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The theoretical basis is given for a class of mathematically well defined N1Vm models. They are designed
to describe nucleon-nucleon scattering, pion-nucleon scattering, pion-deuteron scattering, pion production,
and absorption. The elementary degrees of freedom of the models are the nucleon, the 5 isobar, and the
pion. The models are relativistic and do not require renormalization.

NUCLEAB SCATTEBING Relativistic models, N-N scattering, ~-N scattering,
m-d scattering.

I. INTRODUCTION

Traditional nuclear theory assumes that nuclei
can be treated as a collection of nucleons with the
effects of the other degrees of freedom absorbed
in the phenomenological Hamiltonian. For a
treatment of pion-nucleus reactions it is desirable
to extend this scheme so that pions and 6 isobars
can play an explicit role. '~' A relativistic treat-
ment is indicated because of the small pion mass.

Relativistic quantum mechanics requires a un-
itary representation of the Poincar6 group on the
Hilbert space of states. Relativistic field theories
satisfy the requirement; they realize the gener-
ators of the infinitesimal transformations by
space integrals over the energy-momentum ten-
sor. ' Inevitably there are then infinitely many
degrees of freedom and the one-nucleon problem
is intractable. Truncation of a relativistic field
theory to states with a finite number of particles
necessarily destroys the relativistic invariance.
This lack of invariance may imply the lack of
cluster separability" "; specifically, the pion-

nucleon scattering in the NNw channel with a dis-
tant nucleon spectator is not the same as the
pion-nucleon scattering in the nN channel, unless
special precautions are taken. It is reasonable
in most cases to assume that real baryons move
with nonrelativistic velocities, but renormaliz-
ation problems and problems of internal consis-
tency persist in this approximation. There are
many models of the N¹system based on trun-
cated field theories. '

The purpose of this paper is to construct rela-
tivistic models of the NNm system in which m, N,
and 6 are the elementary degrees of freedom; the
pion can be absorbed and no renormalization is
required. The underlying theory is not new. '
Relativistic quantum mechanics need not be a field
theory. It is possible to construct representations
of the Poincard group for interacting particles by

modifying the mass operator M of a system of
free particles. "'

The formal structure, which is not unlike that
of nonrelativistic quantum mechanics, is based on
the following remark. The ten generators of the
poincard group (P, H for space and time transla-
tions, J for rotations, and K for Lorentz boosts)
can be constructed as functions of operators P,
X, j, and M defined such that the total momentum
P and the c.m. positionX satisfy canonical com-
mutation relations and commute with the spin
operator j and the mass M. The mass operator
must also commute with j.

Conversely& if the ten Poincard generators are
known, then P, X, j, andM are defined as func-
tions of these generators and satisfy the commu-
tation relations specified above as a consequence
of the Lie algebra of the Poincar6 group. For
noninteracting particles the Poincarb generators
are well determined. Phenomenological interac-
tions can be introduced by retaining the operators
P, X, and j of the noninteracting system and
modifying only the mass operator I:

M =M0+ V,
where M is the noninteracting mass operator and
V commutes with P, X, and j . For hvo particles,
the construction of V is simple. ' ' For three
particles, it is an essential requirement that the
right two-body scattering is recovered if one of
the particles is far away. '

In Sec. II we construct a model of the NNm sys-
tem along the following lines. Let 3'.N, X„and
+~ be one-particle Hilbert spaces of a nucleon,
a pion, and a 4 isobar. %e begin with a descrip-
tion of nucleon-nucleon scattering in the space

NN N N ~

with the mass operator

0
NN ™NN NN
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0
MN& MNg+ vNw (5)

The operator v„, includes two-body interactions
in X~SX, as well as a vertex Nm=h. For a large
class of models the properties of v» and v„, as-
sure the existence and completeness of Manlier
wave operators. "

As an intermediate step we proceed to an equi-
valent description of the NN system in the pre-
sence of a spectator pion, and a description of
the Nw system in the presence of a spectator nu-
cleon. The Hilbert space of states is then

X =X~SX~SX SX~X~, (6}

and the interacting mass operator is a function of

v» and vN, . If both NN and Nr interactions are
present it is possible to construct the interacting
mass operator M'+ V in such a manner that, if
one of the three particles is moved away, the re-
maining particles scatter correctly.

