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Low-energy absorption of pions on nuclei anti the real p (r) potential
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A Wick-formalism treatment of the cr + co model dynamics is used to obtain the real and imaginary parts
of the m-nucleus optical resulting from the true absorption of "s-wave" pions. Good agreement is obtained
with the empirical value of the imaginary potential at threshold. The corresponding (dispersive) real
potential is attractive. All parameters are taken from other experiments.

NUCLEAR REACTIONS A, (m, NR)B; imaginary part of 7t-& optical potential cal-
culated in 0'+ u model usia Fermi-gas wave functions. Off-shell absorptive
amplitude used to calculate corresponding real part from unsubtracted dispersion

relation.

The o +(d model is a relativistic quantum field
theory of interacting pions and nucleons (as well
as the v and + mesons) which is renormalizable,
satisfies PCAC, and gives a good description of
low-energy NN, mN, and 71' dynamics. Various
aspects of the dynamics of pions interacting with
nuclei have recently been explored within the
framework of this model, including near-threshold
pion production and low-energy elastic scattering
of pions

In this paper we investigate the predictions of
the o +(d model for "true" pion absorption. This
process is usually represented by a term of the
phenomenological pion-nucleus optical potential
which is quadratic in the nuclear density (because
true absorption is dominated by the emission of
two nucleons):

2k v = —4m i Im(BO)p2(z) .
The folklore of absorption rate calculations has
been that the amplitude is dominated by terms rep-
resenting off-shell elastic scattering of the inci-
dent pion from one active nucleon, followed by its
absorption on a second nucleon, as illustrated in
Fig. 1.3 In order to calculate this diagram, one
needs the off-shell mN scattering matrix, the AN
absorption vertex, and the initial and final nu-
cleonic wave functions. Several authors have re-
cently calculated true pion absorption in this man-
ner, using phenomenological models of varying
sophistication to represent the mN scattering ma-
trix. 4 These calculations have been unable to
account for more than about 70-75% of the low-
energy absorptive cross section. Our calculation
of the absorptive amplitude differs from those of
other authors primarily in that it is based on eval-
uation of the leading terms in the g + ~ model
through third order in the coupling constant. We
find that the missing strength is provided by

short-range terms arising from the exchange of
the heavy mesons included in this theory. (There
are also some differences in technical details of
the handling of Fermi-gas wave functions and the
avoidance of unitarity-violating unphysical singu-
larities. )

In addition to the imaginary part of the pion-
nucleus potential arising from true pion absorp-
tion, Eq, (l), we expect a real contribution to Bp
arising from dispersion. The expected analytic
properties of the amplitudes imply that Re(Bt,)
satisfies a dispersion relation; the expected rapid
decrease with energy of the imaginary part, for
large energy, implies that the dispersion relation
will be unsubtracted. Thus, the algebraic sign of
the real part near threshold is determined by the
energy dependence of the imaginary part. All
microscopic calculations of the absorptive part
have found it to be peaked at energies well above
threshold, so that the resulting dispersive real
part is attractive. Our calculation is no exception.

We now describe our calculation. The elastic T
matrix for m -nucleus scattering is given exactly
by the Wick formalism in the o+f& model

m4, Vr

FIG. 1. Hescattering model of A(vr, NN) j3 reaction.
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where SxM )/G =m,2-m, , M is the nucleon mass,
a(x} and v(x} are the nuclear o-meson and pion
fields, and J„- is the Fourier transform of the
source term in the Klein-Gordon equation
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As noted in Ref. 2, the field operators in (3) in-
clude interactions, hence include terms of all or-
ders in G. Here we shall concentrate on terms
through O(G ), which arise in the expansion of the
N~N and c7[ terms. The yv(0 +7/ ) term is O(G'} (at
least), so is dropped.

The first term of Eq. (2) contains the effects of
pion interactions with the fluctuating meson fields
of the target nucleus. The next two terms are
handled by using those states containing zero or
one asymptotic mesons to spectrally represent the
energy denominators in which II appears. The
zero meson states of low energy give a contribu-
tion which is the sum over nucleons of the driving
terms of the (free) 7[-nucleon Low equation, and
which leads to the impulse contribution to the op-
tical potential. The zero-meson states of higher
energies (2p-2h states not reached by matrix ele-
ments of J-„ involving single nucleons only) lead to
an imaginary part of T (true pion absorption)
which is physically distinct from that arising from
elastic and inelastic unitarity. This absorptive
part is given by the imaginary parts of the terms
of Eq. (2) involving J s, in which the intermediate
states have no free pions. In fact, we know from
experiment that the dominant process in low-en-
ergy pion absorption is the emission of two high-
energy nucleons, so we shall write

where 8„ is the energy difference between the 2p-
2h and ground states, and where we have assumed
N=Z. Note that Eq. (4) is strictly correct only
for k =m, . At such low energies, neither pion-
nucleus inelastic scattering nor meson production
can occur. At higher energies both inelastic scat-
tering and meson production represent an impor-
tant part of Im(T) which is omitted deliberately
from Eq. (4). Note that the spectral function [neg-
ative imaginary part of T„-.„- from Eq. (2)] is a
positive operator in the sense that, for arbitrary
functions g,

J) dk' dk&*(k') [-Im(T)-, , )-, (k')](1)(k) ~ 0.

