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Use of the boson-expansion theory for the description of collective nuclei
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A clear understanding of how to construct the boson expansion of a collective fermion pair operator is

given. The criteria for the applicability of the procedure are also discussed. Following this prescription, the

Pauli-principle violation is made negligible for the low-lving states of collective nuclei.

NUCLEAR STRUCTURE Boson expansion; criteria for truncation and conver-
gence; collective motions.

I. INTRODUCTION quasiparticle-pair operators which are needed:

In the past several years, we have been using
the Belyaev-Zelevinsky' type boson-expansion
theory (BET) as a tool for describing states arising
from quadrupole vibrations and/or deformations
in even-even nuclei. ' ' The first paper' and a
part of the second paper' in this series dealt with
the formal aspects of the problem along the lines
developed earlier by Sorensen, ' with a few key
improvements. Succeeding papers were mostly
of an application-minded nature. In Ref. 4, exten-
sion of BET to a higher order (sixth) was made to
show the convergence per se. This convergence,
i.e., the possibility of truncating the series expan-
sion, was verified numerically and was seen to
hold consistently in later applications.

Recently, Silvestre-Brac and Piepenbring' fol-
lowed the prescription of Ref. 2, in treating the
E = 0' bands of deformed nuclei, and claimed that
the boson expansion breaks down. Our most recent
applications, ' however, are based on a some-
what different understanding of the boson expan-
sion' than in Ref. 2. The purpose of the present
paper is to clarify, first, the difference in under-
standing between Refs. 2 and 6, and then show that
the use of the latter is more correct for practical
applications of BET. Discussion will also be
presented on how the boson expansion should, in
fact, be made and what are its limits. It will be-
come clear why the problem, pointed out by
Silvestre-Brac and Piepenbring, was not en-
countered in our applications, ' and why it will
probably disappear in their application as well,
if they switch to the newer understanding of Ref.
6.
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See Ref. 2 for more details of notation.
In order to convert a fermion Hamiltonian,

which may be written as products of the Bt and
C operators, into boson expanded form, we begin
by writing series expressions for the fermion pair
operators as

D . = (I+5.- - Pi (3)
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Here a,. is a quasiparticle fermion creation op-
erator and g~, „ is an element of some N XN
unitary matrix, where N is the number of ways
to couple two of the quasiparticle states to an
angular momentum X, as denotedby squarebrackets
in Eqs. (I) and (2). In practice this matrix is
chosen to be the result of a Tamm-Dancoff cal-
culation, which results in a single collective mode
and N —1 noncollective modes. " Using the ab-
breviated notation a=(o.'Xpj and p=(j jjq), we may
summarize the commutation relations between
fermion operators as'

II. BRIEF SUMMARY OF THE BOSON EXPANSION
METHOD B,=xA~+ Q X,(abed)A, A,A,

bed

%e begin by recapitulating a few formulas of
Ref. 2. As done there, we first define the two-

+ g X,(abcdef)A~A, A~A, A&+
bcdef

(6a)
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C~t =Xo(p)+ Q X,(p, ab)At A~

+ Q X~(p, abed)A, AtA, A~+
abed

in terms of boson operators A and A~ that sat-
isfy

[A„At] = 6,b.

(6b)

X4=X6= = 0, (6)

i.e., that C has a finite expansion. The general
forms for X, and X, are given as

X,(abed) =r(6„5,~+ 5„5M) +s Y(abed),
/
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The operator P,b exchanges the indices a and b.
The coefficients r, s, u, v, and w in (9) can be

expressed' in terms of x. One can then substitute
the boson expansion series, (6), into the Ham-
iltonian. This gives an infinite boson Hamiltonian
defined on the boson space spanned by all states
of the form

~B) =(A, }"x(A )"' (A, )"&~0)s,

where E is the number of multipoles possible, and
a„.. . , a„distinguish between different modes
of each multipole. The solution of such a problem
would yield exactly the same answers as the
original fermion problem, but obviously is even
harder to solve. One realizes then that some
truncation is necessary. If one begins truncation
at this stage, however, then one has begun too
late, and it is at this juncture that the prescription
given in Ref. 2 could have been misleading.

