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The nucleon-nucleon interaction, originating from the phenomenological quark-quark interaction: one
gluon exchange with an ad hoc confining potential, is rigorously derived. The coupling constants of this
potential and the quark masses—which determine the strengths of the NN potentials in the various
channels—had been previously reliably determined from the masses of the s-wave baryons. Two
distinguishing features of this study are the reliable nature of the coupling constants and quark masses used
and the inclusion of the detailed radial dynamics of quarks. The main results are as follows: (i) exchange of
colored quarks among other things leads to short-range strongly repulsive central NN potentials in the odd
channels alone, i.e., it yields the saturation property of nuclear forces; (ii) the spin-orbit (tensor) potential
between quarks goes over to the spin-orbit (tensor) potential between nucleons; (iii) both these spin-orbit
and tensor potentials between nucleons are found to have the correct signatures but they are very weak; (iv)
there is insufficient attraction in the NN potentials in the intermediate range, so that the colored quark-
exchange mechanism is not adequate to keep the deuteron bound. The NN potentials derived from one
gluon exchange with an ad hoc confining potential are compared finally with the corresponding

phenomenological ones.

NUCLEAR STRUCTURE NN interaction from nonrelativistic quantum chromo-
dynamics. Quark exchange, spin-orbit and tensor potentials, short-range re-
pulsive core.

I. INTRODUCTION

The problem of the nucleon-nucleon (NN) inter-
action has engaged the attention of numerous
physicists over the last five decades; neverthe-
less a satisfactory theoretical understanding
encompassing all its features has not yet
emerged.»? This interaction between two nucle-
ons, at low energies (<400 MeV projectile energy)
can be imagined to be mediated by a nonrelativis-
tic potential. The use of a potential is justified
provided only low energy NN collisions are con-
sidered, and moreover, such a potential descrip-
tion of the interaction is both intuitively appealing
and familiar through its long use in classical
electrodynamics and gravitation. At higher ener-
gies however, such a description—being unable
to cope with the phenomenon of creation and anni-
hilation of particles—has been superseded by a
field theoretic or a dispersion-theoretic descrip-
tion of the interaction. The field-theoretic de-
scription of the interaction is the most general
one, and the potential description can be derived
from the former, in particular from the con-
structs of vertex functions and propagators, in
the nonrelativistic limit. The NN interaction has
been described in all three languages mentioned
above appropriate to the energy of the colliding
nucleons. But in this study attention will be con-
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fined solely to the potential description, valid at
low energies.

The interaction between nucleons observed at
low energies obviously has its genesis in the
strong-interaction dynamics of hadrons.»®> Novel
strides in strong-interaction dynamics have,
understandably, given rise to corresponding ones
in the NN interaction. The meson-exchange NN
potentials and the reggeon exchanges are striking
examples.®* In recent years the spectacular
success of the non-Abelian color gauge field
theory in explaining hadron spectra (especially
the spectra of the charmed mesons) suggests that
the successful models of the new strong-interac-
tion theory of quantum chromodynamics (QCD) be
brought to bear upon this long standing problem
of the NN interaction. )

The pertinent question now is this: What exact-
ly is lacking and unsatisfactory in the present
understanding of the NN interaction at low ener-
gies? At a phenomenological level, there is a
fairly reliable description of the NN interaction.
The most modern of such descriptions use, for the
NN interaction, a sum of one-meson—exchange
potentials.®* The forms of these meson-exchange
potentials, as obtained from the nonrelativistic
reduction of meson field theory, are employed in
these descriptions, and often the meson-nucleon
coupling constants are determined only from a
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fit to the phase-shift data.® Furthermore, all

the mesons belonging to the SU(3) octets and
singlets are included, thus tremendously compli-
cating the description of the phenomena. If one
admits of such a complex description, then a very
good y?2 fit to the phase-shift data is possible.*5
The reasons for considering such a phenomeno-
logical description unsatisfactory are twofold.
Firstly, a description involving numerous mesons,
notwithstanding its success, goes counter to the
aesthetic principle of simplicity. Secondly, the
objection that the meson-exchange potentials—
coming as they do from meson field theory—ig-
nore completely the quark constitution of hadrons
(which is now well established®7”) is unassailable.?

At the level of microscopic theories, only the
long-range part of the NN interaction can be said
to have been understood. And this is attributed
to the exchange of a single pion.»»? To explain
the hard core at very short distances, physicists
have had to invoke the exchange of the heavier
vector mesons p and w and ¢.*? To account for
every specific aspect of the NN interaction, a new
meson is brought in thereby making the theoreti-
cal framework very complex. Indeed, it would
be more satisfying to have a simpler theory of
the phenomenon, one in which all that which is
achieved here by meson nonets is achieved by
one or, at the most, two “elementary” quanta or
particles. In view of the tremendous success of
QCD or the potential models thereof,® the question
arises as to the possibility of deriving the NN
potential from this modern theory of strong-inter-
action dynamics. This question is not an entirely
new one and has been in existence for a couple of
years.”®™ The aim of this study is to provide
a satisfactory answer to this question. Quite
apart from these reasons, the new emerging
ideology of D. Robson in nuclear structure based
on the exchange of colored quarks'? suggests that
the NN interaction comes about precisely, through
the exchange of constituent quarks. The prelim-
inary success of a phenomenological bond model
based on colored quarks'?:!3 points to the fact that
there is some measure of truth in the concept of
quark exchange between nucleons.

Therefore, the objective of this study is to
‘calculate rigorously the NN potential which arises
from the exchange of colored quarks. The inter-
action between nucleons which arise in this way
can be likened to the van der Waals interaction
between atoms. Just as this van der Waals inter-
action stems from the Coulomb potentials between
electrons and protons, the present NN interaction
originates from the potential (arising from one-
gluon exchange with confinement) between colored
quarks which constitute colorless (i.e., color

singlet) hadrons. Because baryons are colorless,
the interaction between them, based on color, can
only be a feeble vestige of that between colored
quarks themselves, even as the interaction be-
tween two He atoms (which are electronically
saturated and ‘therefore “colorless”) is only a pale
vestige of the electrostatic interactions between
the constituent electrons and protons.?

The theoretical framework employed here can
be dubbed the one-gluon exchange with an ad hkoc
confining potential (OGEC) model. The precise
meaning of this terminology will become clear in
Sec. IIA. The starting point is the quark-quark
(gq) phenomenological interaction, used by
De Rfjula, Georgi, and Glashow,® together with
an ad hoc confining potential. The calculation of
the potential between two clusters of three quarks
each is then performed more or less along the
lines of the resonating group method of Wheeler.*
But in order to carry out this calculation, it be-
comes necessary to determine the quark masses
and coupling constants in a reliable way, for the
strength of the quark-exchange potential (QEP)
in the various channels would depend critically on
these values. This determination is analogous to
the determination of the pionic mass and the pion-
nucleon coupling constant, which are inputs to the
meson field-theoretic potentials. As already
mentioned, there have been few attempts to calcu-
late the NN potential arising from quark ex-
changes.”® The serious drawbacks of these
calculations are that the quark masses and the
coupling constants have been sloppily determined
and the radial dynamics of quarks in nucleons has
either been parametrized or treated unrealisti-
cally. On account of this, statements concerning
the strengths of the potential in various channels
cannot be taken to be authentic. The OGEC con-
stants used in this study have been reliably deter-
mined from the masses of the s-wave baryons,
and their consistency with some other s-wave
baryonic data has also been checked.'> The space-
wave functions which describe the radial dynamics
of quarks in nucleons have also been determined
from a dynamical approach to s-wave baryon
spectra.’® Using these reliable OGEC constants
and cluster wave functions (WF’s), the NN potential
arising from quark exchanges has been calculated.

The emevgence of the geneval stvucture for the
NN intevaction in the form

V=V R)+V,R)L-§,+§)+ V,(R)-S—f- (1.1)

(though not explicitly shown, all the V’s include
the various exchanges) from the qq OGEC poten-
tial has been herve vigovously demonstrated for
the first time. The salient results of this calcu-
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lation are as follows: (i) The central part of the
QEP in the odd channels is strongly repulsive at
short distances, thereby showing that the coloved
quavk-exchange mechanism is capable of yielding
the property of satuvation of nuclear forces;

(ii) the distance at which strong repulsion abrupt-
ly sets in tallies with the cove radius of the nu-
cleon calculated in a previous study'®; (iii) the
spin-orbit part of the QEP has the “inverted”
character, which is observed experimentally,

and the tensor part in the various channels has
the right signatures; and (iv) the QEP suffers
from the serious drawback of insufficient attrac-
tion in the intermediate vange. In view of this
limitation, it does not qualify to be the sole mech-
anism behind all the observed features of the NN
interactions.

