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Shape of eigenvalue distribution for bosons in scalar space
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Analytic expressions for obtaining first four moments of noninteracting as well as interacting bosons have
been given in terms of matrix elements. These expressions have been utilized to obtain general conditions
under which the eigenvalue distributions for bosons tend towards the Gaussian distribution. Results for
pairing and Q.Q operators in an s-d boson shell have also been given.
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The assumption of applicability of a strong cen-
tral limit theorem (CLT) to two-body interactions
has brought forth a tremendous simplification in
the nuclear shell model spectroscopy. ' The con-
ditions on traces of matrix elements, which give
rise to normal eigenvalue distributions (EVD) for
fermion systems (noninteracting and interacting),
have been clearly formulated. "' The question
of normality of EVD for boson systems was re-
cently raised by Bortignon ef al." They have
given analytical expressions for the first four
moments of noninteracting boson EVD. These
expressions, however, do not reveal the condi-
tions for normality of EVD; also, the more in-
teresting and more realistic case of interacting
bosons was not treated. In this paper, we pre-
sent simple analytic expressions for the first
four moments of EVD for noninteracting and in-
teracting bosons. We shall also discuss the
conditions under which EVD for bosons tend to
Gaussian distribution.

The m-particle scalar average (H(k))" of a &-
body operator H(k) in the space defined by N sin-
gle-particle states, corresponds to the average
of expectation values of H(k) over all the states
of m particles, and can be expressed in terms
of (H(n))'.

where (,) is the usual binomial factor. Equation
1 is valid for both the fermions and the bosons.
The number of states of m bosons in the space of
N single-particle states is given by ("'„'); hence,
in terms of the trace of H(k) in 0-particle space

((H(k)))", we obtain

(H)'=Q ~,'n, ++~,'n, (n, —1)

The first term above is the one-body part of (H)'
and its scalar average in m-particle space is
given by m2&,'/¹ The remaining terms form
the two-body part of (H)' and their scalar average
equals [m(m —1)/N(N+ 1)]Z;q,.'. Hence the
average va, lue of (H)' in m-particle space can be
expressed as

(y) m(N+m) ~ - 2

N(N+1) ~" '

Similarly the scalar averages of (H)' and (H)4

(4)

where the double bracket (( )) indicates the trace.
For noninteracting bosons, the Hamiltonian H is
a one-body operator H=Z, &,n;, here &, is single-
particle energy and n,. is the number operator for
the ith single-particle state. Except for the cen-
troid which defines the location of a distribution,
the shape of the EVD is determined by its cen-
tral moments. Therefore, we shall deal only
with traceless single-particle energies j,.= q,.
—N 'Zq, , and shall evaluate moments of H
=H-nN 'Zq, , where n=Z;n;, for noninter-
acting bosons. We evaluate the second moment
of H by separating (H)' into its one-body and two-
body parts:
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can be obtained by separating H' into (1+2+3)-
body parts and H' into (1+ 2+ 3+ 4)-body parts.
Adding the contributions from different k-body
parts gives us the following expressions:

(~}. m(N+m)(N+2m) gN(N+ 1)(N+ 2)

y, } m(N+m) g - e
N(N+ 1)

m(m —1)(N+ m)(N+ m + 1)
N(N+ 1)(N+ 2)(N+ 3)

x 3 q,.' +6 j,-4

(5)

resentations of the U(N} group; F(k) =g„'~ F"(k),
where F"(k) is the rank-v part of F(k) and trans-
forms as a [2v, v '] partition under a U(N) trans-
formation. F"(k) can be written as a, product of a
unitary scalar operator and a completely IR
v-body and rank-v operator F(v):

v"(k)=(" ')e().
k —v

In order to find out the different unitary IR parts
systematically, we introduce a contraction op-
erator D, defined by the following double com-
mutator:

