)

Gv(R, V)=s 'E E f «G. , (s)R, . (R;s),
PJlt Lt 0

(lob)

where the two parts of 4 are expressed as sums
over terms with definite /SR. Thebasis functions

jdr. ( (R, P) ={gdz (R)) i'y') (P)bm

vector couple the two-body nucleonlike wave func-
tions [see Eq. (Sb)] of angular momentum L with

relative &N orbital momentum l to form total
angular momentum Z. The basis function 'jjo (r, s)
is used for the special case of a single bound nu-

cleon orbital, for which the subscript zero indi-
cates & =&0, I =0, and l =J. The functions Q,»
(or, separately, the generalized unbarred '(f, z,, )

obey usual orthonormality conditions.
The premultiplications of (5a) and (5b}mentioned

above to derive (Sa} and (9) now become, respec-
tively, a premultiplication by 'JJ, (r, s) with inte-
grations over r and s or a premultiplication by
')f,~,(R, p) with integrations over R and p. Because
4~ are good quantum numbers of the Hamiltonian
K+ U+ V, we arrive at an independent set of coup-
led equations for each JM. Members of these
sets are

conditions for G, (p) required by Eq. (7}. Details
can be found in Ref. 38. Hereafter these correc-
tion terms are dropped. Without these terms, the
permitted angular momentum coupling is greatly
simplified. Equation (8b} now has the simple form

(&- & - K;}G,(p) = ((I,(R), V(p)(t, (r)F(s))

+ V(p)G, (p) . (9)

Here we have broken 4' into its bound and continu-
um pieces. We reiterate that Eq. (7) implies
that solutions of (9) are purely outgoing.

(.VS( )s1 V'( )s= f i) f-d. M, (, )'Vsd(ss(, ,") 'V'( )

and

RO Z

+S d&' dr dsg, '(r, s)'VQ~, (R, p)
0 P

(12a)

(V. +s —s-s(s)iG.'.,(s)=.fdR fdiisd. (Rdl Vsd (1, ',
40 ()

+ p Z «' dR dp'(j.'i%, p}*V%~') (R, P)
L,'r' 0

(ub)
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where t~, , are the partial wave kinetic energy operators, given by

tf d J(Z+ 1) 8 d
tg (s) =—

2 'z and tl (P} 2
2m» ds s 2p dp

l(l + I)

and p is the reduced mN mass. 7, is the pion kinetic energy in the fixed frame, T, =E —f0 and E —E0

is the nucleon excitation energy.
%e now introduce an explicit form for the 7N interaction. %e choose a separable nonlocal interaction in

a single partial wave of order to (see Sec. IVA),

&(p, p') =
2 I v(p)v(p') QY(o o(P)Y('o o(P') .
2l0+ 1 oft 0

(13)

Insert (13) into (12a) and (12b). Change integration variables in (12a) from r, s to p, s (the Jacobian of the
transformation is unity), to get

and

[T, —t (s)]F (s) = s W, (s) +~ df'Vo„~, (s)A~ ~,
4v F'(s)

2l0+ 1
(14a)

[7;+oo —e —t ((p)]G', ~(s) = 5, „pv(p)(B,'„,+A,"u),
0

where

(14b)

ASLl d~JOV
0

(IR+ vp I)
B, , = dR dp'JJ, ~, (R, P")*v(p)'3o (R —vP, ny(, ; l%, + apl

(15a)

(15b)

v", , ~, (, f(dpf d;o, (, p, ;)',(p%p. .,(s — p, p), (15c)

and

W, (s) =g dp dsQo (s —p, s) v(p) Y, (p) dp'v(p')F, " (p')'So (R —vp', n», „-,-.)
&(s) - »- - ~ -. . . »- -, F (IR+vp'I)

m
t E 0ttt0

(15d)

In (15d), the R dependence that survives after the p' integration must be changed to p, s coordinates, that
is, R-s —vp after the p' integration. The quantities A and 8 are numbers-a consequence of the separ-
able &t(t interaction —while Vo, ,~(s) and Wo(s) are functions of s. n», „, is a unit vector in-the R+ vp direc-
tion.

C. Formal solution

First, we solve (14b). Only I =to enters and,
as noted earlier, there is no homogeneous solu-
tion. Thei efore

I(,i(, o+ .i(o) 4 'g(, (P, P')P'v(P'},

(16)

where g, (p, p') is the outgoing partial wave Green's
function. Multiply both sides of (16) by pv(p) and
integrate on p. The left-hand side becomes A~»,sLi0&
and therefore,

I, (q) =2f I dppv(p) dp'g, (p, p')p'v(p'}4m

'0 2l0+ 1 0

(17b)

and

q = [2p(E- «)]'"/», (17c}

which appears implicitly in the Green's function.
I, is the same function that appears in the denom-l0
inator of the free two-body scattering amplitude
t(p, p'}, see Sec. IVA, Eq. (24). From Eq. (17a),

&'u, = (B6'i(, .o +&,'u, )f(,(q)

where

(17a) &'.~, =(R(q)B.'.(,.o,

where



2l PION-NUCLEUS SCATTERING USING FINITE BINDING. . . 277

(18)

The function (R(q) carries the two-body vN reso-

nance into the three-body model. The close rela-
tion between St(q) and the two-body f matrix is
seen in Sec. VIS and in the Appendix.

We insert the solution of (14b) into its coupled
partner (14a} to get

[T —t~(s)LF (s) = s W&(s) +~ de'Vo;~. , (s)(R(q)B, r, o

F'(s)
2lp+ 1 s L' p

p' (19)

where q is related to c' by (17c). The first term
on the right-hand side is a local potential that acts
on the elastic-channel pion wave function, while
the second term is nonlocal (F is contained in B ).
The local part contains the nucleon only in its
ground state; the nonlocal part contains inter-
mediate propagation of the nucleon in excited
states.

The elastic-channel pion scattering equation

(19}is difficult to treat, primarily because the
numbers B, z, o and the functions Vo, ,i,,(s) and

Wo(s} are not easy to generate. We discuss an
9 po

approximate generation of these objects in Sec, V.
Nonetheless, (19) is a, single-particle equation and
thus the right-hand side of this equation can be
regarded as a microscopically derived, partial
wave dependent, complex (from the two-body reso-
nant function (R) optical potential acting on F (s).

III. PION-NUCLEUS SCATTERING

In this section we generalize the three-body model to describe scattering by a closed shell nucleus. The
target nucleus is described as a single determinant of angular momentum zero, composed of shell model
orbitals g~. To first order in a multiple scattering expansion different target nucleons do not influence
each other, therefore the three-body meson-nucleon model can be applied for each nucleon independently. '
The dynamical equation for the elastic-channel wave function

F~s ~0

[T,—t~(s)LF (s) = sg W,o (s) +P dtV„(LoL,L/o s)s)l(q)P,', (LoL,Llo) (20)2lo+1 ~ '
o s ~,~ o

becomes a sum over contributions from individual ground state orbitals.
The resonance function (8(q) in Eq. (20) is the same quantity obtained in Eq. (18), by solving for the

meson-nucleon relative motion in excited states. The angular momentum quantum numbers in Eq. (20)
are the following: JSit, the total angular momentum (and its component) of the A nucleons plus pion sys-
tem (the Hamiltonian conserves JSR so that the Schrodinger equation decouples in JOR partis. l waves); LM,
the angular momentum of the one-nucleon excited nucleus; L &M~, the angular momentum of the excited
nucleon; LoMo, the angular momentum of the A-1 unexcited residual nucleus; and lm, the relative vN

orbital angular momentum. I, and I-, couple to L, L and l couple to J. These quantum numbers label the
generalized coupling potentials

and

a.'.{t,t,l),) (-()""'(-)' J d)( ji)h Z=i),;,(R))';...o)))i;..(o)
N'pN y

ilC exp

xv(p)())ao(IR- vp I)Coso(ng-„-)~~(no( -»
F (I R+ vp I )