By substituting B' and C of (6) into (4), the' latter
becomes a set of equations for the expansion co-
efficients X, which can be solved analytically. '

One nice property found" is that

X0=2j,5, ,. 5~(1-—x ), X2(p;ab) =P~~, ,

HI. TRUNCATION OF THE BOSON EXPANSION

In our applications' ' of BET, we intended to
describe the properties of the positive parity low-
lying states of even-even nuclei, which show
collective quadrupole behavior. In practice, we
may restrict ourselves to only a few modes of
excitation, and describe many of the low-lying
states of nuclei as superpositions of these modes.
Whether or not this ansatz allows us to describe
data, is shown a Posteriori by comparing the ob-
tained results with experiment.

Before continuing, we clarify why the fermion
pairs must be expanded in a possibly infinite
number of boson terms. The answer is the need
to satisfy the Pauli principle and this becomes
clear if one considers the following example. Let
a given fermion state be denoted by ~E). Suppose
that this state definitely (with occupation prob-
ability of unity) contains two quasiparticles in the
single-particle states (j,m) and (j, rn). . No-w

consider a state [o~ o.~~ ]» ~E). By the Pauli
principle, this expression contains some terms
which vanish; e.g. , for p, =0 and j, ~j„one term
out of 2j, +1 vanishes. Now the state E) must
have a counterpart (or image) in the boson space
of the form ~B), as given above. If we let only
a single boson term represent the pure config-
uration [o.J nz ]», i.e. , consider only the first
term of (6a), then when we construct A tB), we
find that the cancellation of Pauli-principle vio-
lating amplitudes does not take place. Thus, in
some cases, the operation of A results in a state
which has components violating the Pauli prin-
ciple. It is the succeeding terms of Eq. (6a} which
check the fermion content of ~B) and cancel out
any Pauli-principle violating terms. Thus the
expansion is necessary to strictly satisfy the Pauli
principle.

The above example hints at why it is inadvisable
to boson expand pure fermion pair states such as
[o.~t o.'~~ ]. Things can go bad very quickly if one
does not expand to very high order. The interested
reader is referred to the work of Marshalek. "

We now return to the question of truncation which
comes into our discussion in two ways. To dis-
cuss the first, we will begin with Eq. (6). We con-
sider the X=2 collective solution of the Tamm-
Dancoff problem. It defines a fermion operator
B~,» of physical interest, the other B operators
corresponding to excitations which lie at or above
twice the energy gap. ' In the summations in Eq.
(6) over all different bosons, we will restrict
ourselves to the above ~=2 boson which has the
collective nature. Thus the expressions to be sub-
stituted into Eq. (4) are those in Eq. (6), but with
the indices a, b, .. . , subject to the restrictions
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that n=P= =coll, and X =X, = . =2. Thusa

the summations in fact disappear. The solutions,
for the coefficients which define the X„, are then
easily found to be"

B+= x0 + f II + $
~ P

II

sly II II

+ tl II
il + y i~, e

I i Iz s ~

I I II

r =0, s = —1/(4x), u=v =0, ul =-s'/(18x),

(12)

with the results for the eoeffieients of C un-
changed from Eq. (8}.

In (12), the relation r=u =v=0 is exact, while
the expressions for s and m are approximate.
They can be used for practical calculations since
they are obtained by neglecting terms which have
been found to add corrections to these expres-
sions of a few percent which subsequently have
been seen to have virtually no effect on the final
energies or wave functions in practical cases.
The result that x=0 eliminates large terms which

appear in the Hamiltonian when the expression of
Ref. 2 is used, i.e., when we set

r =I2(x' —1)' '+(x'+2)' ' —3x]/6.

