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The theoretical basis is given for a class of mathematically well defined NN7 models. They are designed
to describe nucleon-nucleon scattering, pion-nucleon scattering, pion-deuteron scattering, pion production,
and absorption. The elementary degrees of freedom of the models are the nucleon, the A isobar, and the
pion. The models are relativistic and do not require renormalization.
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I. INTRODUCTION

Traditional nuclear theory assumes that nuclei
can be treated as a collection of nucleons with the
effects of the other degrees of freedom absorbed
in the phenomenological Hamiltonian. For a
treatment of pion-nucleus reactions it is desirable
to extend this scheme so that pions and A isobars
can play an explicit role.»? A relativistic treat-
ment is indicated because of the small pion mass.

Relativistic quantum mechanics requires a un-
itary representation of the Poincaré group on the
Hilbert space of states. Relativistic field theories
satisfy the requirement; they realize the gener-
ators of the infinitesimal transformations by
space integrals over the energy-momentum ten-
sor.® Inevitably there are then infinitely many
degrees of freedom and the one-nucleon problem
is intractable. Truncation of a relativistic field
theory to states with a finite number of particles
necessarily destroys the relativistic invariance.
This lack of invariance may imply the lack of
“cluster separability”*5; specifically, the pion-
nucleon scattering in the NN channel with a dis-
tant nucleon spectator is not the same as the
pion-nucleon scattering in the 7N channel, unless
special precautions are taken. It is reasonable
in most cases to assume that real baryons move
with nonrelativistic velocities, but renormaliz-
ation problems and problems of internal consis-
tency persist in this approximation. There are
many models of the NN7 system based on trun-
cated field theories.®

The purpose of this paper is to construct rela-
tivistic models of the NN7 system in which 7, N,
and A are the elementary degrees of freedom; the
pion can be absorbed and no renormalization is
required. The underlying theory is not new.’
Relativistic quantum mechanics need not be a field
theory. It is possible to construct representations
of the Poincaré group for interacting particles by
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modifying the mass operator M of a system of
free particles.”*

The formal structure, which is not unlike that
of nonrelativistic quantum mechanics, is based on
the following remark. The ten generators of the
Pomcaré group (P H for space and time transla-
tions, J for rotations, and K for Lorentz boosts)
can ] be constructed as functions of operators P
X ], and M defined such that the total momentum
1'5 and the c.m. positionX satisfy canonical com-
mutation relatlons and commute with the spin
operator ] and the mass M The mass operator
must also commute with j.

Conversely 1f the ten Poincaré generators are
known, then P X ], and M are defined as func-
tions of these generators and satisfy the commu-
tation relations specified above as a consequence
of the Lie algebra of the Poincaré group. For
noninteracting particles the Poincaré generators
are well determined. Phenomenological interac-
tions can be introduced by retaining the operators
P X and ] of the noninteracting system and
modifying only the mass operator M:

M=M°+V, 1)

where M° is the nomnteractmg mass operator and
V commutes with 1'5 i’ and j. For two particles,
the construction of V is simple.®® For three
particles, it is an essential requirement that the
right two-body scattering is recovered if one of
the particles is far away.’

In Sec. II we construct a model of the NN7 sys-
tem along the following lines. Let3c,, X,, and
X, be one-particle Hilbert spaces of a nucleon
a pion, and a A isobar. We begin with a descrip-
tion of nucleon-nucleon scattering in the space v

3y =3, 3y, )

with the mass operator
Myy =Myy +vyy - (3)
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The interaction v, is fitted to N-N scattering
data and to the properties of the deuteron.

Similarly, we have a description of the 7N sys-
tem in the space

chr:scN®3CI®JCA ’ (4)
with the mass operator
MN1=MN07+UN‘7 . (5)

The operator vy, includes two-body interactions
in 3¢, ®3C, as well as a vertex Nm=A. For a large
class of models the properties of vy, and vy, as-
sure the existence and completeness of Mgller
wave operators.!°

As an intermediate step we proceed to an equi-
valent description of the NN system in the pre-
sence of a spectator pion, and a description of
the N7 system in the presence of a spectator nu-
cleon. The Hilbert space of states is then

5" =30y @30y ®C, DICNDIC, , (6)

and the interacting mass operator is a function of
vyy and v,,. If both NN and N7 interactions are
present it is possible to construct the interacting
mass operator M°+ V' in such a manner that, if
one of the three particles is moved away, the re-
maining particles scatter correctly.