I R+ vP I

x&LoL)MoM&ILM&(LloMmol~stt& ~

v' A, ,&(L„ )=)(-ii)'(""(-)"I&aI &) E )" (i))i)',(lii-ol)
htpNg

Neap

Y,,k(, (n;=,)v(p)r. . .(p)q, ~,(I s (pl)yi, „,(n.- „-;)-
x&LoLiMoMi ILM&&LfoMn)oldSlt&,

(21a)

(21b)
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w", (s) = Z f d f d );gp(ii)I4 ( ))", ,( MP))'. .., (P)
Npmp

dp'v(p') Y,* (p')(})~ (~R —vp'~)Yz, „(na; )Y~(na,„;)-.(21c)
I R+ vP 'I

The sum over occupied orbitals in Eq. (20) ex-
tends over neutrons and protons and over both
spin states. Because the optical potential is de-
generate in nucleon spins, the spin sum can be
replaced by a multiplicative factor of two. Be-
cause pion-nucleon scattering is dominated by
isospin —,', the sum over protons and neutrons can
also be replaced by a numerical multiplier. For

scattering a neutron orbital simply contributes
one-third as much in Eq. (20) as a proton orbital
(or conversely for v scattering). Hence for ' 0
we only need to sum explicitly over spatial wave
functions and then multiply by 3 to account for the
spin and isospin variables.

We note that the continuum energy integral in-
cludes by implication a discrete sum over excited
bound nucleon orbitals. Equation (20) automati-
cally includes nucleon recoil and the Pauli exclu-
sion principle.

IV. INPUTS FOR THE CALCULATION

where

4~ v(p)v(p') ~
2l 11—I ()0+

(23)

and

4m
dPPv(P) dp'g„(p, p')p'v(p')

0+ 0 0

(24)

gl, » P'}=-—
~if j(,(qp(»(, (W )qS (2s)

is the partial wave Green's function. Here, p is
the reduced &N mass and q is the wave number in
the center-of-mass frame. The function j( (k, &)

is a Riccati function, which is a spherical Bessel
(Hankel) function times its argument. Resonance
behavior is determined by the pole in 1/[1 —I, (q)]
in the free scattering amplitude (23).

In momentum space, with the spherical Bessel
transform of a potential factor v(p) defined by

In this section we discuss the two potentials-
pion-nucleon and nucleon-nucleus-used in our
calculations.

1/2

v, ,(k) = — dpp'j, ,(kp)v(p),

we find

(23)

V(p, p'} =
2f 1

v(p) v(p') g Y«, (p) Y,*, ,(p') .
p +

mp

{13)

This potential is assumed to act in only the lpth
partial wave. Although the free mN resonance is
known to have lo = 1, it is convenient to leave (13)
in this more general form.

Below we list some familiar two-body results
using the separable nonlocal potential (13). The
free &N scattering amplitude

t = V+ V
@

V= V+ V ~ t,
1 1

(22}

is given by

A. The pion-nucleon potential

Separable nonlocal interactions are often used
in pion-nucleus physics ' to represent the
strong, isolated pion free nucleon 33-resonance.
Under the spin and isospin considerations de-
scribed at the end of the previous section, we only
consider spatial variables, and the mN interaction
is taken to have the form

V(k, k') =, v, (k)v„(k')g Y.,..(k) Y,*...{k'),
2lp+ 1

(27)

k'

(23)

and

4w 2p
Ii {q}= ~ dkk z2~0+1 @ 0

q' —k
(29)

(2v)' 2 p, [v(,{q)l'
(30)

where Im takes the imaginary part of what follows.
There is a simple relationship between [v, (q)P

and ImI, (q). Using expression (29) for I,,(q), we
see that the imaginary contribution to I( (q) comes
only from the pole in the free Green's function
(q —k },provided all poles in v, (k) are on the
imaginary axis. Only the pole at k =q' contri-

where q =q+ ip expresses the outgoing boundary
conditions. I, (q) of (24) and I«(q) of (29) are iden-
tical. The expression for total cross section is
given by
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butes to the imaginary part of the integral. The
result is

I20

Imf, (q) =- ~q[v, (q)] .2w 2p
2l (}+18'

Insertion of (31) into (30) yields

4w [Imfi, (q}]'
~q ' [I-Rer„(q)]'+[I f, ,(q)]'

(31)

(so }

90

for the free total cross section. This expression
readily generalizes to any number of partial waves
and to the inclusion of nucleon spin. We invoke
p-wave, j = —,

' dominance in the resonance region

to specialize to
50

8w [ImI, (q)]
q [1—Ref, (q)]'+ [ImI, (q}]' '

or in terms of the phase shift

87t'
or(q) = ~ sin 5,(q).

(32)

(33) 0
IOO 200

By using the experimentally determined phase
shifts' in(33) and equating to (32}, we can deter-
mine the range and strength properties of a stan-
dard separable nonlocal potential.

B. The fitting procedure

We choose the Yamaguchi form

v(p)=voe ', (34}

where y is the inverse range of the interaction and

vp is its strength. In momentum space this trans-
forms to

1/2

vi(q) =2 —, (p. z)2 (35)

We fit the two parameters in v(p} by fixing the
energies" at which the 33 phase shift takes the
two values 90 and 45 . Using relativistic kine-
matics, ' we find

y=3. 91 fm '

vp ~-6.26~ 10 MeV, fm .

(35)

(37)

Figure 2 shows the resulting phase shift fit and

Fig. 4 shows the fit to the m'p total cross section.

C. The s-wave mock-up of the p-wave interaction

To simplify the kinematics in the meson optical
potential, the calculations in this article are done
with an s-wave pion-nucleon interaction [lo =0 in
expression (13)], whose form is chosen to fit the
p-wave phase shifts. ' Such an interaction ap-
pears complicated in configuration space, because
it must produce the effect of the centrifugal poten-

T~ {MeV) —Lob

FIG. 2. Comparison of the experimental 33-phase
shifts (Ref. 52) with the free fit described in the text.

tial that governs the actual lp ——1 phase shift.
However, in momentum space, we see from Eq.
(29) that the two Bessel transforms vo(k} and v~(k)

will produce the same phase shift if they are
related by

1
vo(k) = v, (k).

vg
(ss)

Of course, while such an s-wave interaction re-
produces phase shifts, it does not reproduce cross
section magnitudes, because the appropriate stat-
istical factor is missing.

D. The binding potential

The binding potential for this study is repre-
sented by a central Woods-Saxon well, given by

U(r) = Up

1+ exp
(s9)

with typical pa, rameters Uo=-57 MeV, R=r+
Fp=1 25 fm, A=16, a=0. 5 fm. This gives bound

energy levels at &~, ——-37.79 MeV, «» ——-22. 15
MeV, &@—-5.97 MeV, and &2, —-5.28 MeV.

V. CALCULATIONAL DETAILS

A. Approximations

To put the optical potential of Eq. (20) in a usable
form, simplified expressions for B„(LpL,Llp),



280 M. SILVER AND N. AUSTERN 2I

V'(LoL,Llo, s), and W& (s)s F (s) [Eqs. (21a)-
(21e)] are needed. [The following discussion is
also directly applicable to the three-body model,
Eqs. (19) and (15b)-(15d).] Calculational difficul-
ties are caused by the mixture of coordinates in
the nucleon (and nucleonlike) and pion wave func-
tions.