It is quite interesting to note that, by substituting
-N for N in the corresponding expressions for
fermions, and then by taking the absolute value
of each term, one obtains the above expressions
for the boson systems. For example,

m(N -m)(N —2m)
fe22nione N(N 1)(N 2)

goes to its boson counterpart by substituting
-N for N and taking modulo of the final result
(however, one cannot obtain moments of EVD for
fermions from those of bosons as we will be left
with phase ambiguities). This was previously
conjectured by Nomura', using this principle one
can obtain several new results. For example, a
class of Wigner coefficients of the O(N} group
can be obtained from those of the Sp(N) group via
moments in quasispin subspaces. '

Another interesting one-body Hamiltonian is
H=P &,&A,B&, where .q,.z.is an off diagonal single-
particle matrix element when i4 j, &,, is the
usual single-particle .energy, and A„B& are sin-
gle-particle 'creation and destruction operators,
respectively. Such a Hamiltonian is widely used
in solid-state physics, where &,.&

(i 2k j}can be
identified with the exciton hopping integral be-
tween sites i and j. The traceless single-parti-
cle matrix elements q,.&, in this case, are given
by &,.&=&,.&- 5,&N 'Z, &» . The expre. ssions for
second, third, and fourth central moments of
this Hamiltonian can be obtained by substituting~-3 4~p, , ~p, , and~&, by~&&A& ~@&Ape&&p

Zq,.~j~g„q„., respectively, in Eqs. 4 and 5 given
above.

The preceding treatment of a one-body Hamil-
tonian was simple and elementary. We shall
start with some general results before going to
the case of moments of EVD for bosons interact-
ing via two-body interactions. A number con-
serving, k-body operator for bosons in the space
defined by N single-particle states can be de-
composed according to the irreducible (IR) rep-

N

D+=Q [B,, F],A,

D'A'(k)=get N+ +kv —1)v"(k x).
V y

By inverting this expression we obtain

)
1

(
+u+Nk —

1)
'

k —v

( 1) '" (N+2I -2)
'

t o „(t-k+v)

x " lD'F(k).
t-k+ v j

(10)

Application of this to a one-body operator H
=Z (.,n, gives us the IR v = 0 part as n Z e, /N,
and the IR v= 1 part as Z j,n, in terms of the
traceless single-particle energies j,. Similar
application of Eq. (10}to the two-body interaction
given by e Z V,»,A, APP„e xpre sse din terms
of the two-body matrix elements V,»„gives us
the following three parts: (i) the IR v = 0 part

n(n - 1)g V&&&&/[2N(V + 1)],

(ii) the IR v=1 part

Q (n - t)(N+ 2)- Q ((v(„-2,,g v(,.(iw) A P, ,
i, k

and (iii) the IR v=2 part

' Q Vlgk2AlAPA

The operator D reduces the particle rank (or the
body rank} of F by one, without altering its uni-
tary rank. Since 3'(v) is completely irreducible,
any reduction of its particle rank by D destroys it;
D %(v) =0. It should be noted that this contraction
operator is different from similar contraction op-
erators for fermions. "Contracting F(k) r times
by D gives us
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Here V,», is the IR v= 2 matrix element, ob-
tained by subtracting v=0 and v=1 contributions
from V]~~,.

We have already given expressions for the
first four central moments of EVD generated by
the one-body (which is essentially IR v = 1) in-
teraction. Now we give the final expressions for
second, third, and fourth central moments of
EVD generated by a two-body, IR rank v = 2
Hamiltonian B. The procedure leading to these
final expressions is straightforward, and con-
sists of (a) decomposing H" into parts according
to the body (particle) rank, and (b) using Eq. (2)
separately for each part. In order to take care
of the bookkeeping of various terms, which is
the only difficult part in the whole procedure;
we use the Feynman diagram type approach. ' '
The following is the expression for the ith cen-
tral moment p, , [g", = ((H)')", H is the traceless
part of H in m-particle scalar space] of EVD for
m bosons interacting via two-body, IR rank v =2
interaction V:

i goes from 2 to 4. All the necessary in-
formation about the two-body, v=2 interaction
goes in the evaluation of coefficients C;. The ex-
pressions for these in terms of the two-body ma-
trix elements are given below:

a
Ca 4 ~ V]galVy)]&& C3 8~ ~zggt~ggfft n~m n& j &

C3 =2Cs +~ ~iggp~~„&~Vmpes &

C ' =
—,
' (AA1),

C
' = n(AA1)+ CC1+ pBAI + 2(CA 1),

C =-', (AA1)+ 6(CC1)+ 3(BA1)+6(CA1)

+ 3(AB1)+3(C,')',
where

y, (m) = '~'y, (1),

yz(m) = [yz(1) + 3](m + 6N ) .
(14)

Here the summation is over all labels. These
results can be very easily extended to evaluation
of the moments of EVD generated by a general
(1+2)-body interaction H; the corresponding ex-
pressions are given in the Appendix.