For the full model, the Hilbert space of states
is X=X SXNSX~, with a mass operator of the
form (1) with

V=VO+V + V (7)

where V vanishes on states in X~SXz. The oper-
ator Vo is a phenomenological baryon-baryon in-
teraction defined on the states in XA SX„SX~SX~.
By definition V, vanishes on states in XzSXNSX,.
The operator V is defined as a three-body in-
teraction on states in X~SXNSX, with possible
off-diagonal elements to states in X~SXv. It van-

ishes if any one of the particles is moved away.
The model is designed to allow pion production

and absor'ption and the parameters of V, are to
be determined by fits to N-N scattering data both
above and below the pion threshold. Since the
model does not allow inelastic N-N scattering
when a pion is present, the cluster separability
can be satisfied only to the extent that inelastic
N-N scattering is negligible in the NNg channel.

The scheme outlined above meets our specific-
ations. (i) It is relativistically invariant. (ii} If
all stable particles are distant from each other,
then M-M' and thus no renormalization is called
for. (iii) True pion absorption is included by the

mechanism Nm-b, , Nh-NN, as well as the off-
diagonal part of V . To the extent that pion pro-
duction is dominated by the 6 resonance, it is
reasonable to consider models in which V = 0.

The interaction v» is fitted to N-N scattering
data and to the properties of the deuteron.

Similarly, we have a description of the mN sys-
tem in the space

X~ =XNSX SX~,
with the mass operator

In Sec. III, the multichannel scattering theory
for the NNm system is summarized and the ex-
pressions for the scattering and reaction ampli-
tudes are brought into a form which reflects the
strategy for numerical computation that will be
used in a subsequent paper. " The relevant pro-
perties of the Poincard generators are listed in
the Appendix.

II. CONSTRUCTION OF THE NNm MODEL

We begin with a representation for two interact-
ing nucleons on X States

I
g&e K ~can be repre-

sented by functions ((p„p ~), where p, and p~ are
the nucleon momenta. We suppress the spin var-
iables to simplify the notation. They are not im-
portant for the general structure of the model.
Alternatively we may represent

I
P&by functions

g(Pss, k, ), where

gN- pa+» ~ (6)

The vector k, is def ined by

k, =L (Q ~) p, ,

where k, and p, are four-vectors and I (Q) is the
Lorentz transformation that transforms', (I
+Q)'~} into(0, 0, 0, I}. The vector Q» is a
center-of-mass velocity defined by

QsN PNg™~~.-
In this representation the mass operator (3) has
the kernel

(o(k) = (k'+ m') (13)

It follows from Eq. (11) and the definition of the

Manlier wave operators 0, ,

Q, (M, M')=s- lim e'"' e 's ', (14)

that 0 =Q,~,Mg~) has matrix elements of the
form

From Eg. (14) and the definition

T=v 0, , (16)

it follows that the Lippmann-Schwinger equation
for the nucleon-nucleon T matrix is

where

(k, IMJk, ) =2(o(k,)6(k, —k,)+ (k, v lk, ) (12)

and
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(k l~NN k)=(k Aryjk)

„(k i'~~N k")(k"
I &NN k)

~-„) 2[10(%—01(F")+isJ

(17)

follows from p'=p and P ' = PNNH and only if
lk, = k, .) Since

MO (q2+MO 2)1/2+ (q2+ m2)1/2 (27)

where the limit s-+0 is implied.
If there is a pion present, the space of states is

X~X, and the operator defined as MN„31 on this
tensor product will be denoted again by M». Its
kernel in the representation (11) is

