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The complex single-particle field in nuclear matter is computed in the framework of Brueckner s theory,
in the case of the realistic nucleon-nucleon interaction of Hamrnann and Ho-Kim. The Hartree-Fock, the
core polarization, and the correlation contributions are calculated; renormalization corrections are also
evaluated. The results are compared with those derived from a dispersion relation approach. Particular
attention is paid to the behavior of the effective mass near the Fermi surface, where it presents a narrow
enhancement. Following a recent suggestion by Orland and Schaeffer, the nuclear matter results are adapted
to finite nuclei by assuming that the relevant variable is the difference between the single-particle energy
and the Fermi energy. This yields fair agreement between the strength functions for quasihole states
calculated here and those measured from (e,e'p) knockout processes.

NUCLEAR STRUCTURE Potential energy and width of single-particle states
from Hammann —Ho-Kim interaction.

I. INTRODUCTION

Bethe' emphasized that "the most striking fea-
ture of finite nuclei is the validity of the shell
model. Nuclei can be very well described by
assigning quantum numbers to individual nu-
cleons. " In the simple case of nuclear matter,
the latter sentence amounts to stating that one
can associate a well-defined energy to nucleons
with a given wavelength. Landau 4 explained the
success of the shell model by the fact that for
small excitation energies the spectrum of an in-
teracting Fermi gas can be described in terms of
excitations of nucleons surrounded by their po-
larization clouds, i.e. of quasiparticles; these
move independently in a smooth mean potential,
possibly nonlocal. For soft phenomenological nu-
cleon-nucleon interactions, this static potential
is usually identified with the Hartree-Fock field,
which is represented by graph (IA) in Fig. l.

The validity of the concept of quasiparticles has
been justified theoretically for single-particle
states close to the Fermi surface. The empirical
success of the optical model shows that this con-
cept is also valid for scattering states. Besides,
the quasiparticle model is often used for deeply
bound single-particle states, for instance when
using a Hartree-Fock description of nuclear
ground states. It is of interest to investigate
whether this extension is valid. Experimentally,
most information in this respect is obtained from
(e,e'P) or (P, 2P) knockout reactions. Theoreti-
cally, one must study whether for a deeply bound

state the single-particle strength is still sharply
peaked about the single-particle energy. This
problem involves the study of the "true" energy
dependence of the mean field. The existence of
this energy dependence reflects the interaction
between quasiparticle states. The dispersion
relation (2.6) below, which connects the real and
imaginary parts of the mean field, shows that the
energy dependence is intimately related to the
fact that the mean field is complex. The imagin-
ary part of the field accounts for the spreading
of the single-particle strength.

A theoretical investigation of these properties
of the mean field implies that one carries the
calculation beyond the Hartree-Fock approxima-
tion, since the latter is real and static. If one
uses a soft phenomenological nucleon-nucleon
interaction, the natural way to proceed is to add
to the first-order field (IA) the second-order con-
t;ributions, represented by the "polarization" dia-
gram (IIA) and by the "correlation" graph (IIB).'
In the case of nuclear matter, the energy depen-
dence of these second-order contributions has
recently been investigated by Orland and Schaef-
feri on the basis of the dispersion relation (2.6).
In Ref. 8, we show that part of their discussion is
marred by the use of a somewhat arbitrary para-
metrization of the energy dependence of the
imaginary part of the mean field. This led us to
perform an explicit evaluation of the real and
imaginary parts of graphs (IA), (IIA), and (IIB).
More precisely, we have computed the Brueck-
ner-Hartree-Fock approximation, which is rep-
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FIG. 1. Graphical representation of the leading terms
of the perturbation expansion of the mass operator.
Only direct terms are drawn. Graph (IA) is the Har-
tree-Fock approximation, (IIA) is the polarization
graph, and (IIB) the correlation graph. Diagram (IIIR)
yields the renormalization of graph (IA).

resented by graph (BHF) in Fig. 2. This is the
sum of a series of particle-particle ladders of
which graphs (IA), (IIA), and (IIIA) of Fig. I are
the leading terms. We have also computed the
real and the imaginary parts of the graph (CO) of
Fig. 2, which is the sum of a series of diagrams
of which graphs (IIB) and (IIIB) of Fig. I are the
leading terms.

The input of our calculation is the nucleon-nu-
cleon interaction of Hammann and Ho-Kim. This
interaction is a realistic one since it renders
with good accuracy the S, P, and D nucleon-nu-
cleon scattering phase shifts. However, it is in
some sense only semirealistic because it has

(BHF) (CO) (R)

FIG. 2. Graphical representation of some contribu-
tions to the low-density expansion of the mass operator.
Graph (BHF) represents the Brueckner-Hartree-Fock
approximation (CO) shows the correlation contribution.
The sum of graphs (BHF) and (R) yields the renormal-
ized Brueckner-Hartree- Fock approximation.

finite rank, i.e., is strongly nonlocal. This in-
fluences the nonlocality of the corresponding
single-particle mean field. Moreover, the
average binding energy per nucleon at normal
density as calculated from the Brueckner-Har-
tree-Fock approximation is larger than the em-
pirical value; we note that the Hartree-Fock ap-
proximation yields good agreement with the em-
pirical binding energy. These deficiencies have
to be kept in mind when discussing our results.
They are overshadowed by the following two fea-
tures. Firstly, the interaction is sufficiently
soft for using a perturbation expansion. Secondly,
Brueckner's reaction matrix can be computed
faster and more accurately than for a local inter-
action.

The interaction of Hammann and Ho-Kim has
already been used in Refs. 10 and 11 to investi-
gate some properties of bound single-particle
states. In the present paper, we take advantage
of the two features mentioned above to calculate
separately the contributions to the single-parti-
cle mean field of specific graphs of the perturba-
tion expansion, and to compare these results
with those recently obtained by Orland and
Schaeffer~ who used the dispersion relation (2.6).
Moreover, we investigate the shape of the en-
hancement of the effective mass near the Fermi
surface in more detail than was previously possi-
ble. in the case of the local Reid's hard core in-
te raction. 5 Finally, the comparison between
quantities calculated in nuclear matter and em-
pirical data is performed by assuming thai the
relevant variable that provides a link between the
two cases is the difference between the single-
particle energy and the Fermi energy. This
method is based on a suggestion by Orland and
Schaeffer. It yields better agreement between
calculated and measured quantities than the ap-
proach used in Refs. 10-12, and which consisted
in identifying the momentum of a particle in nu-
clear matter with the average momentum of a
single-particle state in a finite nucleus.

A few useful formulas and concepts are briefly
recalled in Sec. II. Section III is devoted to the
real part of the mean field. In Secs. IIIA-IIIC,
we successively discuss some properties of the
Hartree-Fock approximation, of the core polariza-
tion contribution, and of the correlation graph.
We pay particular attention to the vicinity of the
Fermi surface, where the empirical effective
mass is known to be enhanced. '3 The size of the
renormalization corrections is evaluated in Sec.
IIID. Our results are compared with the disper-
sion approach of Orland and Schaefferv in Sec.
III E and with empirical values in Sec.III F.