The organization of the paper is as follows. In
Sec. II, the theoretical framework is set up.
Firstly, the theoretical basis for the phenomeno-
logical OGEC ¢q potential is discussed. Subse-
quently, the six-quark WF is constructed, and a
definition is given for the nonrelativistic NN QEP.
In the third section, the structure of the QEP in
the spaces of spin, isospin, and color spin is dis-
cussed. The spin-isospin (SI) structure of the
spin-spin, spin-orbit, tensor, and central inter-
actions are discussed in that order. In Sec. IV,
the radial structure of the QEP is considered.
The radial dependence of the central, spin-orbit,
and tensor interactions are examined, in that
order. Having been assembled, the QEP’s cen-
tral, spin-orbit, and tensor parts are separately
compared with the corresponding pieces of the
phenomenological potentials in Sec. V. In the
same section, the possibility of including the L?
interaction and the quadratic spin-orbit interac-
tioninthe QEPis pointed out. The results obtained
here are then compared with those of four other
contemporary calculations in Sec. VI. The
present work must be considered the most reli-
able among these in view of the careful deter-
mination of the OGEC constants and the inclusion
of quark radial dynamics. Lastly, in Sec. VII, a
retrospective survey is made.

II. THEORETICAL FRAMEWORK
A. OGEC Potential between quarks

A nucleon is a cluster of three valence quarks,
each of them having a distinct color, so that the
nucleon WF in color space is a fully antisymmet-
ric 3x3 Slater determinant. In high energy
phenomena the interaction between hadrons
(which are bound states of quarks) is described
by the non-Abelian field theory of QCD. Accord-
ing to this theory, the dynamics of quarks is in-

duced by the color, rather than by the flavor
degrees of freedom. As hadrons are color sin-
glets (i.e., they are colorless), it would appear
on the face of it that there can be no color inter-
action between hadrons. It turns out that in
OGEC, the direct part of the NN color interaction
vanishes, as intuitively expected, whereas the
exchange part of the color interaction between
colorless hadrons is nonvanishing and contributes
to the NN potential [see Eq. (3.1)]. The two
characteristic features of this non-Abelian field
theory of QCD are asymptotic freedom and infra-
red slavery. Asymptotic freedom is tantamount
to the logarithmic vanishing of the QCD coupling
constant when the quarks are very close together,
and infrared slavery is the property by virtue of
which quarks are unable to be isolated, i.e.,
quarks are always confined within hadrons. If the
nonrelativistic image of the QCD field theory is to
be faithful then it is essential that the OGEC po-
tential between quarks must possess both the
aforementioned non-Abelian features. While the
artifice of a linear (or harmonic oscillator) con-
finement potential simulates very well the prop-
erty of infrared slavery, a corresponding artifice
for asymptotic freedom has been generally lack-
ing.%™1¢ But recently Richardson'” has consid-
ered the question “Can both asymptotic freedom
and infrared slavery be incorporated in a ¢g po-
tential in a unified manner?” and has provided a
preliminary answer to it. In the light of this in-
vestigation it is found that a potential, which in-
corporates asymptotic freedom, differs only in
so far as being softer than a Coulomb potential,
near the origin. Consequently the discrepancy
between such an asymptotically free potential
and the one used here is rather small. In the
present analysis, the justification for ignoring
asymptotic freedom is this small discrepancy
between the two potentials. The question raised
by J. L. Richardson deserves further investiga-
tion but this falls outside the ambit of this study.
Starting from a part of the total interaction
Lagrangian of QCD’;

‘e;nt:iggl: $7u)\k¢(gu)k ’ 2.1)

one can derive the potential between quarks in the
nonrelativistic limit be retaining terms in (2.1)

to order 1/c2. This procedure, being almost
parallel to that used in the derivation of the
Fermi-Breit interaction in QED,'® suffices to give
the final result. This potential corresponds to a
static one-gluon exchange between quarks, which
was popularized through the work of De RGjula,
Georgi, and Glashow.® To get the complete OGEC
qq potential, one must add a linear (or a harmonic



2646 C. S. WARKE AND R. SHANKER 21

oscillator) confinement potential. The only other

vestige of the non-Abelian nature of QCD is the
. ]

1 (B;"B, F-(

color-spin scalar i“.‘- o f,. The gq OGEC potential
is then

" - = 1 3\
V(zy)—asF,- . Fj[b +;<1 ——a—a)— 2m202\ p

T 2mEc?y

Several remarks about this potential are neces-
sary. Here a, represents the strong-coupling
constant and is independent of the energy (logarith-
mic dependence of o, on the energy is tantamount
to asymptotic freedom). If this energy depend-
ence is included before Fourier transforming the
momentum space interaction from (2.1), then one
arrives at a coordinate space potential which
obeys asymptotic freedom.!” In the present
analysis however, with a view to avoid complica-
tions in the radial matrix element this energy
dependence has been overlooked. b is a constant
which is included because the confinement poten-
tial is asymptotically nonvanishing. « is the con-
finement constant; it is the distance at which the
sum of the Coulomb and confinement potentials

in (2.1) vanish. =T, -7, and P,(S,) is the mo-
mentum (spin) vector of the ith quark. Since the
nucleons are composed of only the nonstrange »
and p quarks (which have the same mass since
the assumption is made that the electromagnetic
interaction between quarks is switched off), the
mass m is that which corresponds to nonstrange
quarks.

It is important to note that in the OGEC poten-
tial the dominant short-range interaction is the
Coulomb potential arising from the exchange of
a massless gluon of the color gauge field. The
spin-orbit, tensor, spin-spin, and momentum
dependent potentials are only corrections to this
dominant term, as borne out by their multiplica-
tive factors 1/c2. The long-range dominant part
is the confinement potential, which has been taken
to be quadratic. Lattice gauge theories give some
justification for the linear choice of a confinement
potential, whereas the oscillator confinement
potential has only a phenomenological basis.
From a previous, careful study'® of baryon spec-
troscopy based on OGEC however, it has been
found that these two forms of confinement poten-
tials are equally reliable.

The distinguishing feature of this investigation
is that the OGEC constants, namely, m, ag, a,
and b, have been carefully determined from a
dynamical approach to baryon spectroscopy.’® In
that approach both the linear and oscillator con-

T ﬁi)§j> 72
,VS

-~ 0° @1 +45;°S))

v

et #2 (S-S, =368, -n)S. n
S[Fx(B, - 25,)-, - x (B, - 25,)- 5,1+ oy (S5 238, e )

I

finement potentials were used along with the one-
gluon—exchange gq potential. The radial wave
functions which were variationally determined
were of two types: Exponential [y o R/ exp(-BR/2)]
and Gaussian [ < R%Zexp(-3B°R?)]. The argu-
ments R in these were again chosen to be

of the following two types: R=7,,+7,+73;

and R = (7,2 + 7,2 + 75,2)* /2. Thus, in all, eight
cases were studied. These eight cases can be
denoted by VCT, with V standing for the varia-
tional wave function [E(G) for exponential (Gaus-
sian)], C for the confinement potential [L(H) for
linear (harmonic oscillator) types], and T for the
arguments of type I and type II indicated above.
Table I exhibits the values of the OGEC constants
that go in as inputs into this theory of the NN in-
teraction.

B. The six-quark wave function

Having defined the OGEC potential between con-
stituent colored quarks, the ground must next be
prepared for the definition of the NN QEP. The

TABLE I. The four OGEC constants (o, @, b, m,)
determined from a dynamical approach to baryon spec-
troscopy (Ref. 15). The meaning of VCT is explained in
Sec. IIA. The constants in the ¢gq potential (2.2) are thus
accurately known. The somewhat larger value for the
nonstrange quark mass (m,=575 MeV) is vindicated in
Ref. 15. The quark mass has the same value for all the
eight cases studied. The quantity g is a property of the
quark radial wave function, i.e., of the dynamics; even
though it varies with the cases, the rms charge radius
of the proton is roughly constant for all the eight cases
(Ref. 15). The case relevant to this study is GH II.

Case: ay

ver hic a (fm) —20,b (MeV) B (fm-!)
GHI  0.4584 0.4332 —~1886.52 1.14
GL1  0.4672 0.2748 —~2431.82 1.12
GHT 0.5918 0.4655 -1710.68 2.02
GL T 0.5932 0.3100 —2251.43 2.00
EHI  0.3241 0.3998 -20717.32 3.82
ELI 0.3786 0.2372 -2609.23 3.72
EHT 0.4424 0.4417 —1894.77 6.69
ELT 0.4569 0.2757 ~2420.43 6.60
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intuitive concept of this potential is the following.
Imagine two nucleons separated by a distance R.
By virtue of the gq interaction defined in (2.2),
this configuration of the two nucleons corresponds
§9 a certain potential energy, and when we change
R, this potential energyfollows this change, and
the NN QEP is just this potential energy. Mathe-
matically, if V is the potential energy between six
quarks and |¥) is the state of six quarks, then the
potential energy is o« (¥|V|¥). Essentially, if

we sharpen this definition, we would have the NN
QEP, which can then be subsequently calculated.
The above argument suggests that first of all the
six quark wave function be constructed, corre-
sponding to the two-nucleon spatial configuration
specified above.