For the full model, the Hilbert space of states
is 3¢=3¢' ®3Cy®3€Cy, with a mass operator of the
form (1) with

V=V+V'+V'", (M

where V' vanishes on states in 3,®3Cy. The oper-
ator V, is a phenomenological baryon-baryon in-
teraction defined on the states in 3y ®ICyB IR IC,.
By definition V, vanishes on states in J(y®3Cy®3C,.
The operator V'’ is defined as a three-body in-
teraction on states in 3¢y®3Cy®3C, with possible
off-diagonal elements to states in JCy®3C,. It van-
ishes if any one of the particles is moved away.
The model is designed to allow pion production
and absorption and the parameters of V, are to
be determined by fits to N-N scattering data both
above and below the pion threshold. Since the
model does not allow inelastic N-N scattering
when a pion is present, the cluster separability
can be satisfied only to the extent that inelastic
N-N scattering is negligible in the NN7 channel.
The scheme outlined above meets our specific-
ations. (i) It is relativistically invariant. (ii) If
all stable particles are distant from each other,
then M-M° and thus no renormalization is called
(iii) True pion absorption is included by the
mechanism Nm—A, NA~NN, as well as the off-
diagonal part of V'/. To the extent that pion pro-
duction is dominated by the A resonance, it is
reasonable to consider models in which V=

In Sec. III, the multichannel scattering theory
for the NN7 system is summarized and the ex-
pressions for the scattering and reaction ampli-
tudes are brought into a form which reflects the
strategy for numerical computation that will be
used in a subsequent paper."! The relevant pro-
perties of the Poincaré generators are listed in
the Appendix.

II. CONSTRUCTION OF THE NN7 MODEL

We begin with a representation for two interact-
ing nucleons on G, States [zp>e 3(’,mcan be Tepre-
sented by functions ¥(p,,p,), where p, and p, are
the nucleon momenta. We suppress the spin var-
iables to simplify the notation. They are not im-
portant for the general structure of the model.
Alternatively we may represent I¢>by functions
(B, y,K,), where

P =D, *+D;. (8)

The vector k , is defined by

kuzL(éNN) Pa>s (9)

where %, and p, are four-vectors and L(Q) is the
Lorentz transformation that transforms {Q, 1
+@)Y% into {0,0,0,1}. The vector Q,, is a
center-of-mass velocity defined by

QNN =Pyy /My (10)
In this representation the mass operator (3) has
the kernel

( NNrk l Ik NN)=(~E¢:|MAW‘E¢|)6(§N1,V—§NN) ’
(11

where
&, 1Mk ) = 20(k )oK ; ~ K )+ (& 114, [k,) (12)
and
w®)=E&2+mf)/? . (13)
It follows from Eq. (11) and the definition of the
Mgller wave operators §, ,

Q,(0M, M%) =s-lim ¢'¥" o-¥°r (14)

Teskoo

that Q,, = 2,(M,y, Myy) has matrix elements of the
form

B Ko | e [K o Biw) = 8 Bay= Bun) (e [ @ K-
' (15)

From Eq. (14) and the definition
T=08,, (16)

it follows that the Lippmann-Schwinger equation
for the nucleon-nucleon 7 matrix is



&' | Ty k) = & |Dun]K)
w & |y [K" )& | oy | )
* wmdSk 2[51(% w(E”)+Nz{::] ’
(17)

where the limit € -+ 0 is implied.