The imaginary part of the mean field is investi-
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gated in Sec. IV, where we compare it with the
value used by Orland and Schaeffer, and also with
a compilation of empirical data.

In Sec. V, we calculate the strength function of
quasihole states, i.e. , the distribution of the
spread single-particle states. We obtain fair
agreement between calculated and measured
strength functions by equating in the two cases the
difference between the single-particle energy and
the Fermi energy. As mentioned above, this
method follows a suggestion by Orland and Schaef-
fer. 7 It presents over that used in Refs. 10-12
the advantages of identifying the main relevant
variable, and of compensating part of the defi-
ciencies of the interaction of Hammann and Ho-
Kim.

II. BASIC FORMULAS

p =2(3v2) 'k~3.

The mass operator

(2 I)

limM(k;E iq) =M-(k;Z) = V(k;E) + iW(k;E) (2.2)
n 0

depends on k&. It can be identified with the sin-
gle-particle field felt by a nucleon with momen-
tum k and energy E. One has W(k;E) ~ 0.

Most physical processes can be described in
terms of quasiparticles. A quasiparticle with
momentum k has a well-defined energy E(k)
given by the relation (5= I)

E(k) =k2/2m + V(k;E(k) ). (2.3a)

A. Definitions

The equations and results given in Secs. II-IV
refer to infinite nuclear matter with equal number
of neutrons and protons. Insofar as possible, we
follow the notation of Ref. 5, where proofs or ref-
erences to the original papers can be found. We
denote by p the nucleon density and by k& the
Fermi momentum. They are related by

which is a local energy-dependent field.
The fields M(E) and M(k) are equivalent in the

sense that they yield the same quasiparticle pr' o-
perties. In a finite system, they are phase
equivalent since they yield practically the same
phase shifts, though the corresponding scattering
wave functions are different in the nuclear in-
terior. In nuclear reaction analyses, one norm-
ally uses a local energy-dependent optical-model
potential which should thus be identified with
M(E} In .bound state calculations, one often uses
a nonlocal static shell-model potential (e.g. , in
a Hartree-Fock model}; it should be identified
with M(k).

When the nucleon-nucleon interaction has no
hard core, the following dispersion relation
holds:

V(k;E) =M(„)(k)+— ', dE', (2.6a)
" W(k;E')

where 6' denotes a principal value integral. The
energy-independent background M«„&(k) is the Har-
tree-Fock contribution to the real part of the
mean field. In the presence of a hard core re-
pulsion, one must use the subtracted dispersion
relation

V(k;Z) = V(k;Zo)

E„-E "
W(k E')

+ S
(Z E P)(E ZP) dE (2 6b)

where F., is arbitrary.

B. Perturbation expansion

The nucleon-nucleon potential of Hammann and
Ho-Kim' is sufficiently soft for using a perturba-
tion expansion in powers of the strength of the
interaction. Some contributions are represented
in Fig. 1. The first-order term is the Hartree-
Fock (HF) approximation

The mean field felt by a quasiparticle with mo-
mentum k is the on-shell value of the mass op-
erator:

M«&(k) =M r(k) =g (k j iv jk 3)e . (2.7)

E =Ik(E)] /2m+ V(k(E);E).

The corresponding mean field is the on-shell
value

(2.3b)

M(k;E(k))=M(k) = V(k) + iW(k). (2.4)

The Fourier transform Sll( ~r —r'
~) of M(k) yields

a static nonlocal field. Equivalently, one may
specify the energy F of a quasiparticle, and de-
termine its momentum k(E) by the energy-mo-
mentum relation

Here, v is the nucleon-nucleon potential and 8
refers to antisymmetrization. Note that M„„.(k) is
real and independent of E.

There exist two second-order terms. They are
energy dependent and complex. The "polariza-
tion" contribution is represented by graph (IIA};
its algebraic expression reads

E +Z(j) E(Q) E(k) i'g

(2.8)

M(k(E);E) =M(E) = V(E)+iW(E), (2.5) We recall that the function E(n) is defined by the
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energy-momentum relation (2.3}. The "correla-
tion" contribution is represented by graph (IIB}:

I(j,1 I v I k, a}e I

F +E( ) E( ) -E(f)—
(2.9)

C. Low-density expansion

The sum of the one-hole line graphs (IA), (IIA),
(IIIA), . . . of Fig. 1 yields the Brueckner-Hartree-
Fock (BHF) approximation

.M»„(k;E)= g (k, j Ig[E +E(g)] [k, j}u . (2.10)
j&Ay

Here, g[E +E(j}] is the reaction matrix. It is
the solution of the integral equation

I a, b)(a, b I

E +E(j) -E( ) -E(b) —gtI

The Fermi energy F~ will be identified with
E(k),):

E~ =E(k~) . (2.17)

+ V(co) (k;E(k)), (2.16b)

and the renormalized second-order approximation

E"(k)=k /2m+ VaHF(k;E(k))+ V(co)(k;E(k)). (2.16)

III. REAL PART OF THE MEAN FIELD

A. Hartree-Foek approximation

The short dashes in Fig. 3 represent the value
of the Hartree-Pock approximation

Occasionally, we shall also consider the second-
order approximation

E' .'(k) =k /2m + Van(i(k E(k) )

«[E+E(j)]. (2.11)
V(JpL)(k) = V(IA) (E (k)) (3.1)

The BHF approximation is represented by the
graph denoted by (BHF) in Fig. 2.

The sum of the graphs (IIB), (IHB), . .. of Fig. 1
yields the diagram labeled (CO) in Fig. 2. It
reads

to the mean field felt by a quasiparticle with mo-
mentum k [and thus with energy E(k)]. At the
Fermi surface, one has VoA)(k) = -50 MeV. The
empirical value of the Fermi energy is

q~ = -16 MeV (3.2)
M(co)(k; E}

g I(j,1 Ig[E(j)+E(f)]Ik,a)a I'
),y&a~ a&az E +E(u) E(f') E(I}

(2.12)

for k~ =1.36 fm '. This yields the following depth
for the quasiparticle potential at the Fermi sur-
face and for k~ =1.36 fm ':

By analogy with Eq. (2.9), we also call M(co) a
correlation graph.