Let ¢,(123), ¢,(456) be the completely antisym-
metric WF’s for the two-nucleon clusters a and b
situated at a distance R apart. The completely
antisymmetric wave function ¥ for six quarks
(i.e., for the two nucleon system) can be built up)
from the basis function ¢,, ¢, for three-quark
subsystems,

1 20 N
¥ Z;f (= 1)°P [ 6,(123)¢,(456)] 51

T, +T,+T, —r4—r5-r6) 2.3)

><‘FST< 3

In (2.3) the cluster WF’s ¢,, ¢, are coupled to
total spin (isospin) S(T') so that ¥ is a state of
sharp spin (isospin) S(T). And Fg, is the WF
describing the relative motion of the clusters a
and b. The operators {P,} are all possible inter-
cluster permutations, and the sign (-1)* is the
signature of the permutation 150;. This six-quark
WF can be cast in a more convenient “cluster-
antisymmetrized” form

1 ~
¥ ‘ﬁ(l - ;Zﬁ:?, P,,)[¢a(123)¢,,(456)]s,.

r+T,+T,~F,—F.—T
XlPsT(’ 2——3_—4-5 "), (2.4)

where

bor®) == [F o B+ (- DSPIF (- ),

and
a(b):{l’ 2’ 3}({4’ 5: 6}) .

An advantage of the cluster-antisymmetrized
form is that it is an illustration of the validity of
the spin-statistics theorem of Ehrenfest and
Oppenheimer.!®’

C. Definition of the NN quark exchange potential

Let H be a six-quark Hamiltonian defined through
the two-body interactions (2.2), i.e.,

H=3 T, +} 33 V). (2.5)

i=1 j=1

Considering the sum of the kinetic energies (KE)
of the three quarks in nucleon a(b), this sum is
equal to the KE of these three quarks about the
center of mass of nucleon a(b) together with the
KE of the center of mass of nucleon a(b).2° Call-
ing the latter parts T,, T,, their sum can again
be split up into two parts, namely, the KE of the
reduced mass particle of the nucleons a and b and
the KE of the center of mass of nucleons a and b.
If all calculations are performed in the center-of-
mass frame of the nucleons « and b, then the
latter term in the KE drops out giving

~2

6
— b~
gT,_ta+tb+3m. (2.6)

Here t,(¢,) denote the KE of three quarks about

the center of mass of their respective nucleon

a(b), i.e., itis the internal KE while p?/3m repre-
sents the KE of the reduced mass particle of nu-
cleons a and b each having a mass 3m (m being

the quark mass).

Before the potential energy term in (2.5) is con-
sidered, we observe a result which will be used in
the sections to follow. If P is the sum of the nine
permutation operators P, in (2.4), then

(W] 9 = 59, {[23), (456) Y57 | (1= P)(1 - B)| 6,(123)¢, (456 s

. N ., 8T
=(6,A23)$, (456)ds 7| (1 - P)| b, (123)9, 456)51)- (2.7)

I
This norm N is invariant under the two sets of N=(¢,Pp¥sr| (1 =9P,5)| b, by ¥sr) - (2.8)

permutations of the indices 7,j; ¢, j<a and of the

indices k,1; k,lcb. Use of these two symmetries

reduces (2.7) to the form

To prevent the notation from becoming clumsy,
from this point onwards, the arguments of ¢, and
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¢, can be suppressed, and also the coupling sym-
bol ¥ _—which indicates that the nucleonic
cluster functions have been coupled to have a
total spin (isospin) of S(7')—can be dropped. For
the expectation value (EV) of the potential energy
operator in (2.5) in the state ¥, one has

<\Il %ii'V(ij) qr>

i=1 j=1
= '1%<¢a¢bd)s T

-2y V(ij)(l-ﬁ)’

ij
xgm%&-

So long as the indices i, j in the above sum span all
the six quarks, P commutes with the total poten-
tial energy operator. In this way, the operator

in the EV becomes 13}, V(i)(1 - P); using again
the two symmetries of the indices pertaining to
the two clusters, this EV can be reduced to the
form

133 Vi) - 9By,

i=1 j=1

(¢t0br bututsr). (2.9)

The gq interactions in the above sum can be
divided into two sets: intercluster interactions
and intracluster interactions. These intracluster
qq interactions together with the internal KE’s
t,+1, in (2.6) contribute to the rest mass of the
two nucleon clusters, namely, 2M . Subtracting
out this rest mass from the EV (¥ |H|¥), one has

(¥ |H|®)-e(¥| v

p* 5
=<¢a¢b¢sr %(1 "gpss), DaPo¥s T>
+<¢a¢b¢ST ,Z: V(Z])(l "gpas) ¢n¢b¢sT>

i€b
— (P Pp¥sr | (1= 9Py0) | &, 0p¥s ) -

Functional variation of this expression with re-
spect to ¥y, yields the following Schrodinger
equation for the relative motion of the two nucle-
ons:

(2.10)

S Vsr (a0

E,, V(L= 98| 0,504 T>/m |

=€dsr (2.11)

In this formulation, the QEP is defined by the
second term on the left hand side of (2.11). The
identification of the QEP with this term would
have been exact had the bare reduced mass 3m/2
been equal to $M,. This equality can come about
only if mass renormalization is performed, but
this is outside the scope of the present nonrela-
tivistic framework. In any case, the NN inter-
action can be defined by the second term on the

left-hand side of (2.11). The remainder of this
paper is concerned with the calculation of this
EV. Robson’s definition of the QEP'? is a partic-
ular case of the definition given here, and it
suffers from the drawback of ignoring all but the
V(36) term in the summation in (2.11). The error
involved in this omission will be discussed in
subsequent sections.

IIIl. GENERAL STRUCTURE OF THE QEP

The evaluation of the QEP in the subspaces of
color, spin-isospin (SI) and ordinary space is
considered now in that order. The EV defining
the QEP is invariant under two sets of symmetry
operations: permutations of any pair of indices €
nucleon a and permutations of any pair of indices
€ nucleon b. Using these two symmetries, the
direct part of the QEP can be brought to the form

V p=9(d, 5| V(36)| ¢, b -

This direct term vanishes on account of ¢,, ¢,
being color singlets.
Thus the NN interaction arises solely from the

~ antisymmetrization of the six-quark WF, i.e.,

only when quarks are exchanged between the two
nucleons. Using the two symmetries specified
above and the additional (123) «— (456) symmetry
of the EV, the exchange part of the QEP can be
reduced to

V=~ 9<¢a¢b' ; V(ij)ﬁss' ¢a¢b>
Jj€b
= — (P, | [4V(14) + 4V(16) + V(36)1B | 3,5 -
(3.1)

A. Evaluation of the color EV’s

The permutation operator in (3.1) acts on all the
subspaces: color, SI, and ordinary space,

ﬁaszﬁgsﬁg ‘; Agsv (3.2)
For the group SU(3), the permutation operator is

PS=1%+2F, F,. (3.3)
The form given in Robson’s paper'? is incorrect.
Considering first the 14 term in (3.1) as an illus-

tration, the EV in color subspace is (suppressing
the arguments of ¢, &,),

T(14) = (5,5, | F,* F,(3 + 2F, " F)| £,5) -
Direct calculations gives
T(14)=% ) § Tr3(F(a)F (B)) =
a,B

©f=

’

since®

Tr(F(a)F(B)) = 46,,. (3.4)
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Thus the QEP, after completing the color algebra
for the remaining two cases, acquires the form

V=—&o,9,|[V(14) + V(36) - 2V(16)]
X P | dady - (3.5)

B. Evaluation of the spin-isospin EV’s

The first step will consist in the calculation of
the norm defined in (2.8). It will be helpful to
remember that the cluster functions therein are
coupled to total spin (isospin) S(T'). Color algebra
(namely, the EV (§a§b|13§6| £,L,)) gives a factor 3,
and disentangling the space part from the SI part,
one has

N=1 = Xbyby | Plo| 9a®p) (Ds 0| BL | 0y) . (3.6)

In Appendix A, it is shown that the SI EV in (3.6)
possesses a factorization property, and calculat-
ing the various 9-j symbols therein, one has

N=1- Kb,y | PL| bus)
X[(S =T - P +2(3-5/3)($~T/3)
+3G+S/3)¢+1/3)]. (3.7

This expression is symmetric in S and T, as it
ought to be, and the factorization of the EV into
space and SI parts, being a property common to
all the EV’s in the six-quark state, will be fre-
quently encountered in the following paragraphs.

It will be worthwhile to remember that all spin-
independent gq interactions in (2.2), when averaged
in the six-quark state ¥, will have their SI struc-
ture identical to that of the norm in (3.7).

The interactions between quarks, which depend
on their spins, are of the spin-spin, spin-orbit,
and tensor types [see Eq. (2.2)]. Each of these
types is considered separately now.