The use of an s-wave pion-nucleon interaction,
with lo ——m, =0, gives the first simplification. The
angular momentum (and its magnetic component)
of the one-nucleon excited nucleus ~M must equal
the total angular momentum (and its magnetic
component) JBR. Hence the sums over Mmo van-
ish in 8, V, and W. Second, the presence of the
short ranged v(p) factor in B, V, and W suggests
dropping the p dependence in smooth wave func-
tions, such as the bound nucleon orbitals: p is
dropped in both the radial and angular parts of
these wave functions. (A correction to this step
is difficult to derive and its effect remains unin-

vestigated. )
Third, we handle the remaining p dependence in

the integrands of B (LOL~), V„(LOL„s), and

W& (s)s F (s) by approximately factorizing the
complicated arguments of the wave functions that
appear in these expressions. %e follow a method
discussed by Nagarajan and Glendenning who ex-
ploit the exact factorization of the Born limits
of the wave functions (plane waves always factor-
ize! ). We demonstrate this method for the pion
wave function, for which {up to energy normaliza-
tion coefficients) the Born correspondence is

z 'F (z)-kj~(kz),

where z =R+ I/p. Multiply both sides by

and sum over 4M. This gives

(40a}

1/2 1/2
i'z-'F '(z}Y,(z) Y~k}-kP — i'q, (kz) Y,„(z)Y~k),

JBR 4 BR

where the right-hand side sums to k times the plane wave with the argument k' z =k' (R+ vp). The plane
wave readily factorizes. Re-expand each of the exponentials exp(ik R) and exp(ik vp) and integrate on

p. Under this angle integration the wave function becomes

I ~ I~ I I ~
~~II

A

~~J~
A ~ ~I i~

m

~ I I I I

t I 2 Im l

h
~l m

h1/2 1/2

dpi' — i z 'F (z)Y' (z)Y'„„(k)-k(2v) Q — i 'j, (kR)Y. . .(R)Y'*, (k)
WTt', l 77imi

l 1 im1 l imi

1/2
"I',,(k.k)v,', , (k) J dkvll. k

l2m2

The p integral on the right-hand side simplifies the l2m2 sums, and the k dependence identifies JN with
limq to give

(40b)

The appropriate reversal of the Born limit is to replace kjz(kR) by R F (R), so that the angle-averaged
factorization results are

and

(41b)

where z =s —vp in (41b). The accuracy of this pair of expressions is discussed in the next subsection.
Insertion of the three simplifications of this section-the s-wave interaction, dropping the p dependence

in the bound nucleon orbitals, and factorization —allows the radial p integrals and the remaining angle
integrals and summations to be done. [The radial p integrals are spherical Bessel transforms of v(p)
as defined by (26} whose wave numbers are explained in the next subsection. ] B, V, and W become

B (I,L,)=(—i) ' (—)R — ' . ' (L,L,OO(IO) JdRRO, , (R)O, ,(R)B (R) (k,), (42a)

(42b)
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B. Local WKB

The wave numbers k, and k, in expressions (42)
arise from the factorization approximations. This
procedure extracts p times the wave number of the
factorized wave function, either k, from g, ~ or k,eL)
from F, and it uses this wave number in the jp
function, which, in turn, is folded into v(p) to form
vo(k). The local WEB method recognizes that the
factorization method is applied independently at
each value of the complicated argument z of $
or Fz. Therefore, the appropriate wave numbers
are determined by the local kinetic energy at each
z rather than by the asymptotic kinetic energy.
If we omit the p part of z in determining the local
kinetic energy, the local wave numbers become

k, (s) =
@

{2(m„+m, )[f —U(s)]I '

and

(42a)

k, (R) = —{2m,[T,—UP'(R) Q' (48b)

where U(s} is the nucleon binding potential and
U&~' is the equivalent local optical potential for

and

sW~(s)s 'F'(s) =—(2I., + 1)[vo(k,)]' ~ g.~,(s) ~'F'(s),

(42c)
where factorization is used twice to arrive at (42c).

C. The elastic-channel equation

We now pull the pieces together. The contin-
uum energy integral is broken into a sum over N
bins of individual widths &&, We define

~~(s) = 2v'(2LO+ 1)[v,(k, (s))]'
~ y,~ (s) ~',

(2L0 + 1)(2L, + 1)

(44a}

where

x(L,L,oo ~zo)'tR(q„), (44b)

q., = —(2+(T, +~.— e))"'s
af

h, (LOL„s) = svo(k„(s))@ (s)g, , (s),

h (LOL&, R) =Rvo(k (R)}g~ (R}g,~ (R),

P" (LOL, ) = dRh~, (LOL„R)F (R),wg p

(44c)

(44d)

(44e)

so that the elastic-channel equation (20) becomes

the pion. A suitable explicit expression for UE"
is developed in the Appendix.

A numerical check of (4lb) for Lq =0 not only
demonstrates that the local WKB correction to the
momenta is essential to give an accurate portrayal
of the wave functions but that the accuracy is ex-
cellent even for very low energy wave functions.
Part of the reason for this is the averaging effect
of the angular p integral in (41).

[T,—tq(s)]F (s) =Q 'n, ~ (s)F (s) +QQ A~((LOL, )h (L0L), s)P (LOLq)
Kp

(45)

Equation (45) is the equation that we solve numer-
ically. The three-body model is also given by
(45) but: with aLO= ls only, L, =Z only. Reduction
of the optical potential to a more familiar form
(the so-called t-rho potential) is presented in the
Appendix.

The widths of continuum energy bins used in
Eq. (45} are not uniform. Although the resonance
function Gl is a rather broad function of e (see Fig.
3), which can be represented by coarse intervals,
finer bin widths are necessary to account for the
regions of rapid energy dependence of the continu-
um wave functions $,1,,

' for example, the E =4. 5
MeV region of the L ~

—3 wave function, whose
phase shifts show resonance behavior due to the
barely unbound 1f orbital. Table I gives the bin
structure chosen to account for all the 4 dependent
effects.

0

IQQ

E (Mev)

I

200

FEG. 3. Real and imaginary parts of the {dimension-
less) resonant function(R {E).
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TABLE I. The bin structure used to discretize the
nucleonlike continuum, labeled by &. The width 4& of
each bin is centered about the corresponding & value.

Bin Bin
number (MeV) (MeV) number (Me V) (MeV)

1

3
4
5
6
7
8
9

10
11
12

0.1
0.4
1.0
1.8
2.8
3.8
4.3
4.5
4.7
5.2
6.6
8.8

0.2
0.4
0.8
0.8
1.2
0.8
0.2
0.2
0.2
0.8
2.0
2.4

13
14
15
16
17
18
19
20
21
22
23
24

12
16
20
26
35
46
61
85

115
145
175
205

4

8
10
12
18
30
30
30
30
30

Scattering through the excited bound nucleon
orbitals is not included, because of numerical
instabilities. These instabilities are a conse-
quence of the complicated radial form of the pion-
nucleon potential for our artificial s-wave inter-
action, which contains a centrifugal repulsion
effect. This problem would not appear in the P-
wave calculation, because the meson-nucleon in-
teraction for that case is monotonic and entirely
short ranged.

D. Relativistic corrections

We adopt the relativistic Schrodinger equation
discussed by Goldberger and Watson. ' The chief
feature of their approach is to use a relativistic
kinetic energy operator for the pion projectile,
while treating the target nucleons nonrelativisti-
cally. Because our calculations are in configura-
tion space, we use semiclassical substitutions to
reduce kinetic energy terms that are of higher
than second order in the momentum operator.