(p&» ~NN & kalMNNlk» ~NN& P»)

k )5(PNN PNN)5(p,
' —p, ) . (18)

it follows from

M NlPNN+ NN2 NN

that

NN+ MNN elf NN+ '

where

(28)

(29)

The three-body Hamiltonian and the three-body
boost operator are additive in this representa-
tion if the pion does not interact with the nucle-
ons;

HNN ~, —
HEN+ H» (20)

Similarly,

(p. PNN k. If', +lk. PNN p. )

=(k. l&»~lk. }6(PNN PNN)6(p p } (19)

M, =(q'+M-' )' '+ (q', +m', )'" .
NN2 &

%e may therefore expect the desirable result

0 (MNN, M&)=0 (MNN, MNN ) .

(30)

(31)

A proof of (31) uses the Birman-Kato invariance
principle"'" and Lebesgue's bounded convergence
theorem. '4

The Hamiltonian

KNN, ,—KNN+ K, . (21) (32)

Neither the mass operator (18) nor the wave
operator (19) commute with the center-of-mass
position X defined by (A7) for the noninteracting
system. To implement the construction outlined
in the Introduction we need a scattering equiva-
lent mass operator M~ that commutes with the
noninteracting X.

Let q, be defined by

q, =L(P/M0NN)p, . (22)

It is possible to represent states lg&eK„NISX,
by functions $(P, k„q,). We define the mass op-
erator M„N by its kernel in this representation

(q„P,k, M
N l

k„P,q, )

= (k, lM„ lk, )6(P —P)6(q,
' —q, ) . (23)

Manifestly, the wave operators

(24)

exist and are complete. From Eqs. (23) and (24)
it follows that the matrix elements of Q„N', are

(q,', P', k,'ln lk. , P, q,)

(k. fI,„,lk.)6(P —P)6(q —j ) ~ (25)

is not additive as in (20). The two-body inter-
action term

(q2+M 2 )1/2 (q2+M0 )1/2

depends parametrically on the spectator momen-
turn q, .

The treatment of the two-body mN problem is
similar to that of N-N scattering described above
except that the masses are not equal and mN is
coupled to a virtual & channel. Any state lg& in

XN, has a component in XN SX, represented by a
function g„,(P&„k,) and a component in K~ repre-
sented by a function (~(pN. ), where P„.denotes
the total momentum and k, is defined by

n, = I.(I„,/M„', )p. . (34)

(k, lA„, k.) =~k) 6(k,'-k, )+(k, l~N, lk.), (36)

The mass operator MN, has matrix elements pro-
portional to 5(PN, —PN, }as in (ll) and the restric-
ted matrixMN, is of the form

(26)

It is clear from (19}and (25) that QN~ and ANN~

differ. But the $ matrices are identical,

t t
NN NN+ NN NN+ NN

because S commutes with M'. (Note that q, = q,

where

W(k} = (k~+ m')' '+ (k'+ m')'/'

(~lMN, l~)=m, ,

(36)

(37)
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(k'li„, k) =(k ~U(k)~k)

d2~ir (k')U(k)~k)(k" (T„Jk)
W(k) -W(k")+is

(39)

where the effective potential U(k) is defined by

("'))0(k)[k") = (k
'

I2/~. Ik' )

(k' v„, d)(a v„, k")
W(t) —m~+ is (40)

The wave operators QN, are known to exist and
to be complete. "

The pion-nucleon interaction in the three-body
space can be defined by the same procedure that
led to Eq. (33). The result is

(38)
A

The parameters are such that M„, has no point
spectrum. The T matrix for mN scattering sat-
isfies the Lippmann-Schwinger equation

structed above satisfy the conditions stated in the
Introduction. In any concrete realization, a con-
venient form is assumed for the two-body inter-
actions v», vN„and V,. The mass operator is
then of the form (1) and (7) with V' given by (42).
This mass operator together with the operators
P, X, and j of the noninteracting system can be
used to obtain the Poincard generators using
(A13)-(A15).