1. The spin-spin interaction

The starting point will be always the “color
independent” form of the NN QEP, namely (3.5), -

Vss=— Ko, |[Vs s(14) + V5 5(36)
X =2V 5(16)] P3| 6, 05) .
By inserting the gg interaction (2.2) in the above
expression,
. 87 3a -

VSS(Z])=—W63(I'“)Si 'Sl, (3.8)
and evaluating the SI EV using the result of Appen-
dix A, one has

8772 s)

Vss(16)= 8("‘ 3mec?

X( By by | 0%(F10) PG| bap) f1a(S, T),  (3.9)

with
15, 1) =352 ls(s + 1)~ 3]
_(3 ;:TXS(SJ;;)H)‘ (3.10)

Repeating this calculation for the 14 and 36 cases,
one has
8’n'fi2ai)

v“(m):"‘l(' 3mc?

Xy by | 03 (Fra) P | Gabp) fualS, T),  (3.11)
with
(3+2S) (3+2T) 5S(3+27T)
f18, T)=~"5 36 6(81)

(-1)5(3+27T) 3 5
+-]-:-2T8—1)———(2 —S(S+1) ,

(3.12)

and

8172 )

Vgs(36)=— 4(- TmZot

X( by | 03 (Fse) P | 0o 0 foolS, T),  (3.13)
with
f3e(s5 T) = 3 —BZT

_ 2((3 +2T)(2 - S)S + 3)
36x36

S(S+1)3-2T) (2T -1)(1-S)
+ 2 + 8 )
(25 -1)2T -1) (3-25)(3—2T)
- 3( 16 AT

+ (3+2S)(3+ 2T));

36x36 (3.14)

The spin-spin interaction between nucleons a and
b can now be cast in the canonical form of a cen-
tral potential with the Wigner, Bartlett, Heisen-
berg, and Majorana exchanges.?? Inserting the
foregoing results into (3.5),
Vss =V + V356, -6, + VIS7,* 7y
+ VG, )T, 1), (3.15)

and taking the trace of both sides of (3.15), one
obtains

VES =— +[3m(36) + +mg(14) + 2m¢(16)],
VSS = = [-m(36) +mg(14) - 2m¢(16)],
VSS = f-[9m 4(36) +m(14) - 6m 4(16)],
VSS = — [~ 25m (36) + mg(14) + 10m 4(16)],

(3.16)

where the m (ij) are the radial EV’s given by
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2 A~
(5]) == ST 28 (8, | 07, By 9a) - (3.17)

2. The spin-orbit interaction

The starting point is again (3.5) with the gq
spin-orbit potential being given by
.\ —ha
Vis () =525
X(FU X (By = 2;) Sy = 1, X (B, = 25;) - Si)
7y '

(3.18)

It is shown starting from this interaction that it
implies a spin-orbit interaction between the two
nucleons. As has been the practice up to now,

the 16 calculation is carried out in some detail,
and subsequently the corresponding results for the
remaining two cases are presented. The general
EV for the 16 case has the structure

~ I
s (16’=3('z7n‘2z%> -

x(¢a¢bl(A° S, +B-* Se)ﬁ;gﬁ;sl by Ps) -
(3.19)
From (3.18) it is seen that the vectors A, B act
only upon the 0(3) states so that, as far as the SI
space is concerned, they may be treated as con-
stant vectors.
The factorization property embodied in (A11) of

Appendix A leads to the following structure of the
SIEV:

<¢a¢b IX §113§J l baDs)

l
1
21;4%

D

I 3 K35 (16), (3.20)

N one e

i
2

[N

with
Ha.5(16) =(I)}, (13)%; S, M | A - 8, P3|
X (133, (1'3)338,M),

Iy
bag(1O)=A-Sfia+ 12 v 3
141
w+n): vz
T8 )L o1 (3.21)

and

o~
(S

o aB-2wr@w+1)]
Mg 5,(18)=B- 8=

o= ol
o~
<
[ VT S

o=

!
(|’

~4[3-21(1+1)] (3.22)

[ M
[T VT

and the EV of B- §6 has the structure similar to
that of A+ §, [see Eq. (3.20)]. The results corre-
sponding to (3.21) and (3.22) for the 14 and 36
cases are

~
o=

we5,14)=C slr@+1)

o~
S
[ NP VY

[N S
[N

_l@r+1)

5 (3.23)

[T M)
[T N1

v\l

o~
~

(S

S

= =l[3-21+1)]
u= = (36)=D-S 3

3

— e

ol N
(M

[3-21r(2" +1)]

5 (3.24)

ll

[SIC M
(YL

These could have been obtained from (3.21) and
(3.22)—in so far as their /I’ dependence is con-
cerned—by interchanging ! and I’. This sym-
metry stems from the (123) ~— (456) symmetry
which is possessed by all these EV’s. Perform-
ing the II’ summation in (3.20), after substituting
for (3.21) and (3.22), one has

72 PUNIN
15 (16) = — 5 (6,6, | 015 Pis] 60 0),  (3.25)

where
0,,=A(16)- §7,(T) + B(16) - §,(T)

and

K(16)[B(16)]

=Fj.axﬁ1"'2Flex§6 Zmeﬁ;_meﬁs
3 3 , (3.26)
V16 ¥16



8(3 +27T)
MWD =%5536
fz(T)_(ZT—l) (2T +3) (3-2T)

54x36 ~ 12Xx9 °

The spin-orbit NN interaction arising from the 14
and 36 exchanges are, using (3.23) and (3.24),

Uy (14) =5 50,0 010 B 0009, (3.27)
with

=[A(14) + B(14)] - §£,(T),
and

mwm— <%%mnsamﬁh (3.28)
with

s =[A(36) + B(36)]- S7,(T).
The total spin-orbit potential is the sum of (3.25),
(3.27), and (3.28).
The total spin-orbit interaction between nucle-
ons can be cast in the canonical form. Firstly,
V,s=V;5(16) +0, 5(14) + V,4(36)
=-Uev¢n+«uodd
=(9aP5| A% (5, +5,)P%| 0,0y
+{d, 0, Iaodd (S +Sb)P l¢a¢b> ’

where the even and odd parts are given by
= oven oaty _ 21 [(A(14) +B(14) 2A(136))T3§_ @)
716

2,2 3
mec V14

+(X(3e) +B(36)
7383

_ 2§(16))%53_( 100 )] (3.29)

3
Y16

To bring out th(_e. NN _spin-orbit potential in the
canonicalform «<Lg*S, it is necessary to carry
out the radial EV’s in the foregoing equations.
This will be taken up in the section on radial EV’s
(see Sec. IVC).

3. The tensor interaction

The NN interaction arising from the gq tensor
potential also turns out to be tensorial. The cal-
culation of the SI parts starts from (3.5) with the
qq interactions given by

(B i

1 (16) = (14

2, (1')5; S, M| Ty(S,, 8g)* Toliine) Pl (12)3,
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and the NN tensor potential (anticipating the re-
sult) is

V==K, 0, |[V,(14) + V,(36)
-2V,(16)] P37*| 9,0, . (3.30)

The proof is first given—for the above statement—
for the case of the 16 term, and then the corre-
sponding results for the other two cases are pre-
sented. The tensor potential (3. 30) is actually a
scalar obtained by contracting two second rank
tensors.?®* One of these is compounded from the
vector operator 7, ; (n ; is the unit vector in the
direction T, ;), while the other is a second rank
tensor compounded from two vector spin opera-
tors of the two particles S;-and S,. Therefore
(3.30) can be written as

V:('I'])—- zcz,r 3 Z(S{’Sj) T (ﬂu) (3.31)

The NN potential U, arising from this, if it is
truly tensorial, w111 have the same general struc—
ture as in (3.31), i.e., OCTZ(S,,, S,,) T,(n), where 7
is a unit vector in the direction R. In attempting
to derive the “macroscopic” tensor potentié.l from
the “microscopic” one, it will be useful to bear in
mind that this derivation must necessarily pro-
ceed in two stages. The SI calculations will lead
to the replacement

T,(S;,8,) = T,(8,,8s),

and the radial calculations to the replacement
Tz(ﬁ“) —T,(n) for all the (ij)’s in (3.31). There-
fore the proof will be completed only towards the
end of the section on the evaluations of the radial
EV’s (see Sec. IVD). For the present, the proof
is carried out only for the SI parts. For illustra-
tion, the 16 case is considered in some detail and
the corresponding results for the remaining two
cases are then presented.

v (16)—— 8h— =% <¢a¢b z(su s) Tz(”ls)

POTPx

m) (3.32)

Using the factorization property of the SI EV,
embodied in (A11) of Appendix A,

(Dats| To(Sy, 8o)* Tyt g)P37 | bty

1
=424
123

1,(16), (3.33)

tojr o
N mi- p-

where

(72); S, M), (3.34)
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and after some manipulation, (3.34) can be reduced
to the form
S,M> .