This procedure is applied to the coupled equa-
tions (5a) and (5b) and to the free pion-nucleon
scattering analysis that determines the potential
parameters. We mention here that our optical
equation (45) becomes

d J(J+ 1)

2 ~ 2+T)r r poyt( )g Ji( i)
C

where T, is the laboratory bombarding energy and

ko —(T, +2m, c T,)/8 c (4V)

is the corresponding momentum. U~' is the par-
tially local, partially nonlocal optical potential
defined by Eqs. (44), with q„now given by

(48)

where & =T, +e, — e; +m,c, and &/t1+(&/m„c )]
is used instead of the reduced mass in the impli-
cit Green's functions. We note that (46) is identi-
cal to the Klein-Gordon equation, where the poten-
tial is taken to transform as the fourth component
of the momentum-energy vector and (as in this
procedure) the quadratic term in the potential is
dropped.

Besides these modifications to the dynamical
differential equations, the kinematics used to de-
rive the optical potential need relativistic correc-
tions. In particular, we replace the mass ratio
v by

m.g C
2

EI + El
g N

(48)

where E,' and E& are the total energies of the pion
and nucleon, determined in the mN center-of-mass
frame, and k, defined by Eq. (43b) is relativisti-
cally modified, see Sec. VI of Ref. 38, for com-
plete details.

VI. RESULTS AND DISCUSSION

The three-body model expresses the scattering
of a pion by a single bound nucleon; when we con-
sider scattering by a nuclear target all the nu-
cleons can affect the meson simultaneously. This
leads to very different results for the location of
the total cross section maximum. With this
warning, we begin this section with a detailed
presentation of the results for the three-body cal-
culation. An attempt is made to understand how
nucleon binding changes the &N 33-resonance.
This is followed by a look at the &- 0 results and
a discussion of why they differ from the single
bound nucleon example. These results and dis-
cussions emphasize total cross sections (and their
elastic and reaction constituents). We end with a
brief presentation of elastic differential cross
sections.

A. Three-body model: Results

Here, a pion is scattered by a 1s nucleon bound

by 37.8 MeV in a Woods-Saxon well, fitted to the
properties of ' O. Figure 4 displays the total
cross section for this model, along with the free
fit described in Sec. IV. Three changes from the
total cross section for a free nucleon are evident:
There is an upwards shift of the scattering peak
by 40 MeV, there is a reduction of the magnitude,
and there is a gentle falloff above the peak energy.
We immediately recognize that these effects are
not independent. In particular, the reduced cross
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FIG. 4. & 'p cross sections versus pion bombarding
energy. The experimental points are halved in magni-
tude. The free fit is described in Sec. IV. The total
cross section for the three-body model is a fit to
twelve calculation points, using a cubic interpolation
formula.

section magnitude is primarily a consequence of
the upwards displacement of the peak, because of
the X' coefficient in the theoretical expression.
Elastic scattering accounts for about 10 j~ of the
total cross section across the resonance region.
The lowest partial waves contain most of the elas-
tic contributions. Further discussion of this topic
is given with the 0 results, where the elastic
behavior is more significant.

Figure 5 gives a breakdown of the total cross
section with respect to the angular momentum J
in the partial wave expansion of the elastic-chan-
nel wave function +(s). Although higher partial
waves peak at higher bombarding energies, all
waves, even the strong J= 1 wave, peak above the
free resonance energy. The J=3 cross section
is unusually strong. This effect is explained by
the next series of figures.

Detailed information about the dynamics of our
model is obtained by examination of the reaction
cross section, '

N

on=- z, ' 4v(2Z+ l) Q ImIX,P(P~) . (50)

This cross section is expressed in terms of quan-
tities defined by Eqs. (44), with the bin index i
indicating all relevant subscripts on ~» and P»,'

P; is defined by (44e), with h; instead of h, . Be-
cause P,P*, is nearly real and positive, different

FIG. 5. Contributions of individual partial waves to the
three-body model total cross sections.

ranges of & contribute almost independently in Eq.
(50). This property enables us to identify the
summand of Eq. (50) as an approximate differen-
tial reaction cross section do„/dc that indicates
through which intermediate nuclear states the
reaction proceeds. Figures 6-8 are graphs of the

lO —
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FIG. 6. Contributions of individual partial waves to the
reaction strength do+/d& for the three-body model at
T,= 180 MeV. There is a cubic interpolative fit to the
twenty-four ~ bins.



284 M. SILVER AND N. AUSTERN 21

IO

= 220 Me'I/

I I I IIIH. 10 — I l I I i llli

= 300 Mev

I I I I I III I I I I I I ff.

C
Op
1

(A

C0
LJ
O

K

I I I I I III

I

0.0 I

O. I

6 (MeV)

/ %1

/
J=2

/
I

'/

J=l
l

L
O. l =

I
J-0 w.

/ l

t

/ l

l

/: I l

I I I I I III I I I I I I II

10 IOO

QP

I—
JD
E

O
C
QP

(R

C
Q.I:

0.0 I

O. I

/
I

/
I

/

/

/
I

/

I

: ~J=3

J=2

/. .
J-0

/

/

I

l

/

I I I I I III I I I I I III

IO IOO

e (Mev)
FIG. 7. Same as Fig. 6, T, = 220 MeV. FIG. 8. Same as Fig. 6, T, = 300 MeV.

approximate dos/de.
The J= 1 and 3 peaks at 1 and 4. 5 MeV in Figs.

6-8 reflect the structure of the low lying nucleon
spectrum. These peaks arise from the barely
unbound 2p, lf states of the Woods-Saxon binding
potential. However, the humps or plateaus in all
partial waves at higher E are caused by the pion-
nucleon resonance. Contributions to the reaction
cross section from low energy (e ( 10 MeV) and
high energy (e & 10 MeV) nucleon excitations are
obscured by the logarithmic energy scale in Figs.
6-8, therefore they are summarized in Table II.

Except at low pion energies, most of the contri-
butions at low nucleon energies come from the
1f, 2P spikes.

Figures 6-8 and Table II show that meson scat-
tering receives significant contributions both
from low excitation energies that are influenced
by nuclear structure effects and from higher en-
ergies that correspond to free nucleon recoil.
The importance of structure effects suggests sig-
nificant corrections to an impulse approximation
approach, in which free nucleon recoil is regarded
as dominant.

B. Three-body model: Discussion

(51)

The energy dependence of the total cross section for the three-body model is obtained by solving the
elastic-channel Schrodinger equation (45) for a single bound target nucleon. Equation (45) takes the re-
duced form

[T,—t~(s)]E (s) =2m' v, (k, (s))'
i g()(s) i'F '(s)

+ ding;p k, s (R T, +Ep —& s$p s $,gs dRvpk&R RPp R $&gR+ R

TABLE II. Partial reaction cross sections (mb) for the three-body model are tabulated by
low («10 MeV) versus high (& & 10 MeV) excited nucleon contributions. The numbers pre-
sented are integrals of the do+/d& curves shown, for example, in Figs. 6-8 over the appro-
priate & regions. T, is the laboratory pion bombarding energy (MeV).

100 120 140 160 180 190 200 220 250 300

oR (E & 10)
oR(e & 10)

oR(& & 10)
fTR

0.6
0.2

2.6
1.0

8.8
4.4

19
15

23
33

21
42

18
49

13
56

8 3.5
58 54

78% 73% 67% 57% 41% 33% 27% 19% 11%
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[T,—t~(s)]Fy(s) =2v ty(T, —p:„' k„k,)
~
gp(s) ~ F~(s) .