If there is a pion present, the space of states is
JHCm®C, and the operator defined as M,,,®1 on this
tensor product will be denoted again by M,,. Its
kernel in the representation (11) is

Brs Pyns alMNN|ka’iSNN’pw)
=(ka IMNNIka)G(PNN - EVN)ﬁ(B: _51) . (18)

Similarly,
-y - ,

(p" NN? a,QNN ,km NN, p‘rr)
= iy | Syt | K, )6 (Byn— Bawo (0, - b,) . (19)

The three-body Hamiltonian and the three-body
boost operator are additive in this representa-
tion if the pion does not interact with the nucle-
ons;

Hyy,,=Hy+H, , (20)
Kyne r = Kynt Ky (21)

Neither the mass operator (18) nor the wave
operator (19) commute with the center-of-mass
position X defined by (A7) for the noninteracting
system. To implement the construction outlined
in the Introduction we need a scattering equiva-
lent mass operator My, that commutes with the
noninteracting X.

Let &, be defined by .

L(B/MS,)p, . (22)

It is possible to represent states [¢>e3C, ®3C,
by functions (P, k - q,) We define the mass op-
erator My, by its kernel in this representation

@, .,IMNNIk,,, B,4.)
= (2, & )s(®" - B)o(d; - d,) . (23)
Manifestly, the wave operators
Qs = My, MO ), : (24)
exist and are complete. From Egs. (23) and (24)

it follows that the matrix elements of QNN* are
(ar, B, K, | K0 P, 0,)
= (i, | . [K)o(B'-P)o(a,-q,) . (25)

It is clear from (19) and (25) that Qy,, and $&,,,
differ. But the $ matrices are identical,

Suv=2hwe Q=80 Snre s (26)

because S commutes with M°, (Note that q,=q,

21 PHENOMENOLOGICAL RELATIVISTIC QUANTUM MECHANICS... 2507

follows from pf par and -P:v;v =

,k | |k , e P,,if and only if
= ince

=(@+ M) 2+ (@+ m2)H /2 (27)

it follows from

M s = Qs My (28)
that

QNN* =My, yps > (29)
where

M e = (@M )24 (@4 m2) /2 (30)

We may therefore expect the desirable result
Q*(MNN ,wMo): Q*(MNN )M)SN ) . (31)

A proof of (31) uses the Birman-Kato invariance
principle'®!® and Lebesgue’s bounded convergence
theorem.*
The Hamiltonian
H,, =[P*+m2, T/ (32)

is not additive as in (20). The two-body inter-
action term

VNN,r = va,r‘Mo
= (@ +M 3y 12 — @+ MG, )/ (33)

depends parametrically on the spectator momen-
tum a,.

The treatment of the two-body 7N problem is
similar to that of N-N scattering described above
except that the masses are not equal and 7N is
coupled to a virtual A channel. Any state |¢> in

- ¥y, has a component in JCy ®IC, represented by a

function sz,(P - k,) and 2 component in 3¢, repre-
sented by a function 3 A(PN,,) where PN, denotes
the total momentum and kr is defined by

ke=L(B, /M5 Jp, - (34)
The mass operator MN, has matrix elements pro-
portional to 6( vr) as in (11) and the restric-
ted matr1xM 1s of the form

(&, |, |k,) = WEK) 6(K, - &,)+ &, |oy, |K,),  (35)
where

W(K) = (R2+m3) /2 + (R2+ m2)H/2 | (36)

(a ,MNr,A)zmA s 37)
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(A M, |K,)= (& |5y,]k,) . (38)

The parameters are such that M x has no point
spectrum. The T matrix for 7N scattering sat-
isfies the Lippmann-Schwinger equation

& |7, |8) =& |0®|F)

fdsk" &'|0®)|K)K”|Ty JK)
WE) -wk"”)+ie ’
(39)

where the effective potential ﬁ(ﬁ) is defined by

®)OE®)E") = K" |5,k

(k [5ng | A)A [y, K"
W(R) - M+ 1€

(40)

The wave operators Qy, are known to exist and
to be complete.°

The pion-nucleon interaction in the three-body
space can be defined by the same procedure that
led to Eq. (33). The result is

V

am,b af,

» —M°
= (@+ M2)2 — (G MEN (41)

where a labels the nucleon that interacts with the
pion and b labels the spectator.