Graph (IIIR) in Fig. 1 is the progenitor of a
series of graphs whose sum is represented by
graph (R) in Fig. 2. The sum of graphs (BHF)
and (R} yields the "renormalized" Brueckner-
Hartree-Fock approximation; it reads

40
0.4

40 kF =1.36 frn
-1

0.8

k/kF

1.0

or

Ma„, (k;E) =(1 —)()M»F(k;E) . (2.13)

Here, 1 —v denotes the average occupation num-
ber in the Fermi sea. In the case of the interac-
tion of Hammann and Ho-Kim one has'0

-80—

-120
K = 0.08 (2.14) 75 50 25

I

-25 -50

M(co)(k; E) =(1 —)()tM(co)(k; E) . (2.15)

Unless otherwise specified, the single-particle
energy E(k) will henceforth be approximated by
its BHF value (k =1}

E(k) =k /2m + V»F (k;E(k)). (2.16a)

for k~ =1.17 fm as well as for k~ =1.36 fm '.
Engelbrecht and %eidenmuller' have argued that
the correlation contribution (2.12) can also be re-
normalized, with the result

EF — E(k) (vevj

FIG. 3. Dependence upon k/kz (upper scale) and upon
Ez—E(k) (lower scale) of various contributions to the
real part V(k+(k)) of the quasiparticle field, in the
case of the interaction of Hammann and Ho-Kim and for
k+=1.36 fm '. The short dashes represent the Hartree-
Fock approximation. The full curve shows the BHF
approximation. The long dashes give the correlation
contribution. The dash and dots represent the sum of
the correlation contribution and of the BHF approxima-
tion.
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m*(E)/m = 1 — V(E)—
dF

md= 1+—„„V(k)

(3.4a)

(3.4b)

Figure 3 shows that the dependence of V(IA)(E)

upon F. is approximately linear. Hence, the ef-
fective mass is almost independent of F in the
Hartree-Fock approximation. In the case of the
Hammann-Ho-Kim interaction and for k~ =1.36
fm, the dotted curve in Fig. 3 yields

m(IA)(E)/m =0.35 for IE Ez
I

& 5-0 Mev. (3.5)

The property that the Hartree-Pock approxima-
tion yields an effective mass which is almost in-
dependent of energy is largely independent of the
nature of the nucleon-nucleon interaction. It re-
flects the static nature of the Hartree-Fock field,
i.e., the fact that V(IA)(k) is independent of E. In
the case of the interaction of Hammann and Ho-
Kim, the value of the effective mass calculated
in the Hartree-Fock approximation is particularly
small. This is due to the strongly nonlocal na-
ture of the interaction, which has finite rank.
This should be kept in mind when comparing the
calculated effective mass with the empirical
value.

Empirical data will be compared with theory in
Sec. III F. Here, we only summar'ize some of
their main features. In the domain F. -F-& & 20
MeV, the effective mass can be determined ac-
curately by investigating the energy dependence of
the real part of the optical-model potential. This
yields

m*(E)/m =0.68 for Z -Zz & 20 MeV . (3.6)

V(kI, ) = -16—k /2m = -54.4 MeV . (3.3}

This is in fair agreement with the Hartree-Fock
value. However, we shall see in the next sections
that this agreement between theory and experi-
ment is spoiled when higher-order contributions
are taken into account.

The dependence of the mean field upon the
quasiparticle energy is characterized by the effec-
tive mass m "(E), which is defined by the equiva-
lent relations

B. Polarization graph

The BHF approximation VI)HI: (k;Z(k)) to the real
part of the quasiparticle field is represented by
the full curve in Fig. 3, for k„=1.36 fm '. At
0=k~, one has

VI)HI:(ky) = -83 MeV; (3.9)

the corresponding approximation to the Fermi
energy is

E(k~) =-44.6 MeV. (3.10)

These numbers are much larger, in absolute
magnitude, than the empirical values given by
Eqs. (3.3) and (3.2). This shows that the inter-
action of Hammann and Ho-Kim is on the average
too attractive; we shall have to correct for this
when comparing-calculated and measured single-
particle energies and widths.

The matrix elements of the reaction matrix g
are also larger in absolute magnitude than those
of bare nucleon-nucleon interaction e, with a typi-
cal ratio

(3.11)(g)/(v) = 83/50 = 1.66

for k~= 1.36 fm '. This shows that the conver-
gence rate of the perturbation expansion is fairly
slow. For the simplicity of the discussion, we
shall nevertheless assume that the BHF field is
well approximated by the sum of graphs (IA) and
(IIA) in Fig. 1:

m*(Z)/m =0.7 for Z -E J; & -20 MeV . (3.8)

Equations (3.6)-(3.8} show that the empirical
effective mass is not independent of energy; it
has a maximum near the Fermi surface. It has
recently been pointed out that this local enhance-
ment should be taken into account when investi-
gating, e.g. , the root mean square radius of
valence orbits, ' ' the empirical value of the I.an-
dau parameters, '9 the nuclear gyromagnetic
ratios, the gravitational collapse of stars,
etc. Hence a detailed theoretical investigation of
this enhancement is fully justified. Since it is
not present in the Hartree-Fock approximation,
it requires the investigation of higher-order con-
tributions.

Information on the effective mass near the Fermi
energy can be obtained from the density of weakly
bound single-particle states. One finds

VI)HI(k;E) = V(IA)(k) + V(IIA)(kiE) .
Then, the on-shell quantity

V(IIA)(k;E(k)) = V(IIA)(k) = 7(IIA)(E(k))

(3.12)

(3.13)
m*(Z)/m 1 for IE ZJ

I
0 MeV. (3.7)

The value of the effective mass at the bottom of
the Fermi sea is poorly known, because the cor-
responding single-particle states are widely
spread. It appears that

of the polarization graph is given by the difference
between the ordinates of the full and dotted curves
in Fig. 3. The resulting value of expression (3.13)
is represented by the short dashes in Fig. 4. The
attractive nature of V(nA)(k) for k & k~ directly de-
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0.4
I

25-

0.8

k/kF

1.0 1.2

We first discuss the dependence of m&»„)(E)
upon E. Equation (3.12) shows that

mBHF(E) ™&&&A)(E)~ (3.20)

The quantity m», :(E) is represented by the long
dashes in Figs. 5 and 6, for k~=1.36 fm ' and
1.18 fm ', respectively. In the domain E &E~, the
inequalities

-25—

kF = 1.36 fm "

m, „,. (E) &m, „ t.m»») (E)1 &o (3.21)

directly follow from the dispersion relation (3.14),
from which one can also find that

-50
75 50 -25 -50

[m,„,. &z)1) =+-,d
BH1 (3.22)

FIG. 4. Dependence upon k/kz (upper scale) and upon
the difference Ez- E(k) (lower scale of the contribu-
tions of the polarization graph (short dashes) and of the
correlation graph (long dashes) to the potential energy
of a quasiparticle, in the case of the interaction of
Hammann and Ho-Kim and for k&= 1.36 fm ~.

rives from Eq. (2.8). Equivalently, it can be un-
derstood on the basis of the dispersion relation

(3.14)

and of the fact that

W&»A)(k;E') = 0 for E' &Ez,

W&»A)(k; E ) &0 for E' &E&,

(3.15a)