(54)

In this limit the nuclear ground state wave func-
tion gp(s) has small amplitude and very long range.
The arguments in tz are center- of- mass quanti-
ties; in particular, ~, is the nucleon energy at
which the momentum of the excited nucleon
matches that of the pion, therefore T, —&, is the
collision energy in the center-of-mass system.
The amplitude t~ does not contain any projection
operators that restrict its effect to particular
partial waves, therefore the long range of the
effective optical potential in Eq. (54), determined
by $p(s}, implies that many partial waves contri-
bute to laboratory frame meson scattering. And
because the free optical potential is very smooth,
the energy dependence of 0 is dominated by that of

v(k, )v(k, )
,(T;;k„k,)= '(, ' ).

r
(55)

In turn, the energy dependence of t, is dominated
by the denominator of (55), and it peaks at T;™
= 139 MeV. The corresponding free nucleon peak
in the laboratory system is at T, = 176 MeV.

The exact amplitude t& of the free nucleon limit
has the same I+%(E) structure that emerges ap-
proximately in the right-hand side of Eq. (51}. It
is therefore of interest to discuss Eq. (51) by
replacing the right-hand side of that equation by

The results of Sec. VIA were obtained from this
equation. The energy dependence in Eq. (51) not
only enters through the parameters T, on the left-
hand side (LHS), it also occurs in the resonance
function @ and in the local momenta of the interac-
tion matrix elements vp(k, (s)) and v, (k,(R}). The
function% has a simple pole structure, which we
recall from Eq. (18) as

1I+st(E) —I(E) '

with a consequent strong peak in 6t(E) at E„~
= 139 MeV, as seen in Fig. 3. [The quantity I(E)
is defined in Eq. (24). j Evidently Si(E) in Eq.
(51}has the argument

E=T + &p —E.

The. 1+st(E) form of Eq. (52) tends to appear
approximately on the right-hand side of Eq. (51),
when the two terms of that expression are com-
bined.

Discussions of expressions like Eq. (51) are
usually based on approximate comparisons with
related expressions for free pion-nucleon scat-
tering. The free nucleon limit of Eq. (51) is ob-
tained in the Appendix as

the expression of Eq. (54), but with tz substituted
by a "bound t amplitude" t, derived from t~ by a
suitable alteration of the energy variable.

In the exact equation (51) the argument of dt(E)
contains the excitation energy variable &. A plau-
sible t~ is obtained by replacing this & by an aver-
age ~, so that the energy argument of t, becomes

T +Ep —&.

In our three-body model fp ——-38 MeV and & is
positive. We therefore expect the peak of t, to
occur at a larger value of T, than in the free nu-
cleon case, in agreement with the accurate solu-
tion of Eq. (51). More quantitatively, the energy
argument in t& is T, —&„where E, is the recoil
energy discussed previously. Therefore the ener-
gy shift between the arguments of tz and t, must
be

—Cp+ E,

In the vincinity of the resonance, this estimate
for the upwards shift of the peak becomes (37 —38
+ 25} MeV, and it predicts a cross section maxi-
mum at T, =202 MeV. In this estimate we use
& =25 MeV, derived as the median excitation en-
ergy for contributions to the reaction cross sec-
tion in the resonance region.

The energy dependence of the elastic-channel
wave function F (s) is also influenced by the inter-
action matrix elements vp(k (s)) and vp(k, (R)). Be-
cause these matrix elements tend to be proportional
to the arguments k, and k„which are WEB local
momenta in the wave functions $, (R) and F(s),
respectively, the matrix elements must be sensi-
tive to effects that influence those wave functions.
In the three-body model we are especially con-
cerned with vp(k, (s)), because the magnitude of
k, (s) in the nuclear interior is increased by the
binding potential that determines t)i, (R). This
effect greatly increases the effective strength of
vp(k, (s)) at small &, and it therefore enhances the
role of low 4 in our calculation. Larger values
of the median excitation energy & would have been
obtained in the absence of this local momentum ef-
fect.

Thus the influence of the binding potential on the
excited states g, (R) tends to reduce the upshift
of the cross section peak. This seems to be re-
lated to the cancellation of the potential in pertur-
bative investigations"'" of t, .

Because local WEB is an effect of the nuclear
interior, it should be less important in the 0
calculation, where the cooperation of all the target
nucleons leads to strong absorption and reduces
scattering from the nuclear interior. On the other
hand, the absorptive effect for ' 0 may be counter-
balanced by the increased shift of the local mo-
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mentum in the vp(k, (s)) matrix element, caused
by the stronger meson optical potential. Thies"
has noted the dependence of binding corrections
on nuclear density.

Centrifugal repulsion also suppresses the nu-
clear interior, therefore we expect the effect of
local WEB to be less important for higher partial
waves. It is interesting to see in Figs. 6-8 how

the reaction strength peaks at higher & values as
J increases, gradually approaching the asymp-
totic momentum matching value E,. This con-
tributes to the effect (Fig. 5) that total cross sec-
tions for higher partial waves peak at progressive-
ly higher bombarding energies.

Naturally, the cross section for higher partial
waves is also displaced upwards in energy be-
cause of elementary centrifugal barrier effects in
the elastic channel. This is an indirect conse-
quence of the binding potential, in the sense that
binding has caused the target nucleon to be spati-
ally localized.

In summary, the peak cross section for our
three-body model is substantially shifted upwards
in energy. Although in disagreement with some
other recent work, ' this result does resemble
that of Wakamatsu ' and that of A mado, Lenz, and
Yazaki in their peripheral study of the impulse
approximation. ' Our upwards shift is caused by
the localization of the target nucleons and by the
greater influence of the binding potential in the
l'p(r) ground state than in the g, (R) excited states.
It is interesting that in the nuclear matfer limit
of our model, the effects of binding tend to cancel
out of the calculation. ' Perturbative methods
used by other authors may imitate this cancella-
tion.

Further interpretations of the results can be
based on a local equivalent of the optical potential
in Eq. (51), the so-called "trivially equivalent
local potential" of Percy and Buck, ' defined by

f drU'-, (s, R)F (R)
(55)

where U, includes both the local and nonlocal
parts of the optical potential on the right-hand
side of Eq. (51). This trivial local potential tends
to have poles, because the nonlocal potential in the
numerator allows the zeros of the numerator to be
displaced from those of the denominator. From the
widths of these poles we estimate that the meson
optical potential has a range of nonlocality of
about —,

' fm. We also find that the overall range
of the trivial local potential is nearly the same
as that of the nuclear density, despite the presence
of continuum intermediate states, which extend to
large radii. Such trivial local potentials were
computed' for the three-body case and for the

w-' 0 case. Figs. 9(a) and 9(b) are typical ex-
amples.

C. n- 0: Results

The optical potential for 0 is a sum of contri-
butions from the interactions of the meson with
individual target nucleons, as is typical of first-
order multiple scattering theory. However, the
scattering caused by this optical potential is a
nonlinear consequence of its constituent parts,
therefore important new effects must appear.

In Fig. 10 we see that the peak of the total cross
section for the O target is shifted some 53 MeV
below the single bound nucleon result; the peak
is even 13 MeV below the free resonance position.
Thus although binding causes an upwards shift of
the peak in the cross section, the presence of
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many bound nucleons in the form of a nucleus
overwhelms the upshift. We address this differ-
ence in subsection D.

The principal new effect in Fig. 10 is that elas-
tic scattering plays a major role, unlike in the
three-body results. The elastic and reaction
maxima straddle the peak of the total cross sec-
tion, about $0 MeV apart. The total cross section
still shows a gentle falloff above resonance, an
effect attributed to the reaction cross section.

Figures 11 and 12 give partial wave breakdowns
for the calculated elastic and reaction cross sec-
tions. We notice that elastic cross sections em-
phasize lower partial waves than reaction cross

sections. As in the three-body model, higher
partial waves peak at higher energies and have
smoother high energy falloffs. However the oc-
cupied 1P nucleon orbital introduces a unit of
angular momentum that destroys the previous
one-to-one correspondence between J and the
angular momentum of the excited nucleon, there-
fore the partial wave breakdowns are less sensi-
tive to the nuclear structure of the 2p, 1f shell.