The necessary information C; for the evalua-
tion of the ith moment of EVD in the m-boson
space, generated by IR v=2 interaction, can also
be obtained from the ith moment in 2 to the i-
boson spaces only. One, however, would expect,
due to the two-body character of the interaction,
that the ith moments in 2 to 2i particle spaces
would have been necessary" for evaluation of the
ith moment of EVD in m-boson space. The valid-
ity of this fact in fermion spaces" can be at-
tributed to the particle-hole symmetry of the
IR v =2 interaction. There is no concept of hole
for bosons, and hence one can see that the IR v
= 2 nature of interaction is responsible for this
simplicity, and in fermion spaces, the particle-
hole symmetry is a consequence of the IR v=2
nature of the interaction.

We shall now discuss the conditions for the
normality of the EVD. The first two moments
of the EVD tell us about the location (centroid)
and the spread (width) of the EVD. The informa-
tion about the shape of the spectrum is given by
the third and higher central moments of the EVD.
In principle, all the higher moments are neces-
sary for determining the shape of EVD; but here
we shall deal only with the moments up to fourth
order. The corresponding shape parameters are
the skewness y, = p, /(p, )'~', and the excess y,
= p, n/(p, ,)' —3. For the Gaussian or the normal
distribution, both y, and y, are equal to zero.

Let us start with a pure one-body interaction;
the central moments for such an interaction are
given by Eqs. (4) and (5). In the dilute limit, de-
fined by m-~, N-~, but m/N«1, we find that
the shape parameters y, (m) and y, (m) for m-boson
EVD approach asymptotically to values given by
the expressions

AAI =Q Vg»t~a(mn ~mnonVopc J ~

AB1 =Z Vj»~VgmgnVno~pVpnog s

CA1 =
V&&a, VamnoVoimp ~eggy ~

C 1=+V,.»,Vmn&oVo«~V»„, .

(13)

Thus, in the dilute limit, both y, (m) and y, (m)
approach zero if the shape parameters y, (1) and

y, (1) for one-boson EVD are finite. The same
result was obtained for the fermion EVD in the
dilute limit. ' Thus in the dilute system, one gets
the same result irrespective of the fermion or the
boson nature of particles, since the Pauli's ex-
clusion principle has negligibly small effect when
N»m. However, for bosons, since there is no
limit to the number of particles in any single-
particle state, unlike fermions, we can consider
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the limit m- ~ with finite N. This is called the
dense limit; the second central moment and the
shape parameters in this limit are given by

((H)')" = o'(m) = m'a'(I)/(N + 1),
(N+ I)'~'

r, (m)=2r, (1) (N, 2)

{[y,(1)+3](N+ 1)—(2N+ 3)j
(N+ 2)(N+ 3)

(15)

The width of the m-boson EVD v(m) increases
linearly with m. The shape parameters, how-
ever, approach values which are independent of
m, but which very much depend on the shape
parameters for one-boson EVD and the size of
the single-boson space ¹ For large values of
N again, the EVD can be considered Gaussian if
y, (1) and y, (1) are reasonably small. For exam-
ple, in the case of noninteracting particles, with
N equidistant single-particle states, we have

y, (l) =0 and y, (1)=-1.2 [(N'+1)/(N'-1)]. We
can see that for N= 5, the absolute value of ex-
cess in the dense limit is less than 0.24; for
N =10 it is less than 0.12. Thus, the EVD in this
case approaches Gaussian in the dense limit if
N&5.