(3.15b)

The dependence of V&»A)(k) upon k can also be
characterized by an effective mass, namely

d-
m&f)A)(E)/m = 1 — V&»A)(E) (3.16a)

-1m d
1 +—

V&))A)(k)
k dk

(3.16b)

The value of m(~»„) is influenced by the dependence
of V&)&A)(k;E) upon k on the one hand, and upon E on
the other hand. This is exhibited by the following
identities, which are also valid for indexed quanti-
ties:

independently of the nature of the nucleon-nucleon
interaction. The fact that m», :(E)becomes equal
to the bare mass m at some energy E &E~ is also
a rather general feature, valid for all interactions
for which the dispersion relation (3.14) holds,
i.e., in the absence of a hard core. It follows
from the fact that W&))A)(k;E') vanishes for E' &E~
and for E'-~. The value of E depends on the
nature of the interaction. It would be of interest
to clarify what are the main properties of the in-
teraction that determine the value of E . In the
case of the potential of Hammann and Ho-Kim,
Figs. 5 and 6 show that E —E~=30 MeV. This
implies that the width of the peak of m»F(E) is
about 15 MeV.

The results obtained here are similar to those
presented in Ref. 5 in the case of Reid's hard
core potential. They are more detailed, because
the g matrix can be computed more accurately
for the interaction of Hammann and Ho-Kim,
hence the interest of the present study. We note
that the value of m/m»F(E~) calculated here is
close to the spectroscopic factors recently corn-
puted by Birbrair, Alkhazov, Lapina, and Sadov-

and by Bernard and Van Giai 3 for single-
particle levels close to the Fermi surface in

The value of the BHF approximation to the k
mass (3.19) is represented by the short dashes
in Figs. 6 and 7. At the Fermi surface, one has

m*(E) m(E) m(E)
m m m

where the E mass m(E) is defined by

8
m(E(k))/m = 1 — V(k;E)BE '

~=~(a)
'

while the k mass m(E) is given by

-1
m{E(k))/m = 1+——V(k;E)

k ek

(3.17)

(3.18)

(3.19)

(3.23)m», (E~)/m =0.36.
for k~=1.36 fm '. This is very close to the value
of fm„( )E))/m=m „&)()~E) /mgiven by Eq. (3.5).
Hence the dependence of V&)A)(k;E) upon k is much
smaller than that of V&»A)(k). This result supports
the accuracy of the approximation recently made
by Bernard and Nguyen Van Giai, "who neglected
the dependence upon k of the polarization term
(IIA). The value of m»F(E) calculated here is
approximately 20%%u&) smaller than that derived from



SINGLE-PARTICLE STATES IN NUCLEAR MATTER AND IN. . . 2619

0 050
1.5

1.00

k/kF

1..50

m" /rn

m/m

1.75

Reid's hard core interaction. We argued in
Sec. IHA that this is mainly due to the strongly
nonlocal character of the interaction of Hammann
and Ho-Kim.

The BHF approximation of the effective mass is
obtained from the Eq. (3.17):

m/m

m g«(E ) m»r(E ) mBHr. (E )
m m m

(3.24)

1.0

BHF
kF = 1.36 fm "

0.5

~ W

-80

k/kF

0
EF-E(k) IMeV)

FIG. 5. Dependence upon k/kz (upper scale) and upon
the difference Ez-E(k) (lower scale) of the E mass
gong dashes), of the k mass (short dashes), and of the
effective mass (full curve), measured in units of the
bare mass and evaluated in the framework of the BHF
approximation from the interaction of Hammann and
Ho-Kim. The value of the Fermi momentum is k&
= 1.36 fm ~.

The value of m~H~-. (E)/m is represented by the
full curves in Figs. 5 and 6. The enhancement
that it displays near the Fermi surface reflects
that of m»~-. (E). This feature is in qualitative
agreement with the empirical evidence summarized
by Eqs. (3.6)-(3.8). However, the calculated
value of mg»:(E) is too small for all E(k) Th.is
is mainly due to the fact that m», :(E) is too small
in the case of the interaction of Hammann and
Ho-Kim.

The fact that the enhancement of m», (E) is lo-
cated near the Fermi surface must be ascribed to
the Pauli principle. This is confirmed by the fact
that the enhancement also exists in the case of
the hard sphere dilute Fermi gas, in which the
shape of m(E) is entirely determined by the avail-
able phase space for two-particle-one-hole or
two-hole-one-particle excitations. The long
dashes in Fig. 7 show the value of m», :(E) in the

1.2- kF =1.36fm '

0 050
15 i

1.00 1.50 1 ~ 75

rn /m

E
IE

1.0

1.0

0.5 1.0

k/kF

I

1.5

0.5

kF - 1.18fm "

I I

0 . -50
EF-E(k) (MeY)

FIG. 6. Same as Fig. 5, for k&=1.18 fm

I

-100

FIG. 7. The long dashes represent the dependence
upon k/kz of m&HF/m ~ m ~+~/m in the case of the in-

teraction of Hammann and Ho-Kim and for k&=1.36
fm '. The other curves correspond to the value that
m/m would take in a hard sphere dilute Fermi gas if
one would take into account either the analog of the po-
larization graph (IIA) (short dashes) or the analog of the
correlation graph (IIB) (full curves) {Ref. 8). The hard
sphere radius has been adjusted to yield the same aver-
age depletion of the Fermi sea for the two interactions.
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case of the interaction of Hammann and Ho-Kim.
The short dashes correspond to the hard sphere
dilute Fermi gas 8 in which the parameter (k~c
=0.426) has been adjusted in such a way as to
yield the same average occupation number below
the Fermi surface in the correlated ground state
as in the case of the interaction of Hammann and
Ho-Kim. Here, c refers to the hard sphere
radius. The difference between the shape of
m««&-. (E) for the two interactions is quite striking.
It exhibits the fact that the narrowness of the
enhancement peak is largely determined by the
long-range part of the nucleon-nucleon interac-
tion.

For k~=1.36 fm, the effective mass as cal-
culated in the Brueckner-Hartree-Fock approxi-
mation decreases by 15% when E(k) -E~ in-
creases from 5 to 25 MeV. The enhancement is
more pronounced at low density: For k~ =1.18
fm ', the effective mass decreases by 40/o when
E(k) Ez inc-reases from 5 to 25 MeV. Although
the variation of m* is impressive, its influence
on the dependence of V(k;E(k)) upon E(k) is
barely visible in Figs. 3 and 4. In Fig. 4, the en-
hancement corresponds to the feature that the
slope of V&,«&(k;E(k)) (short dashes) is steeper
in the energy interval 0& E~ -E(k) & -25 MeV
than elsewhere. Correspondingly, the single-
particle level density is increased in this energy
interval, since it is proportional to the product
(km*).5 We emphasize that this effect is due to
the uariation of the slope of V«&„~(k;E(k)). If the
dependence of this quantity upon E(k) could be
approximated by a linear law, the polarization
graph would increase the Hartree-Fock single-
particle level density by the same amount for all
energies.