The dependence of reaction strength on the exci-
tation energy & was investigated, as in the calcula-
tions that led to Figs. 6-8 for the three-body
case. Here again the angular momentum of the
occupied 1P orbital complicates the interpretation,
as with the cross sections. We show Fig. 13 as
an example" of the dependence of the reaction
strength on &. Table III summarizes the relative
importance of the low energy (&10 MeV) versus
high energy (&10 MeV) regions of excitation.

D. n- 0: Discussion

Despite the increased elastic cross section, the
reaction cross section still is the largest part of
the 0 scattering. It remains subject to the con-
siderations discussed in subsection B for the
three-body model. Once again we expect the loca-
tion of the peak to be displaced upwards by a
binding correction to the energy argument in the
resonance function 6l(~). However, the average
binding energy that enters this shift must be de-
termined by both the 1s and 1p orbitals in '

Q,
giving ~(c', + 3e")=26 MeV, instead of the previ-
ous 38 MeV. Thus the upward shift due to binding
is less than in the three-body model.

There is an important downward shift of the
reaction cross section, which occurs because
throughout the broad energy region affected by the
resonance the few partial waves that interact with
the target nucleus are totally absorbed. In this
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"plateau" region the reaction cross section is
determined by the meson wavelength and the nu-
clear radius, and it becomes

OR =mA. 2J+ 1 =m A+X 2.

The presence of W causes this black disk cross
section to be larger at the low energy end of the
plateau. "'"

Different considerations apply to the elastic
cross section for r-' 0 scattering. We may ask
first, why is elastic scattering now comparable
in magnitude to reaction scattering? Second, why
does elastic scattering peak 50 MeV below the
maximum of the reaction cross section? And
third, why does elastic scattering exhibit a sharp

6 (Mev)
FIG. 13. Contributions of the possible nucleon coup-

lings to the reaction strength do@(LO,L,J)/dE for ~- 0
at T, = 190 MeV, J= 2. Here J= ~Q+ ~, L, and L& are
the ground state and excited nucleon angular momenta,
respectively.

falloff above resonance?
(i) The enhanced importance of elastic scatter-

ing is immediately a consequence of the nonlinear
relation between the optical potential and the cross
section. The optical potential for 0 is approxi-
mately 11-fold stronger than for a single nucleon
(for a & projectile we get 8 from the protons and

from the neutrons). This strengthening of the
already strong absorptive part of the optical po-
tential increases the nearly saturated reaction
cross section by only a factor of about 5. How-

ever, the associated elastic cross section for a
single nucleon is very small, so it is understand-
able that the increase for 0 is nearly the Born
ratio,

ck("0) U~t( '0) '

os(p) Uoy, (P)

What was a few milliba. ms (&a) out of seventy
millibarns (or ) for the single bound nucleon tar-
get, is now half of several hundred millibarns for
the 0 target.

(ii) The lower energy peak in the elastic cross
section is associated with a maximum of the real
part of the optical potential at that energy. This
energy is well below the region of maximum
strength of the imaginary optical potential, there-
fore strong absorption does not mask the role of
the real potential. There are two real terms in
the optical potential. While the local term is a
real, slowly varying, always attractive, function
of pion energy, the real part of the nonlocal term
varies sharply with energy, roughly as Rest(E).
As we see in Fig. 3, Rest(E) resembles the deri-
vative of Imdt(E) and so changes from attractive
to repulsive as E goes through resonance. The
largest values of Reel(E) are displaced from the
peak of Im(R(E) by approximately the half width
of the resonance, the 50 MeV gap between the
elastic and reaction peaks reflected in Fig. 10.
We note finally that the attractive peak of Rest(E)
at low energy is in phase with the local potential,
but the repulsive peak at high energy is largely
canceled by the local potential.

TABLE QI. Partial reaction cross sections (mb) for 7I- Q are tabulated by low («10
MeV) versus high (e & 10 MeV) excited nucleon contributions. The numbers presented are the
integrals of the do+//d& curves shown, for example, in Fig. 13 over the appropriate & re-
gions. T, is the laboratory pion bombarding energy (MeV).

80 100 120 140 160 170 180 190 220 300

o~(«10)
og(& & 10)

10
3

33
18

72
62

106
138

ill
223

99 82
255 281

66
300

35 12
319 280

(r~(«10)
75% 65% 54% 43% 33% 28% 23% 18% 10% 4%
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(iii) The rapid decrease of the elastic cross
section at high bombarding energies is probably
related to the interference mentioned above, be-
tween the attractive local part of the real optical
potential and the repulsive part of the nonlocal
real potential at high T,. Graphs of the trivial
local potential for the 0 case show the conse-
quent reversal of the sign of the real optical po-
tential as the bombarding energy passes through
the resonance region. ' Sedlak and Friedman
attribute some of the downward displacement of
the cross section peak to this reversal of the real
potential, using the argument that the attractive
potential below resonance enhances the absorptive
cross section in that region of energy.

Another physical effect produced by the attractive
real part of the optical potential at low bombarding
energies is an increase of the meson kinetic en-
ergy in the nuclear interior. This must contri-
bute to the downwards displacement of the cross
section peak.

E. Differential cross sections

Figure 14 displays elastic differential cross
sections for &- 0 scattering, along with experi-
mental data points. The qualitative agreement
between theory and experiment, in spite of our use
of an l =0 pion-nucleon interaction, should pro-
bably be attributed to the essentially diffractive
scattering of mesons by "0.

VII. CONCLUSIONS

One result of this study is the derivation of a
parameter free pion-nucleus optical potential.
It contains local and nonlocal aspects. The local
term is real, it refers to a struck nucleon that
remains in its original occupied orbital. The non-
local term is complex and partial wave dependent,
it describes the intermediate excitation of the
struck nucleon into the continuum. The overall
range of the potential is roughly that of the nu-
clear single-particle density, the nonlocality is of
the order of —,

' fm. The pion and nucleon momenta
in the optical potential are determined locally by
the WEB method described in Sec. VB.

Our investigation with this optical potential
shows that scattering of a pion by a single bound
nucleon causes an upwards shift of the peak cross
section by about the amount of binding. Much of
this effect can be attributed to a simple change
in the available system energy. However, binding
also affects the cross section through the inter-
action matrix elements, and these are influenced
in a sensitive fashion by the local momentum of
the intermediate nucleon. This effect tends to
oppose the binding energy shift, however, it is

I I I I 1 1 I 1 I I I I I I I I I

2
IO

2
lO =

0
IO =-
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0 40 80 l20 l60

HI h(deg)
FIG. 14. Calculated differential elastic cross sections

for m- 0 at T, = 120, 165, and 250 MeV. Data points
Q,ef. 63) for ~+-~80 at T, = 114, 163, and 240 MeV
(7t — 0 not significantly different). All quantities are in
the laboratory frame.

much weaker.
The complicated spectrum of intermediate states

that contribute to the "bound t amplitude" t, in our
three-body calculation suggests that impulse ap-
proximations can be very misleading. Important
contributions to t, are obtained not only at the
large nucleon energies 4 produced by recoil from
the incident meson, but also at low E values,
where there are resonances that affect particular
partial waves. Although less explicit analyses
do not encounter our low & effects, we note that
the angle dependent intermediate state energies
in some recent momentum space approxima-
tions ' ' ' for t, would correspond in our30 y 32 g 33 ~ 35 37

approach to the presence of a large range of &

values.
When several bound nucleons are combined to

form a nucleus, the maximum of the total cross
section is at a lower energy than the peak of the
free 33-resonance. This down shift, within the
rather broad width of the 33-resonance, is caused
by nonlinearities in the simultaneous scattering
of one meson by several target nucleons. For
example the saturated absorptive effect of the
optical potential gives rise to a plateau tilting ~
correction in the reaction cross section. But the
main difference is caused by the real part of the
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optical potential. The very fact that the real
potential is weak in the three-body model means
that its importance relative to the imaginary po-
tential tends to be enhanced by the number of
nucleons that are present in a many-nucleon tar-
get.