<S,M

By successive application of Wigner-Eckart
theorem and more powerful ones derived thereof,?*
one has, for this matrix element,

1 E (= 1)°T 5 (1,6)T 5, (S, Se)
q

L T,(7,)2[3M2 = S(S + 1)]
z\[(2S + 3)(2S + 2)(2S + 1)(2S)(2S - 1) /2

1 11

2 2
X[SM[2]6s,10% 3 1

112

X ((DEIS,,12)%)
XIS NI DY . (3.35)

By considering now the EV (S, M |T,(S,,S,) - T,(74|S,
M), it can be shown to be =2xthe quantity in

the curly brackets in (3.35). Finally evaluating
the two reduced matrix elements in (3.35), the EV
1 ¢(16) can be written as a tensor interaction be-
tween the two nucleons a and b, in so far as the
spin structure is concerned,

1(16) =T4(S,, §,)* T, (iiso)
A+ D[ -+ D] (3.36)
The remainder of the proof will be carried out in
the section on the radial EV’s (see Sec. IVD).

The results analogous to (3.36) for the 14 and 36
cases are

1,(14) =T,(S,, §,)* Ty(n,)

(l(l + 131'(1' + 1)), (3.37)

,(36)_T (s,,,sb) T, (M35 - 1(1+1)]
xEF-r@+1]}. (3.38)

Inserting (3.36) in (3.33) and carrying out the 7, I’
summation, one has

7z 3+2T
v,(ls)_——sjnzfz 36((3 27T) - —————(g )>

X (6a0s IM&P% b)

(3.39)
47%q (3 +2T
'(14)“_75‘?(T>

X <¢a¢b|—zw&Pasl ¢a¢b> ,

(3.40)
and

V,(36) = - ‘inzo%s<(3+zT) (2T—1)+(2T_3)>

9X 36 4 18

X (b p |2

Sa,S,,) Ta(n3g)ﬁx AR (3 41)
36

The tensor interaction is generally decomposed
into even (T'=1) and odd (T =0) parts,

L) ¢ :vaen + vodd

.Ueven(add) L<¢a ¢b JT (Sa, Sb) Teven(odd)

XP;S] ¢a¢b> ’

where
T,(n T,(n
T even(odd) — 2 (12 o 31§)_8§1(_8%) z("su)
716 714
- B Tl (3.42)

36

When the evaluation of these radial EV’s is com-
plete, it will be found that T,(n;;) ~ T,(n) where n
=unit vector in the direction of R.

4. The central interaction

The SI structure of the central interactions will
obviously be the same as that of the norm 91 of the
six-quark WF. There are essentially four differ-
ent types of central interactions between quarks:
Coulombian, oscillator, 5(¥), and the momentum
dependent potential [see (2.2)]. The last of these
is the most difficult to evaluate, as will be seen
in the forthcoming section on the radial EV’s.

The central gq interactions give rise to central
NN potentials with all the four types of exchanges.
It is customary to cast this interaction in the
standard form, analogous to (3.15). The direct
part of the interaction is absent on account of
nucleons being color singlets [see the text pre-
ceeding (3.1)]; only the exchange interaction con-
tributes. From the starting point (3.5), one has

U, =~ K, | [V.(14) + V,(36) - 2V, (16)1P%| ,6,)
(2S-1)(2T~1) 2(3-2S)(8-2T)
x( 1 * 36
(3+2S)(3+2T)
'f—'g—X—S'G_-), (3.43)

with the SI dependence being identical to that in
the norm 9 given by (3.7). Putting this equal to

Vo4V, G, 0y +V,* T, 7,

+ Vo'r(a'a * Eb)(Fa * :Fb) . (344)
The component V’s can be evaluated by trace
methods already outlined [see sequel to (3.15)].

Finally, substituting these values of V’s back
into (3.44),



Vo=~ _%p°&.a°6'b_%p°;a°;b
~Bp-(0,- 0, )T, Tp), (3.45)

with

p=(D,0 | [V (14) + V(36) - 2V, (16)] P%| 9,0 ,

where V, is the sum of the four central interac-
tions mentioned earlier. This structure of p is
very crucial, in making the NN interaction in-
dependent of the OGEC constant b in (2.2). The
[11 - 2] structure of the NN interaction [see (3.5)]
is responsible for b being totally absent in the NN
potential. Contrary to this, the role played by b
in baryon spectroscopy was very decisive in ob-
taining a good fit to the baryonic levels.'®

Having determined the SI structure of the NN
QEP, attention is now turned to the determination
of the radial dependence of the QEP.

IV. THE STRUCTURE OF THE QEP IN
COORDINATE SPACE

Since the EV’s are the averages in a six-quark
state, the radial matrix elements are really 18-
dimensional integrals. As in the treatment of the
SI EV’s, the various types of interactions can be
examined sequentially. Before embarking on
this program, it is proper that the nucleon radial
WF ¢, be accurately defined. Up tothis point,
these WF’s were kept quite general, but for cal-
culational purposes these must be given specific
forms. In the work on baryon spectroscopy,
carried out by these authors,’® two arguments R
were used for ¢,, as were two forms for ¢,. The
arguments were of a collective nature: 7, +7%,,

+ 751, (V127 + 7,5 +74,%)/ 2. For ¢, both exponential
and Gaussian forms were used. Without going
into the reasons for this choice here, the following
definition of ¢, suffices:

¢,(123) =nexp[— L B2(r,2 + 7552 +75,2)],  (4.1)

where 7, the normalization factor, =(3V 3/#7%)1/2g3.

In the present calculation only the normalized WF
in (4.1) is used. Physicists have long since been
familiar with Gaussian integrals, which can be
evaluated in closed form; this is their main ad-
vantage. The value of B8, which characterizes the
WF and is compatible with s-wave baryonic data,
is given in Table I.

A. The radial norm

A glance at (3.6) suggests the following defini-
tion for the radial norm:

N(R)=(,(123)$,(456) | P3| ¢,(123)9,(456)) .  (4.2)

The structure of the radial EV’s appears in (2.11).
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The value of such a matrix element will depend
critically upon the definition of the exchange
operator 133"6. This exchange operator not only
exchanges T, and T; between ¢,(123) and ¢, (456),
but also interchanges the_s_e two coordinates in the
argument of the WF ;. (R), for the relative mo-
tion. Since R=3§(F, + T, +F;~ T, ~ T, - T,), one has

P2 ,(123),(456) 57 ()

- -> - - g -
r4+r5+r3—rl—r2-r6)

— 6,200 9,(453)Ysx

Taylor expanding the WF of relative motion to
first order,

bsr(PER) =P gp (R) + 28,5 Veisr(®), (4.3)

and the omission of the higher order terms is
justif_i_ed since zps,._(ﬁ) is expected to vary slowly
with R. Now it turns out that for all intevactions
excepting the spin-orbit one, the contribution of
the gradient term to the radial EV vanishes by
virtue of the parity selection rule, whereas for
the spin-orbit interaction, the matrix element
corresponding to the first term vanishes while
that corresponding to the second tPakes a nonzero
contribution. Thus the action of Pj; on R is in-
cluded here contrary to the practice in molecular
physics, and this action can be consistently
defined for all the parts of the gq interactions

in (2.2).

The radial norm (4.2) falls in the first category
of EV’s which do not receive any contribution
from the second term in (4.3). This amounts to
ignoring the action of P on yis,(R). All the cal-
culations are performed in the center-of-mass
frame of the dinucleon system. Thus (4.2) has
the structure, if (4.1) is used,

6
N(R)=n* f H dt; exp(-38*{p,* + py* +p,"* + py"*})
i=1

x@(_s_.s_._&_l;_), (4.4)
with

Pa?(0,"%) = 715% + 7387 (738°) + 7157 (116) »

Py (pp") = Vag” + 746 (V45") + V56" (V557) - (458)
The presence of the two delta functions needs
some explanation. Going back to (2.11) and re-
membering that the QEP is defined at a fixed
value of the argument of §5,, namely ﬁ, it can
be seen that all these radial EV’s must be carried
out for a fixed value of R. This is achieved by
inserting a delta function 6[R — 3(F, + T, + ¥, - T,

- Ty —Tg)] in the EV. The fact that all calcula-



2654 C. S. WARKE AND R. SHANKER 21

tions are carried out in the center-of-mass frame
of reference, when stated mathematically, is tan-
tamount to the insertion of another delta function
in the radial EV, 5[5(F, + T, +T,) — 5(F, + T + T)].
The pair of delta functions appearing in (4.4) are
entirely equivalent to the ones mentioned above,
as can be verified by inspection. These Gaussian
three-dimensional integrals are easily evaluated
in closed form using the results of Appendix B.
The radial norm is thus found to be

64

MR = 5 x7s

exp(- 2p%R?). (4.6)

B. The EV’s of central potentials

The central potentials are four in number:
Coulomb, oscillator (confinement), delta function,
and the potential bilinear in the quark momenta.
The Coulomb potential will be considered first.
From (3.5), it is seen that three distinct EV’s
contribute to the NN potential. Calculations
show that a Coulomb potential between quarks
leads to a erf(CR)/R potential between the nucle-
ons. Contrary to the practice of illustrating the
calculation for a specific pair of quark indices,
only the final results of the calculations are pre-
sented for the EV’s of the central potentials.