C. Correlation graph

The expression of the correlation graph (CO) in
Fig. 2 is given by Eq. (2.12). Its formal simila, r-
ity with Eq. (2.9) also justifies our use of the ex-
pression "correlation graph" for diagram (IIB) in
Fig. 1. However, Eq. (3.11) shows that these two

graphs are not equal and that their ratio is approx-
imately given by

— ""( ' } =(1.66}'=2.75. (3.25)
M«&s& (k;E )

The on-shell value V&co&(k;E(k)) of the correla-
tion graph in the case of the interaction of Ham-
mann and Ho-Kim has been calculated in Refs.
10 and 11. It is represented by the long dashes
in Fig. 4. %hen added to the BHF approximation,
it yields the dash and dots in Fig. 3. The corres-
ponding value of the Fermi momentum is

' =E~ + V&co&(ky,'E(kz)) = -37.6 MeV .

The accuracy of the calculated value of V&co)(k;
E(k)) is unfortunately not sufficient to reliably
evaluate its derivative, i.e., its influence on the
value of the effective mass, nor a fortiori its
second derivative, i.e., its influence on the en-
ergy dependence of the effective mass. From the
dispersion relation

Vj )&k;R)=lr 6'f ', 'dK', (3.26}

and from the asymptotic behavior for E' close to
E~

IV&cogk;E') -(E'-E,)'
for k & 3k~." It can easily be checked that

W&co)(k;E~ + 0) & 0,
[tV&co&(k;E)/8E]z&z & 0,
[3'V&co&(k;E)/3'E] p—

(3.27)

(3.28)

(3.29)

(3.30)

Inequality (3.29) shows that above the Fermi sur-
face the correlation graph increases the value of
the effective mass, as compared to the BHF ap-
proximation. The singularities (3.22) and (3.30)
cancel one another; the quantity dm(E)/dE is
therefore finite at E =E~. The hard sphere dilute
Fermi gas model suggests that the contribution
of the correlation graph to the effective mass es-
sentially amounts to symmetrizing the BHF en-
hancement peak about E~, and to increasing its
maximum value by about 20%. In the present
case, these rough estimates indicate that the
enhancement peak of m*(E) should be almost
symmetric about E~, and that its width at half
maximum is approximately equal to 40 MeV. The
maximum values would be approximately equal to
m*(Ez)/m = 0.7 for kz ——1.36 fm ', and m*(Ez)/m
=0.9 for k~ =1.18 fm '. These are likely to be
underestimates of the physical reality, since the
k mass rn is anomalously small in the case of the
interaction of Hammann and Ho-Kim.

O. Renormalization corrections

Eg =E"(k„)=-49.5 MeV . (3.31)

As expected from the smallness of «[Eq. (2.14)],
the curves shown in Fig. 8 are quite similar to
those which appear in Fig. 3. The main origin
of the differences is that the renormalized sin-
gle-particle energy E"(k) contains the contribu-

The sum of the graphs (BHF) and (R) in Fig. 2

yields the renormalized BHF approximation
(2.13). In Fig. 8, we plot for k~=1.36 fm ' the
renormalized quantities (1 —«) Vsgk), Vtr(k;E(k)),
V&co&(k;E(k)), and VLF(k;E(k))+ V&co)(k;E(k)) ver-
sus the difference E~ —E"(k), with
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FIG. 8. Dependence upon the difference Ez —E (k) of
the renormalized quantities (1 —K ) VHz (k) (short
dashes), VBBF(k; E(k)) (full curve), V(co&(k, E(k))
(long dashes), and Vs&IF(k;E{k)}+V(co&(k;E(k)) (dash
and dots), for k&=1.36 fm ~ and in the case of the inter-
action of Hammann and Ho-Kim.

FIG. 9. The quantities (3.32a) and (3.33a) as evalu-
ated by Orland'and Schaeffer (Hef. 7) are represented
by the full curve and the dash and dots, respectively.
The short dashes and the long dashes show the value of
(3.32b) and of (3.33b), respectively, fork&=1.36fm ~ and
in the case of the interaction of Hammann and Ho-Kim.

and in the finite rank nature of the interaction of
Hammann and Ho-Kim on the other hand.

tion of the (renormalized) correlation graph; see
Eq. (2.18). In particular, this is responsible for
the steep rise of (1 —a') VIII- for EI, -E"(k)=30
MeV.

E. Comparision with a dispersion relation approach

Grland and Schaefferv recently evaluated the
quantities

b,»F ——q~ -FJ; =28.6 MeV (3.34)

F. Comparison with empirical values

The comparison between our calculated depths
and empirical depths can only bear on their
energy dependence, since the interaction of Ham-
mann and Ho-Kim yields too much attraction.
Accordingly, we shall add to the calculated value
of the depth a constant equal to

V(rrA&(k; E) —V(IIA&(k;Er, ) & (3.32a)
in the case of the BHF approximation, and to '

=g& -F& ——2j..6 MeV(3 (5 (3.35)
V(IIB&(k q E) —V(I IB&(k r Ey ), (3.33a)

V(IIA& (k;E(k)) —V(nA&(k&;;Er;),

V(co&(k; E(k)) —V(co&(kz, Er,),
(3.32b)

(3.33b)

as calculated here from the interaction of Ham-
mann and Ho-Kim. This comparison is legiti-
mate, since Orland and Schaeffer neglected the
dependence upon k of the quantities (3.32a) and

(3.33a). The overall agreement between the two
approaches is fair, despite the fact that both of
them suffer from weaknesses. These mainly
consist in the parametric expression of W(k;E')
used by Orland and Schaeffer on the one hand,

They used the subtracted dispersion relation
(2.6b); see also Eqs. (3.14) and (3.26) where they
inserted for W(k;E') algebraic expressions sug-
gested by the hard sphere dilute Fermi gas mo-
del. In Fig. 9, we compare their results with
the quantities

in the case of the sum of the BHF and of the cor-
relation graphs. One should also keep in mind
that the empirical depth depends on the geometry
adopted for the mean field, and that moreover
the interaction of Hammann and Ho-Kim yields a
too large value for the nonlocality range. Des-
pite these reservations, a comparison between
calculated and empirical depths is useful, in par-
ticular, since it offers an opportunity to show to
what extent the experimental data indeed exhibit
that the effective mass is enhanced near the
Fermi surface. -

Bear and Hodgson recently fitted the centroid
energies of bound single-particle states with a
shell-model potential well whose Woods -Saxon
geometry was kept fixed, but whose depth was
adjusted in order to reproduce each centroid
energy. The resulting empirical depths are rep-
resented by open dots (protons) and by crosses
(neutrons) in Figs. 10 and 11. The vertical bars