The fully interacting mass operator is then of
the form (1) with (7) and
V,:V;VN,E" Var, ot Vor,a - (42)
The Hamiltonian H = (]E’.2 +M?)'/2 does not become
additive when a particle is moved away, but the
wave operators

Q,=s-lim 7 o’ (43)
T4

satisfy the cluster relations®

lim || (2, - Gy, '&d [9>11=0, (44)
1dl=
lim 1| (2, - 24,) el y>|=0, (45)
ldl*

where [z/;>e3€NN®JC,. The S operator has there-
fore the required cluster properties,

lm | (S=Syy®1) e®rd [y>[|=0 (46)
FIEE

and
lim || (S-S,,®1) %3 [y>]I=0. 47)

1d1~e

This completes the proof that the models con-

structed above satisfy the conditions stated in the
Introduction. In any concrete realization, a con-
venient form is assumed for the two-body inter-
actions vy, vy,, and V,. The mass operator is
then of the form (1) and (7) with V' given by (42).
ThlS mass operator together with the operators
P X and j of the noninteracting system can be
used to obtain the Poincaré generators using
(A13)-(A15).

Contact with experiment requires equations for
the relevant scattering amplitudes. The deriva-
tion of these equations from the general theory
is sketched in the Sec. III.

III. SCATTERING THEORY

The complete scattering theory of the NNm sys-
tem must consider the channels NN, NN7, and
wd. Since a bound state—the deuteron—is invol-
ved, it is most convenient to use a two-Hilbert-
space formulation.’»™'7 The initial and final
state are described in the Hilbert space 5/,

3¢/ = 3(3{” ® Sqmv ® 3C1fra . (48)

The Poincaré generators in 3¢/ are those for free

particles in the three channels NN, NNw, and nd.
A time dependent scattering state ¥(f)e3C satis-
fies the initial condition

lim [[¥(#) - XDl =0 , (49)

where () is a state of noninteracting particles
in 3¢/ and the operator & from 3¢/ into 3¢ maps
3¢5y and 3¢ ., identically into 3y and 3Cy .. It
maps ¥¢f, into 3C,,, according to

(p:; I-.’NN’ EH’ IPa, pﬂ') = 5(51: - p")é(ﬁd - I.SNN)(i’d(k.),

(50)
where ¢,,(12) is the momentum space deuteron

wave function. The wave operators are then de-
fined by

Q,=s-lim e¥" @e“”f" . (51)

Testoo

From the definition of & it follows that

M’ |a) =M°3 |a) ’ (52)
if |a)es, or |a)escf,,, and that
aM’[6) = (M°+V,, )& |6) (53)
if |8)€ 3¢
An off-shell T operator in 3 can be defined by'®
T(z)= & 0+ U z_lM v, (54)
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where U is by definition

V=Md - aM/ . (55)
It follows from Eqgs. (51) and (54) and the defini-
tion of S,

s=qQtq_, (56)
that

(w'|S|wy=56(w" - w)[1 - 27w | T(w)|w)] , (57)

wherew is an eigenvalue of Mf., From the defini-
tion of U together with (52) and (53) it follows that

V|a) =Ve|a) (58)
and

v[s)=va|s), (59)
where

V=V -Vyn,r- (60)

It is therefore possibe to express the channel pro-
jections of the operator T'(z) in the form &' T(2)®
where T(z) is a different operator for different
channel projections. We have

BTk |ay=(8|2' 7(2)8|a), (61)
with
T(Z)=V+V 2-—1M 14 N (62)

if |@>and |g> are in the NN channel or in the
NNm channel, I |6>and |6'> are in the nd chan-
nel we have

(@] T(2) |6y=(a | @' T (2)® |6) , (63)

8" | T(2) |6)y= (6 | T T 1a(2)® | 5) , . (64)
where

Td(z)=<1+V z_—LM—> V, (65)
and

T gal2)= (1+ v, ﬁ) v,. (66)

For purposes of calculations it will be conven-
ient to project out the three-body space 3y y®3C,.
Let @ be the projection operator that projects
onto ¥y y®ICy, and =1 - @, We use the following
definitions:

R(z)=(z-M)™", (67)
R(iZ)=(z-0 M®)" @ , (68)
M(z)=CMe+®VR(2)VE , (69)

I.%(‘z)=[z—1t"4(z)]'1 . (70)

Because of the A - N7 vertex,. i1 (z) does not go to
M if the nucleon in the space 3¢, ®3C, is moved to
infinity. Let V(z) be the surviving A self-inter-
action,

V)= I;}}E}o ey d G’NA[M(Z) -M°) ®oa e-ity-d

- lim e!dd CVR()V e Tyd . (71)

1di==

and define

V(z)=M(2) - M1%(z) = Vo, + VRV ® - Vp(2) ,  (72)
where

M9(z)=PMO® + V(2) . (73)

The following relations are simple consequences
of these definitions and the identities

1t 1 1
z-A-B 2z-A z-A z-A-B
1 1 1

i _A‘ticA-BPi A (74)

which hold for any z, A, and B:
R(z)=®R(2)®, (75)
( R(z)=[1+—R(2)V]R(z){VE(z)+ 1]+R(z) . (76)

From (65) and (74) it follows that

T(2)=Uz) + UR)R(2)U(2) , (17)

T,(2)=[1+ U(2)R (2)]U,(2) (78)
and

Toa(2) = Upy(2) + Uz )R (2)Uyl2) (79)
where

Ulz) =V +VR(2)V - Vy(2) , (80)

U,(z)=[1+VR(2)]V,, (81)
and ‘

Uyu(2)=V,+V,R(2)V, . r (82)

Further reductions involve the identities

R(2) =R (2)+ ﬁo(z)i’(z)ﬁo(z) R (83)
where

R (2)=[z - M1 ,(2)]™ (84)
and

T(2)=T(2)+ 7(2)R(z)V (2)
=V (2)+ 7(2)Ry(2) T (2) . (85)
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Since

PUR)P=V(z) , ‘ (86)
we have

®T(2)®=T(z) (87)
and

B|T@)|a)=(8|®'T(2)® |a) (88)

if |a>and |8> are in the NN channel.

In practice, the parameters of v, are deter-
mined from 7-N elastic scattering data using (39)
and (40). The parameters of v yy are obtained
from (17) by fits to N-N elastic scattering data
in the energy region where inelasticity is neglig-
ible. The parameters of V,, are then determined
from N-N elastic scattering data both above and
below the pion production threshold. This involves
using (88) and (85). The study of other pro-
cesses then provides tests of the validity of the
model as well as means of removing any remain-
ing ambiguity in the interactions. The numerical
implementation of this scheme will be reported
elsewhere.

We wish to thank T.-S. H. Lee for helpful dis-
cussions. This work was performed under the
auspices of the U.S. Dept. of Energy.

APPENDIX

The Poincaré generators B, #, J, K satisfy the
commutation relations

[PpP;]:[PuH]:O, (A1)

P’ q] 1’2 Eﬁqr

) (A2)

J, P,l= zZsN, , [J,,H]=0, (A3)
J,,Kq]=izr:s," ro (A4)
K, K,]= —iZ: Epar Iy » (A5)
[K,,P)=i 6, H, [K,H]=iP,. (A6)

The Newton Wigner position operator'® Xis de-
fined by

=§ (H! K+RH™) -%%’%2 (A7)

and the canonical spin'j. is

J=J-XxB. (A8)
It follows from (Al)—(A8) that

[x,,X]=0, (A9)

[X,, P,]=ib,, , (A10)
and

[X,,7,]=[P,,4,]=0 . (a11)

Since M commutes with all the generators, it
follows that

[M,7)=[M,X]=[M,P]=0 . (A12)

Conversely if X, P, 'j’, and M satisfy (A1)-(A12),
then the generators H, J, K defined by

H=(P*+M?)/? (A13)

J=XxD+7, . (A14)
and

K=% (HX+3XH)-Tx P M+ H)™ (A15)

satisfy the commutation relations (A1)-(AS).
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