The strength of the nonlocal real part of the op-
tical potential is concentrated away from the ab-
sorptive peak, in the wings of the 33-resonance
region, and it changes from attractive to repul-
sive as the bombarding energy passes through
the free resonance. Hence, the nonlocal real part
and the smooth local real part of the optical po-
tential interfere constructively below the free
resonant energy and they interfere destructively
above resonance. This causes a large downwards
shift of the cross section maximum.

The conclusions discussed above should not de-
pend strongly on the special assumptions of our
analysis. Rather, they are primarily determined
by nuclear structure or strong absorption, and by
the great width of the mN resonance. Careful
introduction of local momentum values is also
necessary. However, althoughthe artificial l =0
m& interaction in our preliminary calculation
probably does not produce misleading total cross
sections, further work with a more physical l = 1

interaction is in progress. The l =1 interaction
has a more reliable short ranged behavior in con-
figuration space, and this will allow the inclusion
of bound intermediate states g, that are omitted
from the present calculation. The accuracy of
the more basic approximations introduced in Sec.
II is difficult to assess, despite numerical tests.
However, these approximations are all based on
the short range of the ~+interaction, perturbation
expansions are avoided. It was already pointed
out in Sec. VI that our avoidance of perturbation
methods is a considerable departure from previ-
ous work.

L. Rosen and the Los Alamos Meson Physics
Facility enabled several of these discussions to
take place. We thank D. M. Butler for his in-
valuable assistance in preparation of the figures.
Research support was provided by the National
Science Foundation.

)[deq„, (s)P,'~, (&) = (A 1)

where we extend the sum to include the occupied
orbitals, reduces the optical potential in (45) to

U' '(s) = g 2v (2L + 1)v (k,)
Np

x 1+g ' (L, ,L,,OO~ZO)'

xdt(T, —~)vo(k, ) y~ (s) ~'

(A2)

APPENDIX: OPTICAL POTENTIAL LIMITS

In this appendix we consider two limits of the
optical potential of Eq. (45). Both these limits-
the closure limit and the free binding limit —coal-
esce the local and nonlocal aspects of the optical
potential into a single local term. The closure
approximation reduces the optical potential in
(45) to the "t rho" fo-rm, which can be obtained by
an impulse approximation approach; the free
limit of (45) is a special case of the f-rho poten-
tial with a specific closure energy.

In the closure approximation the E parameter in
Eq. (45) is replaced by a constant, interpreted as
an average nucleon excitation energy, then the
intermediate nuclear states are summed. The
energy variable e appears in Eq. (45) in (R(T, + e,
—&) and in vo(k, (s)), besides the nucleon wave
functions $,L, We replace T, + E, —E, by T, —E

and k, by k, . Completeness,

ACKNOWLEDGMENTS

This study was begun at the University of Wash-
ington where N. A. spent a sabbatical year as a
visiting professor and M. S. was a visiting gradu-
ate student. We are grateful for the hospitality
of the U. W. Physics Department and for useful
discussions with G. A. Miller and E. M. Henley.
N. A. acknowledges a discussion about three-body
models with A. W. Thomas. We are grateful to
C. Schmit for copies of articles by the orsay
group and a copy of his unpublished thesis. E. R.
Siciliano graciously provided some unpublished
scattering calculations. Discussions with M. B.
Johnson, F. Tabakin, and C. M. Vincent are also
gratefully acknowledged. The hospitality of Dr.

Definition (18) for & can be written as

1+dt(T, —e) =, 1
1 —Ip T, —q

(As)

where 10 is defined by Eq. (24). The t amplitude
for the s-wave vN interaction, see Eq. (28), is

f(T, —v.; k„k,) = vo(k, )vo(k. )
1 —Io(T, - e) '

(A4)

where, for simplicity, we drop the local momen-
tum k,(s) in favor of the asymptotic k, . The f &

sum over the parity Clebsch-Gordan coefficients
is a special case of the completeness condition,
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so that (A2) is

U"'(s) = 2v t(T, —'; k„k,) Q (2~0+ 1) I C~ (s) I'.
el, o

(A5}

The sum over a extends over neutrons and pro-
tons and over both spin states. These are replac-
ed by the numerical multiplier (4/A)(Z+N/2),
where S is the number of protons and here N is
the number of neutrons. The sum for doubly
closed shell nuclei is thus restricted to spatial
wave functions only. The nuclear single-particle
density is identified as

p„„., (s) =—„g(u,, +1) I y.„(s)~', (As)
aLO

with normalization f0 ds s pN„„(s) =1, so t~t
(A5) becomes

(A7)

This expression is consistent with usual momen-
tum space approaches.

The above approximate local potential is applied
in Sec. V for the calculation of the local momen-
tum k,(s) by using a real equivalent defined by

~"'(s) =-
I
~"'(s) I, (As)

with e in (A7) taken to be the average of the bind-
ing energies.

We now turn to the free binding limit, already
described briefly in Sec. II. Here, the binding
energy approaches zero and the ground state nu-
cleon wave function becomes shallow, with an ex-

tended range, much larger than the range of the
binding potential. Because binding is weak and
the optical potential is shallow and smooth, the
local momenta k, (s) and k,(s) are replaced by
their asymptotic values and (45) is specialized to
its single- nucleon form, aL 0

—1s = 0, L ~
—J. Be-

cause the ground state nucleon wave function is
smooth and the continuum nucleon wave function
is nearly free, we take the Born limit for E (R}
in the nonlocal part of (45). Then the nonlocal
integral

becomes

dna~ u, a) y, ~)q,' a)z' ~)

P' "vo(k, )g, (s) ~(k, —k, ), {Ag)

where the delta function is caused by momentum
matching between I' and g, ~. The E integral in
(45) changes the v, (k, ) into a vo(k, ) and the g, '(s)
into a E (s}. This yields the free limit elastic
Schrodinge r equation

[T,—t~(s)]F (s) =2v'tt(T;'; k„k,) i go(s) i'Et(s),
(Alo)

where we have used (AS) and (A4). The energy
argument of t&, T, + &0 —E, becomes T,™= T,

the &N center-of-mass frame pion energy.
Here E, is the nucleon energy at which the pion
and nucleon moments match. The v in (43b) im-
plies that k, in (A10) is also a center-of-mass
frame quantity. We notice that Eq. (A10) for the
free binding limit is immediately obtained from
(A5) if f, is the closure energy.

~Some reviews are (a) M. M. Sternheim and R. R. Silbar,
Annu. Rev. Nucl. Sci. 24, 249 (1974); (b) J. Hufner,
Phys. Rep. 21C, 1 (1975); (c) R. Barrett and D. Jack-
son Nuclear Sizes and Structures (Clarendon, Oxford,
1977), Sec. 10.4.1; (d) Meson-Nuclear Physics-1976,
proceedings of the International Topical Conference on
Meson-Nuclear Physics, Pittsburgh, edited by P. D.
Barnes, R. A. Eisenstein, and L. S. Kisslinger
(A. I ~ P., New York, 1976).

2E. H. Auerbach, D. M. Fleming, and M. M. Sternheim,
Phys. Rev. 162, 1683 (1967); 171, 1781 (1968); M. M.
Sternheim and E ~ H ~ Auerbach, Phys. Rev. Lett. 25,
1500 (1970).