2622 R. SARTO R AN D C. MAHAUX

40Ca

30 15

EF -E(k) (Mev)

FIG. 10. The dots represent the depth of a Woods-
Saxon potential which reproduces the experimental
single-particle centroid energy E(k), in the case of
40Ca (Hef. 24). We took Ez= —8 MeV. The short dashes
show the trend indicated by Bear and Hodgson (Hef.
24). The full curve is the BHF approximation (plus &~Hz
= 28.6 MeV) in the case of nuclear matter with kz
=1.36 fm" ~ and of the interaction of Hammann and Ho-
Kim. The dash and dots correspond to the sum of the
BHF approximation and of the correlation term, plus
6&HF = 21.6 MeV.(2)

indicate the size of the width of the single-parti-
cle states. Bear and Hodgson argued that these
results suggest the existence of a plateau near
the Fermi surface; they accordingly represented
this trend by the short dashes, which follow two
straight lines. The full curve represents the cal-
culated BHF mean field, plus &BH~ ——28.6 MeV
The dash and dots corresponds to the sum of the
BHF field and of the correlation graph, plus
21.6 MeV.

The overall agreement between calculated and
empirical energy dependence is fair. However,
several difficulties should be mentioned. Firstly,
the empirical depths for proton single-particle
states do not exhibit a plateau near the Fer'mi
surface: it is only by combining proton and neu-
tron data that this trend appears. Secondly, the
trend is rendered somewhat hazy by the large

width of the bound single-particle states. Finally,
the energies of the single-particle states close to
the Fermi surface are particularly sensitive to
the nature of the low-lying core excitations in the
case of light and medium-light nuclei. Accord-
ingly, one would expect that the existence of a
plateau in the energy dependence of the potential
depth should be better exhibited in the case of a
heavy nucleus and in the framework of a study
that encompasses scattering states. In the case
of Pb, for instance, the experimental single-
particle levels close to the Fermi surface are
well reproduced by a static and local%oods-
Saxon potential (m* =m). The elastic scattering
data require m*=0.7 m for E & 20 MeV. Thus,
the combination of bound and scattering data
clearly shows that m* is larger near the Fermi
surface than at positive. energy. The Skyrme-III
interaction (m„*F=0.75) yields a satisfactory
agreement between the Hartree-Fock approxima-
tion and bulk nuclear properties; it is thus
probably reliable for most bound single-particle
states. However, it yields a too small single-
particle level density near the Fermi surface.
These features suggest that the enhancement of
the empirical effective mass is local.

Giannini, Ricco, and Zucchiatti27 have recently
rendered the energies of bound single-particle
states and nucleon elastic scattering data for nu-
clei ranging from C to Sn. The dots in Fig. 12
represent the corresponding empirical depths.
%e note that in this compilation, the existence
of a plateau near E(k) =EI, is better pronounced
than in Figs. 10 and 11, owing to the availability
of positive energies E(k). As in Figs. 10 and ll,
the full curve and the dash and dots correspond

0

-60—
-80

4, 0 -40

EF -E{k) (Mev)

45
I l

30 15

EF E(k) (MeV)

FIG. 11. Same as Fig. 10, in the case of ~ Ni.

-15

FIG. 12. The dots represent the depth of a Woods-
Saxon potential which fits bound single-particle centroid
energies jE(k) & 0] or elastic scattering data jE(k) & 0]
(Bef. 27). We took Ez= —8 MeV. The full curve is the
BHF approximation plus h~F= 28.6 MeV, for nuclear
matter with k+=1.36 fm and for the interaction of
Hammann and Ho-Kim. The dash and dots correspond
to the sum of the Brueckner-Hartree-Fock approxima-
tion and of the correlation term, plus &&Hz= 21.6 MeV.
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to the BHF and to the BHF+ correlation graph
approximation, respectively, including the shifts
4gHF and &~». The comparison with the data
indicates that the calculated enhancement of m*
is somewhat too narrow, and that it should, more-
over, be centered on E~ rather than somewhat
above 8&. As we discussed in Sec. III C, the hard
sphere dilute Fermi gas model suggests that
these deficiencies would be largely corrected by
a better evaluation of the value of the correlation
graph in the vicinity of the Fermi surface.

G. Discussion

There exists experimental evidence that the
energy dependence of the depth of the single-
particle potential is weaker near the Fermi
energy than elsewhere. This corresponds to a
local enhancement of the effective mass. This
cannot be obtained in the framework of a static
description like the Hartree-Fock approximation.
One must introduce the dynamics of the shell
model by taking into account the coupling of the
single-particle states to core excitations, and
also the blocking of ground state correlations due
to the existence of a valence nucleon. The re-
sults presented here confirm and extend the con-
clusions that had been reached in Ref. 5 from the
investigation of the Brueckner-Hartree-Fock cal-
culations in the case of Reid's hard core nucleon-

nucleon interaction.
One may wonder whether the finiteness of nu-

clei strongly influences the local enhancement of
the effective mass. Hamamoto and Siemens
evaluated the increase of the single-particle level
density near the Fermi surface of Pb in the
framework of a particle-vibration coupling model.
They found an enhancement which saturates only
very slowly with increasing excitation energy of
the vibrations. Thus, it appears rather unlikely
that the particle-vibration coupling leads to an
increase of m* that would be confined near the
Fermi energy. This suggests that the local en-
hancement of m* is mainly due to the coupling
of single-particle states to one particle-one hole
excitations. This is in keeping with the finding
that the local enhancement of m* exists in the
limit A -~, i.e., for infinite nuclear matter. s We
note that the effect of the particle vibration is
O(A 2~~) while the shell spacing in the independent
particle approximation is O(A '~3). 8 Hence, the
effect of the particle-vibration coupling vanishes
in the limit A -~, as expected from the surface
nature of the vibrations.

IV. IMAGINARY PART OF THE MEAN FIELD

A. Numerical results

The imaginary part of the mean field felt by a
guasiparticle with energy E(k) is given by

40 -y

30-

50

EF -E(k) (Mevj

25

kF -1.36 fm

W(E(k)) =W{k;E(k)). (4.1)

We shall see in Sec. V that in first approximation
the corresponding width of the quasiparticle state
is given by

)
X

20
Cf

10

5'0 25 0

E -E (k) (Mev }
F

FIG. 13. The full curve (right-hand scale) represents
the dependence upon Ez- E(k) (upper scale of the ima-
ginary part of the quasiparticle mean field as calcul-
ated for k+=1.36 fm from the interaction of Hammann
and Ho-Kim and in the framework of the BHF approxi-
mation. The dashed curve (left-hand scale) corresponds
to the dependence of the renormalized second-order
approximation, Eq. (4.3), upon the energy distance to
the Fermi energy as calculated from Eq. (2.18). The
long dashes show the result obtained by Orland and
Schaeffer (Ref. 7).