(It is this property which guarantees that the im-
aginary part of the optical potential is absorptive,
rather than emissive, even when it is nonlocal. )

%e are interested in calculating the optical po-
tential v, but Eqs. (2) and (4) involve T(k ). Liu
and Shakin have shown that in order to obtain
formal expressions for p from those involving
T(kP}, one need merely remove from T(kP) all
terms involving intermediate ~-nuclear eigen-
states, in which the nucleus remains in its ground
state. Clearly, no terms involving the pion plus
nuclear ground state appear in the right-hand side
of Eq. (4}. Thus we may write, ignoring nonlocal-
ity which is clearly present in Eq. (4),

Im[TP;(k )] = Im pe"" '*v(x, k ) . (5)

[It will be reasonable to ignore nonlocal effects
since they have a range smaller than -(2m,), and
for low-energy pions, T,~ 50 MeV, both k and k'
& m, .]

To simplify the calculation we treat the nucleus
as a Fermi gas and ignore surface effects. Then
for small momenta k and k',

Im [V(k }1= — Z j(2P-2h
(
Jp

)
g.s.) ~

'p (2w)Pw

2p-2h

x[5(E, k') + 6(E„+—k')] (6)
and

Im[T-', ;(k )]=-v g (2p-2h~J„-, ~g.s.)*
2y+h Re[V(k }]=-—

J dv
P " Im[ V(v)]

(Va)

x&2p 2h~ J)-, (g.s.)
x[6(E„—k ) +5(E„+k )],

or

Re[ V(kP)] =-P p z p (-Im[V(v)]), (Vb)
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Fla. 2. The leading contributions [O(63)l to A(&, NN)B
in the cr+ co model.

where V(v) =v(x =0, v} and 0 is the nuclear volume.
In obtaining Eq. (6) we have replaced the left-hand
side of Eq. (5) by Eq. (4) and then taken an inverse
Fourier transform. The result, (7a), is essen-
tially the dispersive part of Eq. (2}—Eq. (7b) is
obtained from (7a) via Eq. (6) (crossing symmetry
for a T=0 target). Thus, -ImV(v) defined in (6)
approximates the spectral function of the true ab-
sorption contribution to the pion-nucleus scattering
amplitude.

The off-shell dynamics specified by the Low
equation are exhibited in Eqs. (6) and (7). To cal-
culate V(ko) one must first obtain the absorptive
transition matrix for incident pions of four-mo-
mentum k =(k0, 6). Contributions to ReV(k ) occur
for values of v ranging from 0 to ~, so the incident
pions are, in general, far off the mass-shell
[k =(kz)z em, 'j. This specification has not been
used by previous authors.

An important difference between this calculation
and that of Hachenberg and Pirner~ is that our
spectral function, Eq. (6), is positive definite,
whereas theirs is of indefinite sign. [This would
remain true even had we kept the nonlocal part of
the optical potential (arising from the nuclear sur-
face), in the sense that the spectral function would
be a positive-definite integral kernel. ]

The matrix elements (2p-2h
~

JD ~g.s.) are obtained
from covariant perturbation theory, and the dia-
grams of lowest order (G ) in the o + &a model are
displayed in Fig. 2. To this order no terms in-
volving the pion plus nuclear ground state appear.
The single nucleon term, proportional to g& k, is
expected to provide negligible contributions here,
so is not included.

The approximate evaluation of the diagrams of
Fig. 2 leads to the following two-nucleon absorp-

tion operator

Gv2 1 1
(2v}zlz 12k'n 'I'z (~)

x(-o, qA-o, '[p, +pz+zo'zx(pz —pz)1&

with

+ r, (2)(g& (rz-) 'qC)

G2 Q 2

q +m, q +m„

G„k
q +m„2M+k

(8)

(9)

1 G2 ko

2 q +m, 2M+k

and where q = p2 —p2. Our convention is always
that the proton absorbing the negative charge is
labeled "1",and the other nucleon is labeled "2".
(See Fig. 2.) The meson-nucleon vertex function
u(q ) is taken to be

(10)

