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The leading-order correlation corrections to the independent particle shell model momentum density
distribution for ' 0 are calculated using the' Brueckner theory of finite nuclei. The Pauli corrected defect
functions are calculated using Reid soft core B and de Tourreil-Sprung interaction potentials with harmonic
oscillator starting wave functions and experimental shell model starting energies. The short-range
correlations are found to modify significantly the independent particle shell model momentum density
distribution for low momenta and to dominate it for' high momenta. Comments are made concerning the
selection of ground state nuclear wave functions for calculating quasielastic scattering processes.

NUCLEAR STRUCTURE '60, calculated momentum density distribution.
Brueckner method finite nuclei; Reid soft core, Sprang potentials used.

The experiments of Frankel et a/. ' with 180'
proton production from quasielastic proton-nu-
cleus scattering have stimulated interest in the
nuclear momentum density distribution. A sim-
plified calculation of this process which is roughly
dependent upon the nuclear momentum distribu-
tion has been used in an attempt to extract this
distribution from the data. '

As a result of this interest in the momentum
distribution, Zabolitzky and Ey' have produced
theoretical calculations of the momentum density
distribution using the coupled-cluster or exp(S)
form of many-body theory' in the generalized
Brueckner-Hartree- Fock approximation. The
calculations in Ref. 3 show that the momentum
distribution is dominated by two-nucleon correla-
tion contributions at momenta greater than 2 fm '.
This suggests the value of an experimental deter-
mination of the nuclear momentum distribution
as a possible means of studying two-body correla-
tions. 'Therefore, it is necessary to perform
more realistic calculations of 180' proton pro-
duction or similar processes such as quasielastic
electron scattering in order to determine whether
it is possible to obtain the nuclear momentum dis-
tribution, or comparable information concerning
nuclear correlations, from such experiments.

With this eventual object in mind, we will pre-
sent first the simpler approach of the Brueckner
theory of finite nuclei' to introduce two-nucleon
correlations. This approach will be used to cal-
culate the momentum density distributions for "P
using Reid soft core B and de Tourreil-Sprung
potentials. 'These will be shown to be essentially
equivalent to those of Ref. 3. %e will then make
use of the momentum distributions to discuss
whether it is necessary to use more realistic
single-nucleon ground state wave functions such as

those due to a Woods-Saxon potential.
~e define the momentum density distribution

n(p) with the following normalization:

A=, d'p n(p),
1

where A is the total number of nucleons.
Using the Brueckner theory for finite nuclei,

the nuclear momentum density distribution in-
cluding the lowest-order two-nucleon correlation
corrections is represented by the Goldstone dia-
grams of Pigs. 1(a)-(e), where the cross repre-

FIG. 1. Goldstone diagrams representing momentum
density distribution with lowest order two-nucleon cor-

relationn

corrections.
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sents the nonlocal operator e'~' ~ ', the wavy
lines represent the two-nucleon interaction re-
sulting from the sum of ladder diagrams, and
the upward and downward pointing arrows repre-
sent particles and holes, respectively.

Diagram 1(a) represents the independent parti-
cle shell-model result for the momentum distri-
bution while diagrams 1(b)-1(e) represent the
lowest-order two-nucleon correlation corrections
to the momentum density. Diagrams 1(d) and 1(e)
serve to renormalize diagram l(a) such that the
total number of nucleons remains unchanged by
the introduction of correlations. The actual cal-
culation of these diagrams can be simplified by
recognizing that the parts of each of the diagrams
1(b)-1(e) corresponding to Fig. 1(f) represent the
two-nucleon defect function which is defined as the
difference between the Brueckner-Hartree-Fock
(BHF) pair wave function and the exact, correlated
pair wave function. The defect function can be
determined from the equation

where
~

g& and
( Q& are the exact and BHF two-nu-

cleon wave functions, V is the interactionpotential,
B, is the BHF Hamiltonian, + is the energy of the
two-nucleon propagator, and Q is the Pauli op-
erator.

The evaluation of Eq. (2) is simplified in this
work by introducing several approximations. The
most important of these is the replacement of the
BHF wave functions by harmonic oscillator ground
state wave functions where the oscillator para-
meter is chosen to provide a good fit to the low
momentum (s400 MeV) portion of the elastic
charge form factor. This eliminates the problem
of actually finding solutions to the self-consistent
BHF equations. Such solutions do not always give
accurate binding energies and do not always pro-
vide a good description of the elastic charge form
factor."' A more practical consideration is the
obvious convenience of having an analytical ex-
pression for these wave functions and of being
able to separate exactly pair wave functions into
relative and center-of-mass factors by means of
Moshinsky brackets. The additional approxima-
tions are made that the experimental shell-model
binding energies are substituted for the eigenvalues
of Ho in Eq. (2), and that the Pauli operator Q is
treated in the Eden-Exnery approximation.