- The Coulomb radial EV’s, which enter into
(3.45), are proportional to

Mc,,(z'j)=a,<¢a¢,,

Px
“.‘“‘ 36

Butr)- (4.7)

The general structure of these EV’s is found to be
. C

Mcb(z])=as><ﬂl(R)—R}ierf(A 4BR), (4.8)

where erf(x) is the error function (see Appendix
B). The values of the coefficients in (4.8) for all
the three cases appear in Table II.

The radial EV’s of the next central potential,
namely, that of the harmonic oscillator, are
proportional to

M(i) = = 28(bs0 | 71,7 P3| Gabs) - (4.9)

Calculations show that these EV’s can be brought
to the form

2p2
M, (i) = - 24 ﬁf)(c;, +Bciz)‘ (4.10)
The coefficients Cj,; for the three cases are listed
in Table II. It can be seen from this expression
that the harmonic confinement potential between
quarks leads to a harmonic potential between the
nucleons.

The radial EV’s of delta-function potentials are
proportional to

M (l])——— <¢a¢b|5(rij)P '¢’ b, (4.11)
and the radial spin-spin EV’s are simply related
to these

M () = M ,(3) . (4.12)
Calculations yield the structure

M (i) = - 23 R)pe

X C?,’ 2 exp(B%A,°R?) . (4.13)

The presence of the Gaussian factors, over and
above that in the radial norm, indicates that the
qq delta-function interaction leads to an extremely
short range NN potential. And even the strength
of this potential is quite small, in view of the c?
factor in the denominator.

The last of the central potentials whose radial
EV’s are necessary is the potential between the
quarks which is bilinear in the momenta of the
quarks. From the mathematical point of view,
the evaluation of these EV’s is extremely labori-
ous. The EV’s are proportional to

Mpp(lj)= —ﬁ-zsc_z <¢a¢b I (—i;_—l —u—l(—:{-:'il_fsgi)_pi>

X BZ| dg0p) - (4.14)

The calculations (with suppressed details) show
that these EV’s have a structure given by

TABLE II. The entries in the table [see Eqs. (4.8), (4.10), and (4.13)] define completely the
radial part of the NN potential arising from the indicated gq interactions.

i Coulomb: 1/7 Confinement: r? D(e%ta function: 6(r)
Cij Ay Cij 1/Cy;% cl Aigj
1 4
14 .1_2 3(1_30)1/2 3 (_5(2)2 15/87 3(5 )1/2
36 _%0 3(_1_ )1/2 _g (15*)2 5/47 3(_ )1/2
10 1 942 1
16 K} 32 ) ) 15/7n (2
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TABLE III. The entries in the table [see (4.15)] define
completely the radial part of the NN potential arising
from the gq potential bilinear in the quark momenta.

ij Ayj Ciy Di; Gy Fyj
3\/2 s 15/151
R R B
36  38R/VZ0 44/388 % T;i’;‘ls 0
m

16 9VI/2vTBpR 1as/argt 1 LTASL 45/15

M, (i) =5 B“f’l(R)

erf(A
x(—l(i—f-f—)(cu—D”Rz)

- exp(- A4, /{G,, +F,,Rz}). (4.15)

The values of these coefficients are tabulated in
Table III. It is seen that this relativistic correc-
tion term leads to a Coulomb-type interaction
between the nucleons. There is an additional
contribution which resembles a delta-like interac-
tion [see (4.13)] between nucleons. And yet
another contribution which amounts to a damped
harmonic interaction between the two nucleons.

C. The radial EV’s of the spin-orbit term

The proof for the gq spin-orbit interaction going
over to the NN spin-orbit interaction was sus-
pended halfway in Sec. IIIB2. Here, in this
section, this remainder of the proof is carried
to its conclusion. In essence it must be shown
now that the radial EV’s of the vectors g°ver(d
in (3_;29) are proportional to the angular momen-
tum L of the relative motion of the two nucleons.

Recapitulating the discussion in Sec. IV A on the

, definition of P_a"s, this operator must now be made
to act on Ysp(R), the WF for the relative motion
of the two nucleons. The radial spin-orbit EV’s
are proportional to

Mis ()= =g 2(¢’a¢b|<é&+§(i)> §

X P\;GJ PaPo¥s 1) (4.16)

where the vectors A(ij), B(ij) are defined in (3.26),
and S is the total spin of the two nucleons, i.e.,
=§a + §,,. The result of the calculations of the
radial EV’s is

YR) d
M's(z])—2mc R C”dR

x{%ﬁerfm,,ﬁﬂ)}in-&psr. (4.17)

21VTn B e

TABLE IV. The entries in the table define completely
the radial structure [see (4.17) and (4.23)] of the NN
spin orbit and tensor potentials arising from the corres-
ponding q¢ potentials.

Spin-orbit potential Tensor potential

ij

Cij Di; Ayj Cij Ayj

5 10 31/2 5 31/2
14 G B 3(33) % 3(5) /
36 _g 150. 3(_1 /2 % 3(_1 22

10 10 3\1/2 10 1/2
16 s 3 2( ) 5 (35)

The coefficients occurring in this result are all
listed in Table IV. The constant 7 that usually
goes with an angular momentum operator has

been lumped, in this case, along with the multi-
plicative constants. Thus the spin-orbit NN inter-
action has now been finally put in the canonical
form.

D. The radial EV’s of the tensor interaction

A glance at the end of Sec. III B3 shows that when
the radial EV’s are evaluated. it would amount to
the quantities 7°7"(°!) peing replaced by T,(7).

In this section the latter half of this proof is
carried through.

With the aid of the identity
S, * Sy = 3(S, * 1)(S, * 1)
1-3

-6 V)G, V)G) - ‘—lg§a -8,6(9), (4.18)

the EV of (3.31) can be put in the form
t'lj = <¢a¢b| Tz(sm Sb) Tz(vij)— P , ¢a¢b> (4°19)
Using Fourier integral representations and com-

pleteness expansions, the EV (4.19) can be cal-
culated, and the results are

1 4 - - N
t36=§{2-(—31)91(R )T, (S, §,)° T,(B)

szdsz(:gKR)exp(;g;). (4.20)

For the remaining two cases, one has

1 4 - > ~
b= ) MRITG, ) T2(R)

x[szKj2<§I—§£>exp(%§;>, (4.21)

1 4 - - ~
the =2—”2(§)m(1% YT,(S,, Sp)* To(R)

szde( Iff)exp(sg;f). (4.22)
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Defining m, (i) :é(asﬁz/mzcz)t,j and carrying out
the K integrations, one obtains

my(i) = -2 (R)(Sat) (3, 4, 2°R?)
Y m2c? R nY(z, 4B

XTy(S,, ;) To(R), (4.23)

where n¥(3, x) is the normalized incomplete
Gamma function?® of order § =y (3,x)/T'(3), and
the coefficients C,,;,A;, are the ones listed in
Tabel IV. At this stage it can be appreciated that
the occurrence of the incomplete Gamma function
of order 2 can be traced to the use of the Gaussian
quark WF’s. If some other choice had been made
for these quark WF’s then there would be, corre-

spondingly, a different function in place of ny(3, x).

In any case, whichever quark radial WF’s one
might use, the tensorial character of the NN in-
teraction will not be perturbed and will emerge
finally, as in (4.23). From (4.23) it is possible
to evaluate the even and the odd parts of the NN
tensor potentials V®¥"(%d) defined towards the
end of Sec. IIIB3.

Up to this point all the effort has gone into the
derivation of the NN potential—starting with the
qq interaction—and its casting in the canonical
form. Now it remains to be seen whether this NN
potential, arising from the exchange of colored
quarks, has any measure of truth in it. For this
purpose the 14, 16, and 36 parts which have been
separately calculated must be brought together
according to (3.5), the general expression for the
NN QEP. Once this is done, it will be possible
to numerically calculate the strengths of these NN
potentials in the various channels.

V. COMPARISON OF THE QEP WITH
PHENOMENOLOGICAL POTENTIALS

The three main parts of the QEP, appearing in
(1.1), are now assembled with a view to compare
their radial profiles with the corresponding ones
of phenomenological potentials.