For simplicity we have assumed that the vertex
function is the same for all meson-nucleon cou-
plings. (Although the dispersion integral would
converge with point vertex functions, as in other
calculations extended vertices are required to cut
off the integral at a physically reasonable energy,
since what happens above v-1 GeV clearly cannot
influence the threshold pion-nucleus scattering
significantly. ) In our evaluations of Eqs. (8) and
(9) we use empirically determined values Gz/4v
=14.2, G„ /4v =12.9, and m, =700 MeV. '

To obtain Im[ V(ko}], we square the matrix ele-
ment of Jo (between the ground and 2p-2h states)
and perform the sum over all such intermediate
states. We assume incommonwithother authors
that the sum is dominated by those terms in which
each final nucleon has energy ko/2. For ko ~m,
the momentum of each final nucleon is much great-
er than the momenta of the initial nucleons in the
ground state. Hence, we neglect in (8) the mo-
menta of the initial nucleons. This approximation,
made also in Refs. 4-8, gives the simple result
qz =Mko. In order to obtain ReV(kz) we need
1m[V(v)] for small values of v for which the pre-
ceding approximation fails. However, -1m[V(v)]
peaks at (as we shall show, Fig. 3) v =250 MeV,
so that our approximation is quite good for the
energy interval which dominates the integral rep-
resentation of Re V(ko).

With the use of the above approximations, the
evaluation of (&2p-2h ~40

~

g.s.) is straightforward
except for the consequences of the antisymmetry
of the ground and 2p-2h wave functions. If the
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must be antisymmetrized. Using Eqs. (8)-(10) to
evaluate Eq. (6), we find

Q2 2

1m[ V(k')] = — (uk'"'(hc) V(mk')Z(~k'/k, ')
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FIG. 3. The imaginary s-wave part of the pion-nucleus
optical potential arising from true pion absorption, Fig.
2. (See text for details. )

intermediate state contains two neutrons, this
state must be antisymmetrized. If the interme-
diate state contains a neutron-proton pair, the
ground state contains a proton-proton pair which

x[(A+B)'+(A+3B) +4C2]

In Eq. (11) p is the density of nuclear matter
(0.166 fm+), kz is the Fermi momentum, and F is
a factor which results from the requirements that
the two initial momenta lie within, and the two in-
termediate momenta lie outside, the Fermi sphere.
The function I' is displayed in Fig. 4 and given by

F(~k'/k„') = ——'k„'
~

(~k')'"
2 3 j

Idp( 'd j)g Idhi dh&((( —)' )&'(('( —)' )&(& -P&)~ ()) -p, )((

(12)

The numerical evaluation of Eq. (11) is displayed
in Fig. 3. The low-energy cutoff is provided by the
function I', since the phase space for producing a
2p-2h excitation by absorbing energy k decreases
rapidly as k~ approaches zero. At threshold,
Im[V] = —8.0 MeV, in excellent agreement with
the experimental value. (This value of Im[V]
corresponds to Im[BD] =0.042m, .) In the energy
region of current interest for m-nuclear scattering
(m, & k & 3m, ) Im[V(k )] is relatively constant in
magnitude, never deviating by more than 10%
from its mean value of about 9 MeV. About one-
third of Im[V(k )] arises from the inclusion of
heavy meson exchange.

The function -1m[V(v)] peaks at about 250 MeV
and falls off slowly at high energies. This falloff
results both from the large-q behavior of the
mesonic propagators appearing in Eq. (9)., as well
as from the meson-nucleon vertex functions.

Given 1m[V(v)] from Fig. 3 and Eq. (7), we ex-
pect ReV(k ) to be negative (attractive) near
threshold and to decrease with increasing energy.
This behavior is shown in Fig. 5. The real poten-
tial has the value -j.2 MeV at threshold and de-
creases monotonically to -4 MeV at 310 MeV.

Our attractive potential (at threshold) is about
60% smaller than that obtained in Ref. 5. Pionic
atom data have required a real xePulsive term
about equal in magnitude to the imaginary poten-
tial. "" The present work yields an attractive dis-
persive potential in qualitative agreement with all
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FIG. 4. The phase-space factor for 2p-2h excitations
of energy k, using Fermi-gas wave functions, relative
to its asymptotic darge k ) form.

k {MeV)
FIG. 5. The dispersive real part of the s-wave pion

nucleus optical, arising from the substitution of Im V(&)
(from Fig. 3) into Eq. (Vb}.
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other microscopic calculations of the dispersive
real part, and in disagreement both with the early
work of Brueckner' and of Thouless, ~ as well as
with the more recent discussion of Hufner. " In
other words, the dispersive real part of B0 cannot
account for the definitely repulsive effect required
by experiment.

Finally, we note that Mizutani and Koltun, ' and
Rinat have proposed formalisms alternative to
Eq. (2)ff, based on amalgamating multiple scat-

tering theory and field theory. We feel that the
application of the e+ ~ model is more transparent-
ly expressed in terms of Eq. (2), however.
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