Using the above approximations, Eq. (2) is solved
in coordinate space for both the Reid soft core
B and de Tourreil-Sprung supersoft core poten-
tials. The momentum distribution for "0 is cal-
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FIG. 2. Momentum density distribution for ~60:
m.u. = m, c'= &39.57 MeV.
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FIG. 3. Momentum density distribution for O.

culated using the momentum space Fourier trans-
form of the defect function corresponding to each
potential. The accuracy of these calculations is
tested by computing the norm of the defect func-
tions calculated in both coordinate and momen-
tum spaces, and by verifying that Eq. (1) is sat-
isfied for each distribution. The resulting momen-
tum distributions for "Q are shown in Figs. 2

and 3 where line A represents the correlated dis-
tribution using the Heid potential, and line B is
the correlated distribution using the Sprung po-
tential. Line C is the IPSM harmonic oscillator
momentum distribution and line D is the IPSM
Woods-Saxon momentum distribution. Distribu-
tions A. , B, and C have been corrected for spur-
ious center-of-mass motion as in Ref. 3. Calcu-
lation of such a corrects. on for the Woods-Saxon
distribution is considerably more complicated
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than for the distributions A through C, and is
beyond the scope of this paper. For this reason
the Woods-Saxon distribution (D) does not include
corrections for spurious center-of-mass motion
and is included only for the purpose of compari-
son with C. The momentum distributions dis-
played in Figs. 2 and 3 are in good agreement
with the corresponding distributions in Ref. 3.

At low momenta the primary effect of the cor-
relation is the renormalization of the IPSM dis-
tribution (C). At a momentum of approximately
2 mesic units (m.u. , 1 m.u. = m, c = 139.57 MeV)
the correlated distributions (A and B) become
larger than the uncorrelated distribution (C). At
a momentum of 3 mesic units the correlated dis-
tributions are almost an order of magnitude larg-
er than the uncorrelated distribution. At small
momenta the Sprung distribution (B) is larger than
the Reid distribution (A) and is smaller than the
Reid distribution at large momenta, as would be
expected.

It is interesting to consider the IPSM Woods-
Saxon distribution (D). This distribution is larger
at low momenta (less than 1 m.u. ) than the har-
monic oscillator distribution (C) since the Woods-
Saxon potential is broader than the harmonic os-
cillator potential. As the momentum increases
above 1 m.u. the harmonic oscillator distribution
becomes larger than the Woods-Saxon distribu-
tion. At approximately 3 m.u. the Woods-Saxon
distribution begins to show the oscillatory be-
havior which reflects the range parameter of the
Woods-Saxon potential, ' and again becomes larger
than the harmonic oscillator distribution at ap-
proximately 4 m.u. Examination of Fig. 3 shows
the essentially exponential falloff of the Woods-
Saxon density as opposed to the much more rapid
Gaussian falloff of the harmonic oscillator den-
sity. The high momentum behavior of the Woods-
Saxon wave functions is often considered to be
more realistic than that of the harmonic oscilla-
tor wave function. However, at momenta above
2 m.u. the Woods-Saxon density (D) is much small-
er than the correlated densities (A and B). The
slower falloff and extra structure of the Woods-
Saxon wave functions at large momenta is totally
obscured by the two-nucleon correlations. There-
fore, for processes which are roughly dependent
upon the ground state momentum distribution,
such as quasielastic proton or electron scatter-
ing, the ground state may be well described by
harmonic oscillator wave functions and two-nu-
cleon correlations.

The effect of correlations is quite different in
the case of the elastic charge form factor than
in the case of the momentum distribution. Figure
4 shows the elastic charge form factor for "0
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FIG. 4. Elastic charge form factor for 0.

as calculated using the harmonic oscillator wave
functions with (solid line) and without (dashed
line) correlations. The correlations are included
by evaluating a set of diagrams similar to Figs.
l(a)-1(e) where the cross represents the local
operator e"'. Clearly in this case the inclusion
of two-nucleon correlations results in negligible
change to the elastic charge form factor. This
tends to justify our use of the form factor as a
means of selecting the oscillator parameter.
Zabolitzky and Ey' argue that the form factor is
relatively insensitive to correlations since it is a
measure of density fluctuations whereas the mo-
mentum density distribution is a measure of den-
sity correlations and is therefore much more
sensitive to the inclusion of correlations.

In summary, we make the following conclusions:
(1) The simplified approach of Brueckner theory

used in this paper provides a good description of
the nuclear momentum density distributions.
These distributions are in good agreement with
those calculated in Ref. 3, using the much more
complicated exp(S) method.

(2) At momenta less than 3 mesic units the re-
normalized single-particle momentum distribu-
tion dominates, whereas at momenta greater
than 3 mesic units the correlation contributions to
the momentum distribution dominate.

(3) Since correlation contributions dominate the
momentum distribution at momenta greater than
3 mesic units, the high momentum behavior of
the Woods-Saxon distribution is totally obscured
by the correlations. Therefore, for processes
which are roughly dependent upon the ground state
momentum distribution, such as quasielastic pro-
ton or electron scattering, the ground state may
be well described by harmonic oscillator wave
functions and two-nucleon correlations.

(4) Since the elastic charge form factor is in-
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sensitive to correlations, single-particle ground
state wave functions may be selected by fitting the
lower momentum (~q

~

& 400 MeV) portion of the
elastic charge form factor.
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The oscillatory behavior of line D in Fig. 3 reflects the
well radius of the Woods-Saxon potential. The oscilla-
tions have a periodicity of 2g/(well radius). A well
radius of 2.68 m.u. was used in the calculation dis-
played in Figs. 2 and 3.