The danger of the x term is more evident if one
notes the following. Instead of just retaining the
collective mode with X=2, suppose we start
picking up more modes, one by one, and repeatedly
resolve the commutation relations for B and C .
One finds that ~=u=v=O is exactly true con-
tinually, until one has decided to pick up all pos-
sible modes of every single multipole. Then, and

only then, x changes discontinuously from O to
that expression given in Eq. (13). Note that during
this procedure, s and zv are deviating a little bit
from their simple form in Eq. (12}, but that pres-
ents no problem or trouble in the calculations.
At this final stage, the other problem that the
expressions given in Ref. 2 for u, v, and se,
demand x'~2 and so on, also reappear. "

One may wonder what roles the terms in (9)
play in the full general calculation. For this pur-
pose we give a diagrammatic representation of
the quadrupole collective operator B„„in Fig.

The smooth lines represent single bosons while
the dotted lines represent the quasiparticles. From
Fig. 1 and Eq. (6), we see that the first diagram
describes or creates the boson excitation of col-
lective nature. The third diagram (s term) checks
the fermion nature of all single bosons present in
the basis state or sample boson state ~B) and adds
a correction (subtraction) according to the nature
of the bosons in ~B). Similarly, the sixth diagram
(ul term) checks the fermion nature of all possible
boson pairs and makes corrections. The second
diagram (3' term) does not check anything as re-
gards the fermion content of the bosons in the
sample state. It picks out and counts all thebosons

FIG. X. First six terms of a diagrammatic expansion
of the fermion pair operator B~~ (i labels all quantum
numbers). Smooth (dotted) lines represent bosons
(quasiparticles). Permutation of indices in the r, I, v,
and sv terms and summations over all quasiparticle
pair components of the bosons are omitted from the
figure for clarity.

t2 t3a' =xA'- ——
coll 4x 2 X4 )(x 3x4 xx

(4

4x4 xx (14)

where A~ creates the collective boson. Permu-
tation of indices which gave identical terms when
the restriction to one collective boson was made,
reduced the numbers in the denominators of the
expressions for the u) term, for instance. Before
discussing convergence we digress to cover a
few points.

The choice of x itself has invoked some contro-
versy. Sorensen' had advocated both x ~ 1 and
x ~ 1 on different occasions. Naively, from Eq.
(14), one might suppose that large x improves
convergence. However, when plugging the boson

that are already present in the sample boson state
and excites the collective boson onto that state.
The purpose of this term in the most general case
(of Ref. 2) is to effectively renormalize the co-
efficient of the linear boson operator, to account
for higher order corrections to the Pauli prin-
ciple, which because of indiee permutations and

contractions come in with large coefficients. If,
by the physics of the problem, one knows that one
does not desire to consider all possible multi-
poles of bosons as well as all possible modes of
these multipoles, then it is incorrect to include
these r, u, and v coefficients in a truncated cal-
culation; they are necessary to preserve the Pauli
principle only when all the fermion operators are
to be handled. As an aside, we see that the van-
ishing of the r, u, and v coefficients in the trun-
cated problem can be expressed, in the language
of this diagrammatic representation, by saying
that we ignore unconnected diagrams in Fig. 1.

Once we recognize that the unconnected diagrams
are to be omitted in a realistic calculation, we
may put the boson series in a more convenient
form, and we begin to prepare for the second
aspect of our truncation problem. We let t' rep-
resent the diagram in the s term of Fig. 1. We
will consider all boson lines to be collective bosons.
Then we have
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expansion for B~ into Eq. (4a), the leading term
i.s x'5„, to be compared to 6„on the right-hand
side. The choice x= 1 is naturally suggested and
is in fact consistent with the derivation of Eq.
(12). The only way x can be chosen larger is if
all modes are being considered in B~. Then
5,~ terms can drop out of the commutators of
the higher order terms to reduce x'5„ from
the left-hand side of Eq. (4a) to the 5„as
required by the right-hand side. The choice
of x =1 was used in all our previous applications. .
Nevertheless, the results are relatively insen-
sitive to changes in x of at least 20%. As an
aside, we note that if one were to take the boson
expansion out to high order and include all modes,
thus forcing the choice of x to be much greater
than unity, the following happens. ' The r co-
efficient is for large x a factor of x' smaller than
s while u (v) is x' (x') smaller than w. Thus r,
u, v, become more and more negligible as the full
calculation is taken to higher and higher order.
In addition, the exact expressions for s and m