Contact with experiment requires equations for
the relevant scattering amplitudes. The deriva-
tion of these equations from the general theory
is sketched in the Sec. III.

EN NN& &d ' (48)

III. SCATTERING THEORY

The complete scattering theory of the NNm sys-
tem must consider the channels NN, NNm, and

md. Since a bound state —the deuteron —is invol-
ved, it is most convenient to use a two-Hilbert-
space formulation. '"" The initial and final
state are described in the Hilbert space X~,

(q2+ M2 )1/2 (q2+~02)1/2 (41)

The Poincard generators in X~ are those for free
particles in the three channels NN, NNm, and md.

A time dependent scattering state g(f)&X satis-
fies the initial condition

where a labels the nucleon that interacts with the
pion and b labels the spectator.

The fully interacting mass operator is then of
the form (1) with (7) and

(42}

The Hamiltonian H= (P'+M')' ' does not become
additive when a particle is moved away, but the
wave operators

lim j((f) —C&(t)([=0,
t ~~OO

where y(f) is a state of noninteracting particles
in X and the operator 4 from X into X maps

+„N and&„„ identically into X~N and K N . It
maps X~~ into X», according to

(p2~P~~ klC'lpga p.}=6(p. p.)5(P2-PNn)eu-(k»

(50)
0=s-].im e™e '

T~k0o

satisfy the cluster relations'

(43) where p2(k) is the momentum space deuteron
wave function. The wave operators are then de-
fined by

lim [f (0, —Q~„,) e" '0 l(&/[ =0,
Idl

lim [[ (n, -n.„)e"2
lBI

(44} 0,= s-lim e'"' 4e-'
T~k oo

From the definition of 4 it follows that

cM/ln) =~'c ln)

(51)

(52)

lim II (S —S„„I31)e" '& lg&II=0
Igl

(46)

where lp&cX»SX, . The S operator has there-
fore the required cluster properties, if ln) &X/N„or ln) &XN/~„and that

cM/l6) =(iaaf'+v „,)c l6) (53)

and

lim ([ (S —S.,S1) e";~ l(&(( =0 .
IHt-~

(47)

1f l6)~X,', .
An off-shell T operator in X can be defined by"

This completes the proof that the models con-
Z'(s) =C'~+ V'

g-M (54)
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where U is by definition R(z) =[g-M(z)]-' . (70)

g=MC —4M~ . (55)

S=QtQ

that

(56)

It follows from E(ls. (51) and (54) and the defini-
tion of S,

Because of the 6-Nv vertex, . M(z) does not go to
M' if the nucleon in the space X&(3X~ is moved to
infinity. Let V~(z) be the surviving 6 self-inter-
action,

V~(g)= lim e"»' & ~[M(z)-M ] (P ~ e "»'"
l&l~~

&tu iSiN)&= 5(to —zo)[1 —2)ri&tD
i
T(%) im&], (57)

where zo is an eigenvalue of M~. From the defini-
tion of 'U together with (52) and (53) it follows that

and define

lim e"„' (PV'R(z) V(Pe ~'» ",
) d I ~'

(71)

and

'0 in) =VC in & (58)
V(z) =M(z) -M'(g)= Vo+ (PVRV(P- V~(z), (72)

where

Mo(z) =(PM'(P+ V,(z) .
~i6& =v,ei6&,

where

V~= V-V~N,

(59)

(60)

The following relations are simple consequences
of these definitions and the identities

1 1 1 1
z-A —B z-'A z-A z-A. —B

&P iT(.) in&=&Piete(g)C in&,

with

&(z) = v+ v v,1
z-M

(61)

(62)

if in & and iP & are in the Nf)I channel or in the
NNm channel. If

i
6 & and

i
6 & are in the wd chan-

nel we have

It is therefore possibe to express the channel pro-
jections of the operator T(z) in the form 4"1'(z)C
where &(z) is a different operator for different
channel projections. We have

1 1 1
+

g -A g-A —B g-A

which hold for any z, A. , and B:

R(g) = (PR(z)(P,

R(g) = [1+R(z)V]R(g) [VR(g)+ 1]+R(z) .