We now consider the dilute and the dense limits
of the shape of EVD generated by a purely two-
body, IR rank-2 interaction V, by introducing
dimensionless quantities P(m, n), defined by

gn
"}=(c)- ~ .

2
(16)

These are the ratios of traces of various com-
binations of the matrix elements, and are char-
acteristic of the interaction used to generate the
EVD. In the dilute limit, y, (m) approaches
NP(3, 2)/m+P(3, 3) and [y,(m)+ 3] tends to
N P(4, 2)lm +NP(4, 3)/m+P(4, 4). Thus the EVD
approach Gaussian distribution if P(3, 2) «m/N,
P(3, 3)«1, P(4, 2)«m'/N', P(4, 3)«mlN, and
(P(4, 4) —3)«1. One can translate these condi-
tions to conditions on the shape parameters of
EVD for 2, 3, and 4 bosons. The skewness and
excess in dilute limit approach constant values

v 2 y, (2)+ u 6 y, (3), and y, (2) —6y, (3)+ 6y, (4),
respectively. Thus the approach to Gaussian
distribution in the dilute limit is decided by these
shape parameters of EVD for 2, 3, and 4 bosons.
Since in the dilute limit, bosons and fermions
behave similarly, the same conditions will apply
for fermions. This clearly shows that for purely
two-body, IR rank-2 interaction, the assumption
of applicability of a strong central limit theorem .
is not valid. The shape of the EVD in the dilute

limit does not necessarily approach the Gaussian
distribution with increasing m, as the limiting
values of y, (m) and y, (m) reach constant values
depending on the shape parameters of the EVD
for m =2, 3, and 4. Of course, the addition of
the one-body part of the interaction and the IR
rank-1 part of the two-body interaction to the
two-body IR rank-2 interaction is likely to alter
the whole picture, and the conditions for nor-
mality of the EVD will have complicated struc-
tures. It is known that the IR rank-1 part of the
interaction is quite important for the nuclear
structure studies. "

In the dense limit (m - ~, N finite) valid only
for bosons, the values of P(3, 3}and P(4, 4) com-
pletely determine the shape of the EVD. For,

P(3, 3)[N(N+1)(N+2)(N+3)] i
(N+ 4)(N+ 5)

P(4, 4)N(N+ 1)(N+ 2) (N+ 3)
(N+ 4)(N+ 5)(N+ 6)(N+ 7)

For large N, we get y, (m}=P(3, 3) and y, (m)+3
=P(4, 4) in the dense limit. Again one can ex-
press these conditions in terms of the shape
parameters of EVD for 2, 3, and 4 bosons, using
the following expressions for P(3, 3) and P(4, 4):

P(3, 3)=(N+4)( )
&3(N+4) l '~'

) r (3) —r (2)

(4 )
(N+ 4)

6[ (4) 3] (N+ 4)(N+ 5)
N(N+ 1) ' (N+ 2)(N+ 3)

6[ (3) 3]
(N + 6)(N + 4)

(N+ 2)

+[y, (R)+ (3+)y7y)) .

So in the dense limit also, the skewness and the
excess of EVD for nz bosons approach constant
values depending on the values of y, (i) fori =2, 3
and y, (j) for j=2, 3, 4. The approach to Gaussian
limit depends only on these numbers.

Two sets of matrix elements have been given
by Bortignon et a/. ' for the d bosons of the inter-
acting boson approximation model. " Using these
two sets of matrix elements, we obtain P(3, 3)
= I.V8 and P(4, 4) =23.12 for one interaction,
while the second one gives P(3, 3) = 2.09 and
P(4, 4}=25.55. The size of the single-particle
space is given by N = 5. So, in the dense limit,
the limiting values of the shape parameters are
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y, (m) =0.81,0.95 and y, (m) =0.27, 0.61, for the
two interactions, respectively; hence the shape
of the EVD is nowhere near Gaussian. A pair-
ing interaction in the space of s-d bosons with
N = 6 gives P(3, 3) = 1.46 and P(4, 4) = 15.64; hence
the limiting values of y, and y, in the dense limit
are 0.73 and -0.24, respectively. Similarly, a
Q Q interaction in the s-d boson space (having
both IR rank-1 and IR rank-2 parts) gives the
following limiting values for y, (m) =-0.76 and

p, (m) =0.86 in the dense limit. Incidentally, for
fermions and the Q Q interaction in a large j

' orbit, the values of y, and y, in the middle of the
shell have been obtained by Nomura, "and these
are 1.26 and -0.6, respectively.