I"(E(k))=2W(E(k)). (4 2)

(1 —K) WBHg. (E(k)). (4.3)

We note that the renormalized approximation lies
higher than the BHF approximation despite the
reduction factor (1 —«)2; this reflects the differ-
ence between the two energy scales used in the
abscissa to characterize the quasiparticle state.

We calculated this quantity from the interaction
of Hammann and Ho-Kim. The solid line in Fig.
13 shows the dependence upon the difference
E~ -E(k) of the BHF approximation W~HF(E(k)). In
the energy range ~Ez -E(k)

~

& 50 MeV, which is
of physical interest, our results are quite close
to those obtained by Qrland and Schaeffer from
their dispersion relation approach, and which are
represented by the long dashes in Fig. 13. The
short dashes correspond to the dependence upon
EI", -E"(k), Eq. (2.18), of the renormalized BHF
approximation, i.e., of
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B. Comparison with empirical values

One may wonder to what extent the single-par-
ticle width in a finite nucleus, as measured from
knockout or pickup reactions, is related to the
width of a quasiparticle in infinite nuclear mat-
ter. In the case of the real part of the field, the
existence of a close correspondence between the
finite and infinite systems is established by the
very weak dependence of the empirical depth
upon mass number A. One can expect that the
dependence upon A of the single-particle width
is more erratic. Indeed, the width is very much
influenced by the nature and by the excitation
energy of the core excited states. This is parti-
cularly true for the single-particle states which
lie close to the Fermi surface. In Fig. 14, we29

have plotted versus A the width of the single-
particle states which had been compiled by Jacob
and Maris. 3~ These plots confirm that the scatter
of the empirical widths is larger for the weakly
bound states (1d for A & 30, 1P for A ( 20) than
for the deeply bound 1s states. The fairly smooth
A dependence of the width of the 1s states sug-
gests that they may successfully be accounted for
by a nuclear matter approach. Figure 14 shows
that the A dependence is fairly well reproduced
by the laws which had been proposed by Hughes,
Fallieros, and Goulard3' on the one hand, namely

(4.4)

and by Ho-Kima on the other hand, namely

(4.5)

Another requirement that should be fulfilled in

30—

20—
Q
X

I

order to be able to map nuclear matter and finite
nuclei single-particle widths is that the latter
should be a function of mainly one variable,
namely the analog of k or of E(k). Kohler'2 pro-
posed to calculate the width of a single-particle
state in a finite nucleus from the approximation

I' =2W((k), E((k))), (4.6)

where 8' is computed in nuclear matter at a den-
sity equal to the mean density ( p) felt by the
hole in the finite nucleus, and where ('k) is the
average momentum of the hole. Kohler computed
(p) and (k) from the independent-particle model
with a harmonic oscillator potential well, and
obtained striking agreement between the theoreti-
cal and empirical widths. It was pointed out in
Refs. 10 and 11 that this excellent agreement was
somewhat fortuitous. Indeed, it is worsened
when one takes into account renormalization cor-
rections and/or a better definition than Eq. (4.2)
for the width of a quasiparticle state in nuclear
matter. It should be identified with the full width
at half maximum of the spectral function, as will
be discussed in the next section.

Recently, Orland and Schaeffer' pointed out that
the lifetime of a quasiparticle directly depends
on the phase space available for its decay. This
phase space is mainly determined by the differ-
ence Ez -E(k) between the Fermi energy and the
quasiparticle energy. This difference therefore
seems to be a better variable than the quasiparti-
cle momentum, to characterize the quasipartic1. e
state. These two variables are represented in
Fig. 15. Another motivation for preferring the
difference E~ -E(k) to(k)ortoE(k) isthatitismore
independent of the strength of the interaction, and
is therefore less model dependent than k or E(k).
That is the reason why we adopted this difference
as a variable in the preceding figures.

In Fig. 16, we plot the empirical single-parti-
cle widths versus the difference E~ -E(k). The
widths of the weakly bound 1d level show consid-

10

I

. 10 ' 20 30
A

40
I

50 60

FIG. 14. Dependence upon mass number A of the
empirical widths (Ref. 30) of single-particle states with
quantum numbers ls (full circles), 1p (crosses), and
1d (full squares). These points have been related by
straight lines for visual help. The values surrounded
by a circle have been extracted from Ref. V. The
smooth full curve represents Eq. (4.4) and the smooth
dashed curve shows the dependence (4.5).
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E(k j .---------
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FIG. 15. Schematic representation of the Fermi en-
ergy Ez, and of the energy E(k) and the kinetic energy
T(k) =k /2m of a quasiparticle state. We argue in Sec.
IV 8 that a suitable variable for mapping nuclear mat-
ter onto finite nuclei is the difference Ez- E(k).
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30—
proximation to the widths would probably be at
least as close to the empirical values as the BHF
approximation.

20—
QJ
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V. SPECTRAL FUNCTIONS

Knockout and pickup experiments are in princi-
ple able to measure the joint probability of find-
ing in the nuclear ground state a nucleon with
momentum k and energy F.. ' In the case of
hole states in nuclear matter, this joint proba-
bility is given by the spectral function S„(k;Z)
defined by

EF — E (Me V)

FIG. l6. Dependence upon the difference between the
Fermi energy and the quasiparticle energy of the em-
pirical widths (Ref. 30) of single-particle states with
quantum numbers ls (full circles), lp (crosses), and
1d (full squares). The values surrounded by a circle
are extracted from Ref. 7. We have identified the em-
pirical value of the Fermi energy with the separation
energy. The full curve shows the dependence upon E&
—E(k) of the BHF approximation to the right-hand side
of Eq. (4.2). The dashed curve represents the depen-
dence upon Ez —E~(k) of the renormalized BHF approx-
imation to the right-hand side of Eq. (4.2).

erable scatter; this reflects their sensitivity to
finiteness effects. Hence, a nuclear matter ap-
proach is not reliable in their case. The widths
of the 1P and 1s levels depend more smoothly
uponEI, -E,(k) and, moreover, take approximately
the same values. These features confirm that the
widths of these single-particle states mainly de.-
pend upon the difference ZI, -E(k).