From (65) and (74) it follows that

r(g) = U(z)+ U(z)R(g)U(z),

7;(z)= [1+U(g)R(z)]U, (g),

(74)

(75)

(76)

(77)

(78)

&n iT(z) i6&=&n C'r„(z)C i6&,

&6'iT(g) i6&= &6'iC q„(g)e i6&,

where

(z)= (V1 z )VV,

and
11'„(z) (lz V, )V, . =

(63)

(64)

(65)

(66)

V'„(z) = U„(z)+ Ut(z ~)R(z) U, (z),
where

U(z) = V+ VR(z) V —V (z),

U~ (g) = [1+VR(z)]v~,

U„(z)= V, + V,R(z)V, .

(79)

(80)

(81)

(82)
For purposes of calculations it will be conven-

ient to project out the three-body space X»X, .
Let 0' be the projection operator that projects
onto KN~SX~~ and 6'= 1 —O'. We use the following
definitions:

Further reductions involve the identities

R(z)= R( z) +R( z)i(z)R, (g),
where

(83)

R(z) = (g -M)-',

R(z) = (z -(P M(P)-'(P,

M (z) =(PM(P+ (P VR(z) V(P,

(67)

(68)

(69)

R,(z) = [z -M, (z)]-'

T(g) = f'(z)+ V(z)A(z) V(g)

= V(z)+ V(z)R,(z)T(z) .

(84)

(s5)
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Since

0"II(s)0'= I'(s),
we have

and

(86)

(87)

[Jp, P,]=i Qsq, „P„, [J),H]=0,
r

[J,K,]= i Q s,„K„,

[Kq, K,]= i-Q sp,„J„,
r

[K„P,]=i 6„H, [K„,H]=is„.

(AS)

(A4)

(A6)

(A6)

(tII &(s)l~& =(PIC 'T'(a)c I~& (88)

if
I
n & and

I p & are in the NN channel.
In practice, the parameters of g„, are deter-

mined from m Nelas-tie scattering data using (39)
and (40). The parameters of v „are obtained
from (17) by fits to N-N elastic scattering data
in the energy region where inelasticity is neglig-
ible. The parameters of V, are then determined
from N-N elastic scattering data both above and
below the pion production threshold. This involves
using (88) and (85). The study of other pro-
cesses then provides tests of the validity of the
model as well as means of removing any remain-
ing ambiguity in the interactions. The numerical
implementation of this scheme will be reported
elsewhere. "

%e wish to thank T.-S. H. Lee for helpful dis-
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auspices of the V.S. Dept. of Energy.

The Newton Wigner position operator" X is de-
fined by

Px(HJ+ PxK)X= a (H ' K+KH ')
MH(M+H)

(A7)

and the canonical spin j is

j=J-XXP.
It follows from (Al)-(A8) that

[x„,x,]=o,

[x„,z,]=i6„, ,

and

[x„~.]= p'„~.]= o .

(A8)

(AO}

(A10)

(A11)

Since M commutes with all the generators, it
follows that

[M, ~] = [M, X]= [M, P] = 0 . (A12)

Conversely if X, P, j, and M satisfy (Al)-(A12),
then the generators H, J, K defined by

APPENDIX

The Poincar6 generators 5, H, J, K satisfy the
commutation relations

H = (P'+M')'~',

J=XX P+ j,
(A18)

(A14)

[z„p,]=[a„H]=o,

[J„J,]=i+ c,„„J„,
(AI) and

K =-,' (HX+ RI) Tx P (M+H)-'

satisfy the commutation relations (Al)-(A6).

(A15)
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