A. The central part of the QEP

Both the central potential (i.e., all the four types
of qq potentials discussed in Sec. IIIB4) and the
spin-spin potential contribute to the total NN cen-
tral potential V!°*(R) in (1.1). The detailed struc-
ture is given by (3.5),

VEYR) =V (R)+ V,(R),* Gy, + V. (R)T,* T
+V, . (R)G, T)T, " Tp), (5.1)
where
V(R)=~%[3m,(36) + 3m(14)
+2m,(16)]+ ¢(R), (5.2)

V(R) = = & [—m,(36) +m,(14)
~2m (16)] + £ (R), (5.3)

Vo(R) = — &[9m,(36) + m,(14)

—Bmd(lﬁ)]+-;-¢(R), (5-4)
V, (R) == %[ ~25m(36) + m,(14)
+10m,(16)] + 2 H(R). (5.5)

In the above four equations the quantities occurring
in the square brackets represent the spin-spin—
delta-function interaction, while ¢(R) represents
the contribution arising from the four types of
central potentials. This latter quantity is given
by

P(R)=2[m ,(16) +m,(16) +m 4, (16) +m, (16)]
= [my(14) +m,,(14) + m 4, (14) + m,,(14)]
— [m,(36) +m,,(36) '
+m,(36) +m,,(36)], (5.6)

and these matrix elements m,(ij) have already
been calculated in Secs. Il and IV. The phenom--
enological NN potentials’*?:® are known in each of
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FIG. 1. A comparison of the central components of
the QEP +OPEP, OPEP (Ref. 1) and the Tamagaki
phenomenological potentials (Ref. 8) in the singlet-odd
(SO) and the triplet-odd (TO) channels. The Tamagaki
hard-core radius is at 0.42 fm.
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FIG. 2. A comparison of the central components of
the QEP+OPEP, OPEP (Ref. 1) and the Tamagaki
phenomenological potentials in the even channels. The
OPEP has the same radial variation for both the even
channels. The Tamagaki hard-core radius is at 0.42
fm,

the four dinucleon states: singlet even, singlet
odd, triplet even, and triplet odd. To compare
the QEP with such potentials, it is necessary to

take the EV of Eq. (5.1) in each of these four states

|S,T). Doing this, one has

(VEHRNgg =V (R) -3V (R)+ V,(R) -3V, (R),
(VPR o = V,(R) - 3V, (R) - 3V,(R) + 9V, ,(R),
(VEHR))pg = Vo(R) + V,(R) - 3V,(R) - 3V, (R), >
(VR D o =V (R)+ V(R)+ V.(R)+ V,,(R).

Here, S and T stand for the singlet and triplet,
and E and O stand for even and odd, respectively.
These four potentials are plotted as function of R
in Figs. 1 and 2. In these same figures one can
contrast the QEP with the one-pion exchange po-
tential (OPEP) and the phenomenological poten-
tials. The contributions to the central part of
the QEP from only the spin-spin interactions are
also exhibited in Figs. 3 and 4.

7

1. The hard core

The phenomenological 1S, phase-shift data show
that beyond about 250 MeV the phase shift changes

(o] 0.5 1.0 1.5 . 2.0
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FIG. 3. The spin-spin gq interaction (Eq. 3.12) leads
to the above repulsive central NN interaction in the odd
channels. The potentials continue to be more repulsive
within the Tamagaki hard-core radius at 0.42 fm,

from a positive to a negative value. With the
phase shift being roughly the difference between
the perturbed action and the unperturbed one, it
is easy to see that its sign will be opposite to that
of the scattering potential.?® What this means is
that at higher energies the NN interaction acquires
a repulsive component. The occurrence of such a
repulsion is welcome since it is found adequate to
explain the saturation property of nuclei. The
onset of such a repulsion only at higher energies
can be simulated by a potential which is very
strongly repulsive at short distances (the hard

+ 30 Mev
The spin- spin part of the
Quark Exchange Central Potential
—— Triplet Even
--= Singlet Even
— \
>
L
=
ot \
>
! 1
(o] 1.5 2.0

R (fm)

FIG. 4. Same as Fig. 3, but for the even chamels.
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core). This particular representation of the
energy dependence of the 'S, phase shift is by no
means unique, even within the potential frame-
work. Finite repulsive potentials (i.e., soft core)
at short distances, as also momentum dependent
potentials, are capable of reproducing this phase-
shift data. In the following it will be seen that
the QEP gives the short-range strong repulsion
and hence the property of saturation of nuclear
forces.

The central part of the QEP in the odd channels
is strongly repulsive at short distances. This is
shown in Fig. 1. Also, there is reasonable agree-
ment with the Tamagaki phenomenological poten-
tial.®. However, the central part is only weakly
attractive in the even channels (see Fig. 2), con-
trary to the behavior of the pehnomenological
potentials. The insignificant attraction in the
triplet even state suggests that the colored quark
exchange mechanism is not adequate to keep the
deuteron bound. The spin-spin interaction is
found to contribute repulsion in all the four
channels of the central potential (see Figs. 3 and
4). Itis also found that in the even channels the
QEP is repulsive inside the hard core, a feature
which also appears in the investigation of
Ribeiro.?” Whereas, in Ribeiro’s analysis this
short-range repulsion is ascribed to the gq con-
finement interaction; in the present model it
arises from the short-range spin-spin gq intre-
action. Similar conclusions are also reached in
the work of Liberman® and in a calculation of the
NN potential as given by the MIT?® bag model of
QCD.

As regards the origin of this repulsion, Machida
and Namiki?® had ascribed the hard core of the NN
interaction to the exclusion principle. However,
it turns out that when color is introduced one can
construct’ a six-quark wave function with the
spatial structure (1s)® so that the exclusion
principle in itself does not rule out six quarks
being localized—as in a NN collision. The
repulsion observed in the QEP at short dis-
tances originates from the gluon interaction
rather than from the exclusion principle. Lastly,
if one were to define the radius of the short-range
repulsion in the QEP to be nearabout the point of
steepest rise, it is seen from Fig. 1 that this
>~ 0,55 fm. The consistency of this value with the
hard-core radius expected on the grounds that
the nucleon core size is ~0.3 fm (Ref. 15) is
indeed noteworthy.

2. The intermediate range

As pointed out above, the QEP’s central part
falls short of providing sufficient attraction in

the triplet even and singlet even states in the in-
termediate range. The implication is that the
deuteron cannot be bound by this mechanism of
exchange of colored quarks. As it is impossible
to alter the shape of the QEP curves—since the
theory is truly microscopic and all the OGEC
constants have been reliably fixed once for all—
this conclusion of insufficient binding is irrevo-
cable.

B. Spin-orbit part

Putting together the 14, 16, and 36 terms of
the spin-orbit potentials into (3.5), one has in the
various dinucleon states

(VIR ))po = 525[140m,,(16) — 15m,,(14)

—~ 55m, (36)], (5.8)
(ViR xg = Fr[- 88m, (16) - 6m,,(14)
+50m,,(36)], (5.9)

and the spin-orbit potential obviously vanishes in
both the singlet states. It is seen from Figs. 5
and 6 that the spin-orbit potential arising from
the exchange of colored quarks is very weak,
contrary to that observed in phenomenological
potentials. However, the inverted signature of
this interaction, as demanded by experiment,
emerges correctly from the present theory.
Within the framework of meson theory, a close
connection exists between the hard-core repulsion
(produced by the exchange of vector mesons) and
the inverted signature of the spin-orbit NN poten-
tial.3® Even though the QEP yields both the hard-
core and the inverted spin-orbit interaction, the
link between these two features is not transparent.

At this stage one might suppose that this defi-
ciency of the QEP might be overcome by introduc-
ing a spin-dependent confinement potential.é3!
Already, to have a OGEC theory of the states of
charmonium—that explains all the observed
splittings of levels—it has been found necessary
to postulate a spin-dependent confinement poten-
tial. One therefore wonders whether a similar
correction is necessary here, too. Moreover,
the inclusion of this correction to the spin-orbit
potential does not vitiate the values of the OGEC
constants, since, for s-wave baryons, there is
no contribution to their mass from the spin-orbit
potential. Thus, replacing the quantity -(1/7,,)
by (1/7;0d/dv,;)V(r,,) in the spin-orbit terms,
one can see that if V(r;;)=(1/7;,) - (r;,/aP(1/a),
then —(1/7,,)* —~ —(1/7;,)* = (2/a®). This correction
does not perturb the already right signatures ob-
tained for the spin-orbit potential: Carrying out
a little algebra, it can be seen that the correction
amounts to the replacement
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that its strength is quite weak. The signatures of the
QEP are nevertheless correct.

i)~ i) = 2 (B @), (6.10)

where 1(14) =42, 1(16) =+, and 7(36)=¢. It has
been found that this correction is too insignificant
to alter the conclusions already reached regard-
ing the spin-orbit potential.

It is not out of place here to record also the
futility of applying a similar correction to the
central part of the QEP, due to the additional
spin-dependent confinement potential. This cor-
rection is tantamount to replacing 5(F)—multi-
plying S, ° S, in the gqq interaction—by 5(F) + 3/
2n1a®. In terms of the radial EV’s, the replace-
ment is m,(if) = m(if) + (4/a®)(~ a#?/m*c *)R(R).
That is to say, the correction is independent of
(i) and consequently, in view of the structure in
(8.5), the total correction averages to zero. As
regards the tensor potential, it can be seen that
an oscillator confinement potential cannot possibly
lead to a tensor potential. )

C. The tensor part
The total tensor pbtential is found to be

(V4R ) po = 2r[2m,(16) = 1Tm,(36) ‘
- 5m,(14)], (5.11)
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FIG. 6. See caption to Fig, 5.