~M. Krell and S. Barmo, Nucl. Phys. B20, 461 (1970).
4J. P. Dedonder, Nucl. Phys. A174, 251 (1971); A180,

472 (1972)~

R. H. Landau, S. C. Phatak, and F. Tabakin, Ann.
Phys. (N.Y.) 78, 299 (1973); S. C. Phatak, F. Tabakin,
and R. H. Landau, Phys. Rev. C 7, 1803 (1973); R. H.

Landau, Phys. Lett. B57, 13 (1975); Ann. Phys. (N.Y.)
92, 205 (1975); Phys. Rev. C 15, 2127 (1977).
L. A. Charlton and J.M. Eisenberg, Ann. Phys. (N.Y.)
63, 286 (1971).

VM. P. Locher, O. Steinmann, and N. Straumann, Nucl.
Phys. B27, 598 (1971).

L. S. Kisslinger, R. L. Burman, J. H. Koch, and M. M.
Sternheim, Phys. Rev. C 6, 469 (1972).

H. K. Lee and H. McManus, Nucl. Phys. A167, 257
(1971).

~OE. A. Remler, Ann. Phys. (N.Y.) 67, 114 (1972).
L. S. Kisslinger and F. Tabakin, Phys. Rev. C 9, 188
(1974)~

E. Kujawski, Nucl. Phys. A239, 467 (1975).
D. I. Julius and C. Rodgers, Phys. Rev. C 12, 206
(1975).

~4R. A. Friedenberg and D. L. Weiss, Phys. Rev. C 14,
204 (1976).
M. Wakamatsu, Nucl. Phys. A312, 427 (1978).



292 M. SILVER AND N. AUSTERN 2l

R. Mach, Nucl. Phys. A258, 513 (1976).
~7D. J. Ernst, C. M. Shakin, and R. M. Thaler, Phys.

Rev. C 9, 1374 (1974).
~8L. C. Liuand C. M. Shakin, Phys. Rev. C19, 129 (1979).
~SW. R. Gibbs, A. T. Hess, and W. B.Kaufmann, Phys.

Rev. C 13, 1982 (1976); W. R. Gibbs, B. F. Gibson,
A. T. Hess, G. J. Stephenson, Jr. , and W. B. Kauf-
mann, ibid. 13, 2433 (1976).
D. Agassi and A. Gal, Ann. Phys. (N.Y.) 75, 56 (1973);
94, 184 (1975); D. Agassi, A. Gal, and V. Mandel-
zweig, ibid. 91, 194 (1975).
L. S. Kisslinger and W. L. Wang, Phys. Rev. Lett. 30,
1071 (1973); Ann. Phys. (N.Y.) 99, 374 (1976).
W. A. Friedman, Phys. Rev. C 12, 1294 (1975).
G. E. Brown and W. Weise, Phys. Rep. 22C, 279
(1975); E. Oset and W. Weise, Phys. Lett. B77, 159
(1978).

~4J. N. Ginocchio, Phys. Rev. C 17, 195 (1978).
2~T. Kohmura, Nucl. Phys. B36, 228 (1972).
J. R6vai, Nucl. Phys. A205, 20 (1973).
P. C. Tandy, E. F. Redish, and D. Bolle, Phys. Rev.
C 16, 1924 (1977).
C. Schmit, Nucl. Phys. A197, 449 (1972).

SM. G. Piepho and G. E. Walker, Phys. Rev. C 9, 1352
(1974).
E.R. Siciliano and G. E. Walker, Phys. Rev. C 13, 257
(1976).
J. P. Dedonder and C. Schmit, Phys. Lett. B65, 131
(1976).
J. P. Maillet, J. P. Dedonder, and C. Schmit, Nucl.
Phys. A271, 253 (1976).

3 J. P. Maillet, J. P. Dedonder, and C. Schmit, Nucl.
Phys. A316, 267 (1979).

~4K. K. Bajaj and Y. Nogami, Phys. Rev. Lett. 34, 701
(1975); Ann. Phys. (N.Y.) 103, 141 (1977).

35R. H. Landau and A. W. Thomas, Phys. Lett. B61, 361
(1976); Nucl. Phys. A302, 461 (1978).

36R. D. Amado, F. Lenz, and K. Yazaki, Phys. Rev. C
18, 918 (1978).

3~S. A. Gurvitz, J. P. Dedonder, and R. D. Amado, Phys.
Rev. C 19, 142 (1979).
M. Silver, Ph.D. thesis, University of Pittsburgh,
1979 (unpublished).
N. Austern, J. P. Farrell, Jr. , K. Kabir, and C. M.
Vincent, Phys. Rev. C 18, 1577 (1978).
F. Myhrer and D. S. Koltun, Phys. Lett. B46, 322

(1973).
~D. I. Julius, Ann. Phys. (N.Y.) 87, 17 (1974).

42E. Kujawski and M. Aitkin, Nucl. Phys. A221, 60
(1974).

+F. Myhrer, Nucl. Phys. A241, 524 (1975).
I. R. Afnan and A. W. Thomas, Phys. Rev. C 10, 109
(1974).

45A. W. Thomas, Nucl. Phys. A258, 417 (1976).
46D. D. Brayshaw, Phys. Rev. C 11, 1196 (1975).

R. M. Woloshyn, E. J. Moniz, and R. Aaron, Phys.
Rev. C 13, 286 (1976).

48E. M. Ferreira, L. P. Rosa, and Z. D. Thome, Phys.
Rev. C 16, 2353 (1977).
N. Giraud, Y. Avishai, C. Fayard, and G. H. Lamot,
Phys. Lett. B77, 141 (1978); Phys. Rev. C 19, 465
(1979).
F. Lenz, Ann. Phys. (N.Y.) 95, 348 (1975).

~~M. Hirata, F. Lenz, and K. Yazaki, Ann. Phys. (N.Y.)
108, 116 (1977).
D. H. Herndon, A. Barbaro Galtieri, and A. H. Rosen-
feld, LRL Report No. UCRL-20030, ~N, 1970 (unpub-
lished), CERN Experimental Solution.
F. Tabakin, private communication.
M. A. Nagarajan, Nucl. Phys. A196, 34 (1972); N. K.
Glendenning, and M. A. Nagarajan, ibid. A236, 13
(1974).

~5M. L. Goldberger and K. M. Watson, Collision Theory
(Wiley, New York, 1964), Sec. 6.8.
John M. Blatt and Victor F. Weisskopf, Theoretical Nu-
clear Physics (Wiley, New York, 1952), Sec. VIII. 2.a.

5~M. Thies, Phys. Lett. B63, 39 (1976).
~ Mikkel B. Johnson, private communication.
59F. G. Percy and B. Buck, Nucl. Phys. , 32, 353 (1962).

T. E. O. Ericson and J.Hiifner, Phys. Lett. B33, 601
(1970).
J. E. Sedlak and W. A. Friedman, Phys. Rev. C 16,
2306 (1977).

6 A. S. Clough, G. K. Turner, B. W. Allardyce, C. J.
Batty, D. J. Baugh, W. J. McDonald, R. A. J.Riddle,
L. H. Watson, M. E. Cage, G. J. Pyle, and G. T. A.
Squier, Nucl. Phys. B76, 15 (1974).
J. P. Albanhse, J.Arvieux, E. Boschitz, C. H. Q.
Ingram, L. Pflug, C. Wiedner, and J. Zichy, Phys.
Lett. B73, 119 (1978); Q. Ingram, E. Boschitz,
L. Pflug, J. Zichy, J. P. Albanese, and J. Arvieux,
ibid. B76, 173 (1978).