One interesting feature of the boson systems
is the complete domination of the two-body part
of the interaction, over the one-body part for
large m. This can be seen from the expressions
given in the Appendix for moments of the (1+2)-
body interaction; each factor containing the ex-
ternal single-particle energy term (e) gets
multiplied by m, while each factor containing a
two-body matrix element (V} has a coefficie'nt
proportional to m' in the large m limit. For ex-
ample, the one-body contribution to p.4 has a
coefficient which goes as m', and the corres-
ponding coefficient for the two-body contribution
to p, 4 goes as m' in the dense limit. One also
sees that in this limit the shape parameters ap-
proach constant values, which are not neces-
sarily those of a Gaussian distribution. For the
dilute limit, one can get the result of noninter-
acting particles only if the one-body part (exter-
nal single-particle energies) is dominant over the
two-body part.

Finally, let us consider the shape of ensemble-
averaged EVD, using an ensemble of random in-
teractions. The ensemble averaged skewness will
be zero for any ensemble (with matrix element
mean = 0) of random interactions, because each
necessary matrix element trace for the evalua-
tion of the ensemble averaged third moment will
have an odd number of matrix elements. We
therefore need to consider only the ensemble
averaged excess in this case. For the dilute
limit one can show that the ensemble averaged
eigenvalue distribution is Gaussian. For the
dense limit, one gets the Gaussian distribution if
N is sufficiently large; the shape parameters for
finite N in the dense limit have complicated
structure and shall be discussed elsewhere.

In conclusion, we have obtained analytic ex-
pressions for the first four moments of the EVD
of interacting (via two-body interactions) and
noninteracting boson systems. The conditions
leading to normality of the EVD have been dis-

APPENDIX

Here we give expressions for the first four
moments of the EVD of a general (1+2)-body
Hamiltonian (H):

H=+ g, IA,B~+ ~ Q V~~~, A, Ap .jj,
8~0+ ~v=&+ ~v=2

=H, +II, (A1)

( -1)
H Hp= ll &'' jN+

( i Vgyig|+

H"=' = k = g, )A,Bq,

N~ " '~ N+2

&&y
kgb

1H" ' = V = ~ V]ya, At A& B~B»

m m(m —1) ~" N(N+1)

(A2)

&(H)'& =N N, gg, ,~„.+ &(V)'&,

&(H)p&m
m(N+m}(N+2m)
N(N+ 1) (N+ 2} jj jk

im &N+m+ 1

i3 ii
'(s&, )+ ((8'&,

(5)
fN+ 4i

where

Vigor ga yr ~

Ei =
Viola, V (A3)

cussed. Extension of the present work for con-
figuration subspaces is straightforward.
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((H)n)™N~m
M, + [12K,+ 2G, +2G, +2G, + E, +3(M,)'+6M, ]

(.)("'.")
nn+1 '

ti4( n+3)

'. '("'.")
( )("', ' '

+ [24K, + 2E, ]+ [12G,+ 6G, + 12G,+ 12G, + —,G, +2F, + 12E,+ 6E,)".,";") (.')( )

+ [4'+ 24En+ 12En]+ ((V) )

'.)("'.")
(.')I";"

where G4 =+ Vippi p in &ii&mn ~

1 if gi& 2 i j jk kl li ~klmff~mnkl y

~i jkl ik jm ml y Fi = Vipp, VppmnVm ni j$tp ~ (W4)

~ggkl+kniy lm mg y F2=+ V~pp, V, i„Vp, fnp

G2 VipplVmnij~pm~4 i F,= Vi~k, VklmyVmgin eP.

~3= ~igkl kmin
Note that the expressions for ((V)') are given in

Eq. (11) of the text.
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