(VR g = 2r[4m,(16) + 11m,(36)
-m(14)]. (5.12)

Figures 5 and 6 exhibit these plots, in compari-
son with those of OPEP and the phenomenological
potential.® The QEP is seen to suffer from the
drawback of insufficient strengths, even though
the signatures in both the channels come out
right. The weak nature of the quark-exchange
tensor potentials is, however, a happy circum-
stance, since the OPEP supplies most of what is
called for by experiment. Neither of the theo-
retical potentials by themselves are close to
reality, but their sum, however, provides a
better approximation to what is observed.

D. The L? and the quadratic spin-orbit terms within the QEP

In defining the action of the exchange operator
on coordinate space WF’s, the higher order
gradient operators acting on the WF of relative
motion Jsr(R) were neglected on the grounds that
¥sr(R) varies slowly with R. If the higher order
gradient operators are retained then one will
arrive at the £? term which is often included in
the analysis of the phase-shift data.!»> The way
to include the quadratic spin-orbit interaction at
the NN level is straightforward. In the deriva-
tion of the gq interaction (the Fermi-Breit inter-
action), if the relativistic corrections O(1/c*)
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are also included, this term will naturally come
about. In the interests of simplicity, many of
such finer refinements have not been included in
the present analysis.

VI. COMPARISON WITH CONTEMPORARY
CALCULATIONS BASED ON QUARKS

Except for the work of Barry,'® all the approach-
es to the NN interaction via the quark model have
used colored quarks. In the work of Barry, the
assumption is made that a diquark is a fermion,
and the problem is thus reduced to that of two
“hydrogenic atoms” interacting with each other.
This treatment, moreover, lacks the merit of
using reliable coupling constants and quark
masses. The defect in the work of Libermann®
is that the constants have not been well deter-
mined, and for the gq interaction, too restricted
a choice is used. (The gq potential is taken to be
just the sum of an oscillator potential and a “con-
finement” spin-spin potential.) These are prob-
ably the reasons which lead to a strong repulsion
in the even channels as well of the central NN
potential, calculated by Libermann. Kislinger!
has calculated the NN force arising from the ex-
change of a massive dressed gluon. By arguing
that interquark distances (when the quarks are in
different nucleons) are nearly the same as the dis-
tance between the nucleonic clusters, he replaces
the gq interaction by the NN interaction. While
this assumption is justified for the radial coor-
dinates, the same cannot be said of the spin-
isospin coordinates. Moreover, the constants
used have no authenticity, and quark dynamics is
totally ignored. The basic observations made by
Robson'? and Ribeiro®” are borne out in the present
study—regarding the signs of the central part of
the QEP in the various dinucleon channels.

VII. CONCLUSION

These labors having drawn to a close, one must
examine with hindsight what ground one has
covered and learn the lessons one can. What
measure of reality is there in the colored quark
exchange mechanism as a possible origin of the
nuclear force? Certainly OGEC is not the whole
story in so far as all the aspects of the NN inter-
action are concerned. Its chief merit lies in the
strong short-range repulsion that it gives in the
odd channels of the central part, i.e., quark ex-

* change yields the property of saturation of nuclear
)

M(0;S, T)=1

L,1,10, 1

X{(13)5s

2 (), (13)5:8, M| Olspin)Pgy| ()3,

1T, M {P;e[(l‘

forces. Its weak tensor part ties in well with the
close agreement between the OPEP’s tensor
potential and the tesnor potential of the phenom-
enological potential. Considering the lack of
sufficient attraction in the intermediate range,
one can say that the QEP is somewhat compli-
mentary to the OPEP.

If QCD is to be taken as the path leading to
reality, then one must show on its basis how
meson exchanges can exist. A preliminary step
in this direction has been taken by Lovas,® who
has shown by a simple generalization of the
Okubo-Zweig-Iizuka (OZI) rule that the mesons
6, S* will have the weak coupling strengths they
have. The next step ought to be in the direction
of deriving the OPEP from a possible general-
ization of the present OGEC model so as to in-
clude the sea quarks as well in baryons.

APPENDIX A

In evaluating the SI EV’s, it is found that all of
them share a common factorization property
which can be brought to light by studying the
structure of a typical EV,

M(0;S, T)=(o 5| O(spin)PePle | d, 0 . (A1)
The state |¢,¢,) is a six-quark state of total spin
(isospin) =S(T'). ¢,, ¢, are three quark states of
spin (isospin)=%(4). The structure of this cluster
state (being totally symmetric in the spin, isospin
coordinates of three quarks) is

——[x ENEE) +x56 )XA(Z)] (A2)

where Xg 4, is a three-quark state which is sym-
metric (antisymmetric) in the labels of the first
and second quarks and has total spin or isospin
=1 i.e

2 °

Xsa,=|[100)5]5). (A3)

If the state is symmetric (antisymmetric) in the

first two-quark coordinates, then the total spin

or isospin of the first two quarks will be 1(0).
The structure of ]gbadb,,) is now seen to be

| $ay) = El(l“ 43S, M)
x| (B2)s, (L)% T, M) . (A4)

The EV (A1) is now seen to possess the factor-
ization property

(113)4;5, M)

5T, My . (A5)
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Considering the simpler of these matrix elements, i.e., the one in isospin space, it can be seen that it
will be diagonal in I,,7;{I’. The reason is that the operator PJ; does not act on the coordinates 1, 2; 4,5,
which are characterized by 1, ; I/, 1. Thus, eventhough the spin operator O (spin) may act on the quarks
1,2; 4,5, the presence of the isospin-matrix element makes the spin-matrix element also diagonal in the
ls. Therefore

M(6;S, T)=1 D ((13)%, (I'5)3; S, M | O(spin)PL, | (13)%, ('3)%; S, M)
mw

X((IB)E, (1205 T, My | Pl (13)5, ()35 T, M) . (A6)

Again considering the isospin-matrix element, denoting the states by [l, 1'; T,M,) and changing the basis
to one in which P}; diagonal, one has

e, 1) =(1, U3 T, My | Plg| 1, 1; T, M)

DU jiaas ) (0 1 J3e

= E 4{[71245] [jas] U{245]U5;6]}1/2 3 3 Jse 3 % Jie
11245191245 L .

36, f36 + 2 1T)F 1T

X (1) jtaagy &3)ikes Ty My | Pho| (0 )jrasy (32 Vises T> M)

where the last matrix-element is equal to Thus (A6) becomes
(= 1)1*9385 (1545, ffa45)0 Uisgs J26) - A 1oL
Therefore, M(0;S,T)=1% ;4 11
Te@ 1= 2 4ljsses)Lise] b i
36171245

LU g} X spin matrix element. (A11)
1245

Wl (~1)t*936 (A7) Equation (A11) embodies the factorization property
22 Jus ’ for the SI EV’s. Repeated use will be made of
+ 3 T this result in the text.

and [I]=2I+1. Using the theorem® APPENDIX B

In evaluating the radial EV’s, the following

L e
i Je D three -dimensional definite integrals are found to
E s Jz Jagp Lirs)[aal(—1)P92"2e"28704 be useful:
J13edaa f | .
J1z Jos I f dK exp(- BR® +iAK - R)
. . /2 2p2
Ji Ja _[7y\} AR
‘1 .4 '14 —(E) exp(————4B ), (B1)
= ]2 ]3 ]23 . (A8) -
N . . dK - . - -
Jia Jos 7 ‘Ez- exp(---B:K2 +iAK- R)
: ' -1 2p2
Equation (A7) reduces to —q3/2 AR Y _1_’ A’R . (B2)
2 2’ 4B
7 11
2 2 .
e, 1) =&1 1" L (A9) f K2dK exp(~BK? +i AK* R)
% % T m3/2 AZ2R?2 AZ2R2
A =5z573 (3-— exp( ), (B3)
If O(spin)=1, then one has perfect symmetry 2B 2B 4B
between spin and isospin, -
111 f%(ﬁ‘ﬁ)exp(—Bﬁz+iAﬁ-ﬁ)
N, =4<% U } (A10) _iw3/2x 8 (?_ AZR? .
.;:Ls -2 AzRy2’4B’(B)
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[ ®-RaRexp(- B +14K-R)

in®/? AR? A?R?
2 BS/Zexp(_ 4B >, (Bs)

f(KKZR) dK- exp(—BK2+zAK R)

__8173/2[_1 lAsz + (Asz
=Rl 22> 7B )T\~ 4B
A2R2 1/2 A2R2 3/2 )
A& e
fiexp(—sz—iﬁ'i)df

() ool ). o

[ %2 exp(- B%® - AR - %
_ A2K2 AR

fxix, exp(— BX?2 - i K- X)dx

(432)(’“{ —235”)( >/zexP('§), (B9)

where

y(&, %) =VT erf(x) =2 f exp(-t2)dt,  (B10)

and
2

. ‘
¥, x2)=f exp(-t)t"dt (B11)
(o]
is the incomplete Gamma function of order =.
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