The comparison between the theoretical curves
and the trend of the empirical data shows qualita-
tive agreement. One might be puzzled by the
appearance that the BHF approximation (full
curve) yields better agreement with the data than
the renormalized BHF approximation (dashed
curve). However, one must keep in mind that the
strength of the interaction of Hammann and Ho-
Kim is too large. A rough evaluation of this over-
estimate can be obtained in the following way. If
one multiplies V«A& by a normalization factor ~,
the values of V&»A& and of V«&&~ are multiplied by

The value of g can be adjusted in such a way
that

-1

Z(k) = 1 — V(k;E)
S=E(N

a
R(k) = —W(k;E)

- E=S(k)

(5.3)

(5.4}

We have used Eq. (5.2) to calculate the value
of S„(k;Z). The quantities W(k), Z(k), and R(k)
have been computed in the BHF approximation
from the interaction of Hammann and Ho-Kim.
In keeping with the discussion in Sec. IVB, we

$$
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I
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1s x10
I ~

I ~

I ~
I
I

—600

—400

LIJ

50— —200

W(k;E)

Z — V(k;E—) + —.'[2W(k;E)]'
lw

(5.1}

In the vicinity of the quasiparticle energy, the
following pole approximation is accurate

W(k) + [E -Z(k)]R(k)
[Z -E (k)]' + —,

' [2Z(k)W(k)]'

(5.2)

where W(k) is defined by Eq. (2.4), and where

yV((A)(k~) +)( [V(((„)(kp) + V(g)))(k )] =-54.4 MeV
l 100

ss ' ' 0
0 12 10 8

(4.7)

for k), —1.36 fm (; see Eq. (3.3). The corres-
ponding value of & is equal to 0.78. The normali-
zation correction for the width is (0.78) =0.61.
This rough estimate indicates that with a more
realistic interaction the renormalized BHF ap-

EF -E (Mev)

FIG. 17. Spectral functions for the ls single-particle
states in the nuclei Be (full curve), ' C gong dashes),

0 (dash and dots), and ~A1 (short dashes), as cal-
culated from the BHF approximation in nuclear matter
with k+=1.36 fm ~.
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FIG. 18. Spectral functions for single-particle states
in Ca, as calculated at k&=1.36 fm" from Eq. (5.2).
The quasiparticle energy E{k) in Eq. (5.2) has been ad-
justed to the empirical peak energy of the hole states
with quantum numbers 1s (full curve), 1p (long dashes),
1d (short dashes), and 2s (dash and dots).

have adjusted the quasiparticle energy E(k) in
such a way that the difference E~ -E(k) is equal
to the empirical value.

In Fig. 17, we show the dependence upon F~ -F.
of the spectral function S„(k;E) calculated in this
way, with the energy E(k) adjusted to the experi-
mental value of the difference E~ -E(k) for the ls
state in the nuclei 8&e isC, '60, and 'Al. We
note that the peaks are asymmetric. This is due
to the term proportional to R(k) in the numerator
on the right-hand side of Eq. (5.2}, and reflects
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FIG. 19. Comparison between empirical strength
functions Puef. 33) and spectral functions calculated
from Eq. (5.2} for k+=1.36 fm ~ (p=0.17 nucleons/fm3).
The ordinate scale is in arbitrary units. The peak en-
ergy E(k) in Eq. (5.2) has been adjusted to the empirical
value for the single-particle states with quantum num-
bers 1s (triangles and continuous curves), 1p (full dots
and long dashes), and 1d (open circles and short dashes).
In the case of Si, the two dashed curves correspond
to the 1pey~ and 1p&g& levels, respectively.

FIG. 20. Same as Fig. 19, for kz=l. l8 fm (p
= 0.11 nucleons/fm3).

the fact that S„(k;Ez) =0. The width of the peaks
increases with increasing binding energy and,
correspondingly, their height decreases.

In Fig. 18, we plot the spectral function S„(k;E),
as calculated from the right-hand side of Eq. (5.2)
in which we adjusted the value of E(k} to the em-
pirical energy of the 1s, 1p, 1d, and 2s hole
states in Ca; we took k„=1.36 fm '. These re-
sults are compared with empirical data in Fig.
19, where we also show results pertaining to Si
and Ni. The units in the ordinate scale are
arbitrary. Since the data do not directly yield the
normalized spectral function, we had to attach
to the theoretical curves one normalization coef-
ficient, chosen in such a way that the height of the
1P peak is in keeping with the empirical value.
We note that the agreement between the calculated
and the empirical strength distributions is fair
in the case of the 1s state, but that the calculated
peaks are too narrow for the 1d and 1P levels.
This may be partly ascribed to the fact that for
these two orbits the mean nuclear density (p) is
smaller than for the deeply bound ls level. This
is illustrated in Fig. 20 where we show the spec-
tral functions. calculated as in Fig. 19, but for
the Fermi momentum k~ =1.18 fm '.

VI. DISCUSSION

In the present paper, we studied several pro-
perties of the mean single-particle field and of
hole state strength functions in nuclear matter and
in finite nuclei. The input of our calculation is
the semirealistic nucleon-nucleon interaction of
Hammann and Ho-Kim. ~ This interaction pre-
sents two advantages over a more realistic nu-
cleon-nucleon potential, such as Reid's for in-
stance35: (a} Firstly, it is sufficiently soft for
enabling one to use a perturbation expansion for
the mean field, although the rate of convergence
of this expansion is not fast (Sec. IIIB). Thus, we
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have been able to display the contributions to the
real part of the mean field of the Hartree-Fock
term (Sec. IIIA), of the polarization graph (Sec.
IIIB), and of the correlation graph (Sec. III C).
The two latter contributions had not yet been cal-
culated in the case of nuclear matter. We'com-
pared our results with those of Orland and Schaef-
fer (Sec. IIIE), with empiricai potential depths
(Sec. III F), and with empirical absorptive poten-
tials (Sec. IVB). (b) Secondly, the interaction of
Hammann and Ho-Kim is of finite rank. This
allows an accurate calculation of Brueckner's
reaction matrix, and enabled us to investigate
in detail the energy dependence of the effective
mass in the Brueckner-Hartree-Fock approxima-
tion (Sec. IIIB), and the spectral function of hole
states (Sec. V).

The interaction of Hammann and Ho-Kim suf-
fers from the following two drawbacks: (a) It is
of finite rank, i.e., is highly nonlocal. This leads
to an underestimate of the effective mass in the
Hartree-Fock approximation (Sec. III A), and
more generally to an underestimate of the k mass
m(k) [Eq. (3.19)]. (b) The strength of the inter-

action of Hammann and Ho-Kim is too large. In-
deed, the calculated Fermi energy is larger in
absolute magnitude than the empirical value when
calculated in the Brueckner-Hartree-Fock ap-
proximation.

We argued that the advantages overshadow the
drawbacks. However, the latter must be kept in
mind, and if possible corrected for, when com-
paring calculated and empirical values (Secs.
III F, IVB, and V). This comparison is semi-
quantitatively satisfactory, if one adopts a sug-
gestion due to Orland and Schaeffer~ for mapping
nuclear matter values onto finite nuclei proper-
ties. These authors proposed to identify in the
two cases the difference between the Fermi
energy and the quasiparticle energy. This pre-
scription amounts to acribing a major role to the
phase space available for the decay of the scat-
tering state. Moreover, it largely corrects the
error introduced by drawback (b) above.
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