approach -I/(4x) and -s'/(22. 5x), respectively.
These expressions are similar to Eq. (12), except
in this case x» 1 while in Eq. (12), as pointed out
above, only x=1 is consistent.

We now consider, under what conditions, the
boson expansion can be useful in nuclear physics
applications. Looking at Eq. (14), the only way
the boson expansion can converge quickly is when
it is applied for a collective mode (i.e., a fermion
mode in which a large number of pairs of single-
particle orbits are contributing coherently with
individually small amplitudes). If all single-
particle levels are degenerate, then the magni-
tude of the quantity P (which checks the fermion
content of n boson configurations) is equal to
[1/Z&,(2j+ 1))"which is very small even for n = 1.
Of course, in nuclear physics the single-particle
levels are not degenerate; thus full coll,ectivity is
not reached. The quantity $ is then figuratively
[I/K, 'p~(2j+ I)], where a, are coefficients less
than unity, they are largest for states near the
Fermi surfaces, and decrease to zero for states
farther away. In practical applications, ' ' where
numerical convergence has been demonstrated,
this quantity has a magnitude of about 0.2, making
the net expansion coefficient of the series as small
as 0.05. In particular in Ref. 4, it was pointed out
and confirmed in later work that for nuclei which
are mildly deformed, the fourth order results
differed negligibly from the sixth order results.
(In the present paper's terminology, e.g., fourth
order means a calculation made by ignoring m

terms in B„» and s terms in the product of B
operators in the Hamiltonian. ) Only when the
nucleus is well deformed is there appreciable dif-

ference, but it ean be safely said that the results
(for low-lying states) have converged by sixth
'order, except for very fine details.

Thus, if one encounters a problem where one
needs to treat the multiple excitations of a col-
lective fermion mode, the boson expansion ean
work quite nicely. To put it another way, the
spreading of the collective fermion operator over
many single-particle orbits ensures that the Pauli-
principle violating components are but a small
fraction of the total boson state which is obtained
when a truncated boson representation of a col-
lective fermion operator operates on a boson state
comprised of a finite number of purely collective
bosons. It is possible to cut off the number
of terms in Eqs. (6a) or (14), because the terms
which are dropped add either very small or ex-
actly zero contributions for the states of interest.
However, if one envisions the boson expansion of
several modes of basically pure quasiparticle pair
nature, then Pauli-principle violations can be-
come insurmountable .if one tries to cut the order
of the expansion at a calculationally reasonable
point. "

IV. CONCLUSION

The correct procedure for using the boson
expansion method has been set forth. Namely,
that one represents the physical fermion operators
by boson expanded expressions which do not in-
volve boson excitations of nonphysical interest.
One solves the commutation relations for the co-
efficients of this expansion and then converts the
fermion Hamiltonian into boson expanded form
A second truncation may then be made as regards
limiting the number of bosons in each boson prod-
uct operator of the Hamiltonian.

From a graphical description, we were able to
see that the x, u, and v terms do not check the
fermion nature of the bosons and, in fact, violate
the Pauli principle, if they are allowed to remain
in a truncated calculation. The s, se, and higher
order (connected diagram) terms do indeed take
care of the Pauli principle and, for someproblems,
it may be possible to truncate this series and still
describe the fermion nature accurately. Nuclear
collective motion, wherein a large number of
particle-hole excitations contribute coherently to
produce low-lying energy states, is a good example
of such a problem.
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