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Techniques for heavy-ion coupled-channels calculations.
II. Iterative solution of the coupled radial equations
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This paper, the second in a series on techniques for heavy-ion coupled-channels calculations, compares
various iterative methods for the solution of the coupled radial equations in the interior region of
configuration space. We consider the Born-Neumann series, sequential iteration, the method of moments,
and Austern's modification of the Sasakawa method. The use of Pade approximants is shown to eliminate
convergence problems with Born and sequential iteration. We conclude that sequential iteration with Pade
acceleration is the most rapidly convergent and most efficient way of carrying out coupled-channels
calculations for heavy-ion inelastic scattering; 0.5% accuracy in cross sections can be achieved with three or
four iterations in each partial wave.

NUCL EAR REACTIONS HI coupled-channels inelastic scattering. Iterative so-
lution of radial equations.

I. INTRODUCTION

Coupled-channels calculations for the inelastic
scattering of heavy ions have been severely. re-
stricted by their computational complexity. Major
souces of difficulty include (I) the long range of
the Coulomb coupling potential, (2) the large num-
ber of channels that must be considered, and (2)
the large number of partial waves that contribute
s ignif icantly. The eff ic ient treatment of Coulomb
coupling was discussed in the first paper' of this
series. It was shown that the Alder-pauli de-
composition of the coupled-channels Coulomb
wave functions allows efficient computation of in-
coming and outgoing solutions of the coupled radi-
al equations in the region r& R~, where R„ is a
radius at which nuclear potentials are no longer
important (R„-20-30 fm). These coupled-chan-
nels Coulomb functions replace the standard
Coulomb functions in the process of extracting
S-matrix elements. Thus it is possible to stop the
outward integration of the interior radial equations
at R„ instead of the several-hundred-fm radius
that would be necessary if the Coulomb coupling
were not explicitly treated.

In the present paper we discuss methods for
solving the coupled equations in the region x &R~,
i.e. , where both nuclear and Coulomb forces are
important. For Coulomb-dominated reactions it is
possible to avoid explicit treatment of an interior
region by use of the Alder-pauli2 approach for-all
significant r values. However, in the presence of
strong nuclear interactions most of the approxima-
tions used to simplify the equations of the Alder-
Pauli method break down; we therefore prefer to
solve the original radial equations directly.

The traditional method is to solve the N coupled
equations, fromm = 0 toe =R„,N times with linearly
independent starting values. A linear combination
of the resulting N sets of regular solutions may
then be found that has the desired boundary condi-
tions as r —~ (incoming and outgoing waves in the
elastic channel, outgoing waves in all other chan-
nels). In this process the complete N x N S ma-
trix can be extracted even though only one column
is needed to compute the desired cross sections.

This procedure is reasonable for light-ion cal-
culations where the number of coupled equations is
usually moderate (N~20). In heavy-ion studies
much larger systems of coupled equations are en-
countered and it is no longer feasible to solve the
N coupled equations N times (thus computing N~

radial wave functions) in order to extract the single
desired column of the S matrix.

A number of iterative procedures have been in-
troduced in attempts to reduce the amount of com-
putational labor. All involve recursive solution for
a single set of radial wave functions that are con-
strained to have the desired boundary conditions.
The aim is to construct a converged solution in a
reasonable number of iterations. In this paper we
compare several of thyrse schemes and discuss
their efficiency for heavy-ion reactions.

The most obvious scheme is to generate the
Born-Neumann series for the wave functions
and S matrices. Vfe refer to this as "block itera-
tion" since the wave functions in all channels are
treated together in a block. Raynal has suggested
a variant of this method in which the radial equa-
tions are treated one at a time in a definite se-
quence rather than as a block; improvements in
the solutions of the equations that occur earlier in
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the sequence are then incorporated in the equations
to be solved later in the sequence. This is re-
ferred to as «sequential iteration. " We find that
it has substantially better convergence properties
than block iteration.

Both of these methods build up the wave functions
and S matrices as power series in the coupling po-
tential and both can diverge for physically rea-
sonable potentials. As was suggested by Haynal3
one can use Pade approximants to accelerate the
convergence of the S matrices for both schemes.
The Pad|~ approximants to these power series are
rational functions that have a larger radius of con-
vergence and may converge when the original
series diverges. Furthermore, if block iteration
is used, the Padh approximants yield the S-matrix
elements as rational functions of the overall cou-
pling strength. This permits the coupling strength
to be fitted to data in about the same time as it
takes to do a calculation for a single coupling
strength.

Other iterative techniques have been proposed
that also express the S-matrix elements as ra-
tional functions of the coupling strength. One is
the method of moments, recently studied for proton
inelastic scattering by Griffin and Koshel. 4 &t has
been proved to converge for a wide class of poten-.
tials —certainly wide enough to include any poten-
tial likely to be encountered in heavy-ion studies.
We find that for heavy-ion inelastic scattering, the
moment method converges markedly more slowly
than sequential iteration with pads acceleration.

We also consider a var iant, proposed by Austern, 5

of the Sasakawa ' method. The modified procedure
has no guaranteed convergence properties and fails
to converge in some of our tests. While it is more
reliable than straightforward block iteration, it is
significantly slower than either block or sequential
iteration with pade acceleration. The multichannel
implementations of the original Sasakawa method,
which does have proved convergence properties, 7

involves much more computational labor than the
brute force solution of the original coupled equa-
tions and is therefore not practical.

gn Sec. D we describe in more detail the methods
of iteration outlined above. Numerical comparisons
of the techniques are presented in Sec. JII; itera-
tive solution of the Alder-pauli equations for all
values of r is discussed in Sec. IV; and our con-
clusions are summarized in Sec. V.

D (r)R (r) = g U 8(r)RB (r) (o(=1, 2, . . . , N),

where

(2.1)

(2.2)

f (r) = f [I (r) —S 0 (r)l, (2.6)

where S is the optical-model S-matrix element
in channel o(. The solutions R (r) of the coupled
equations (2.1), the optical-model solutions f (r)
and the S-matrix elements S and S, satisfy anICK p

integral identity,

These equations refer to a single value (J, &) of
the total angular momentum and parity of the sys-
tem; we suppress the labels (J, m). The solutions
R of Eq. (2.1) are to be regular at the origin and
have the asymptotic form

R, (r) = — I, (r)5, -~ „' S O, (r)
) Oi

(2.3)

where I and 0 are incoming and outgoing
Coulomb functions and S are the desired S-

EÃoip

matrix elements. The channel with an incoming
wave is indicated by ep.

Use, of the asymptotic form (2.3) requires inte-
gration of the radial equations out to distances
beyond which Coulomb coupling terms are neg-
ligible —several hundred fm for many heavy-ion
reactions. As discussed in paper I, use of the
modified asymptotic form

()'k ) &/2

R.(r) „=„2 S. ..(r)- Q I, k
'

) S().,6(),.(r)

(2.4)

where N~, and c~ are incoming and outgoing
couPled-channels, Coulomb functions, permits
matching to the interior solutions at the much-
smaller nuclear matching radius R„.

We shall make frequent use of the regular solu-
tions f of the homogeneous parts of Eqs. (2.1).
These regular or optical-model solutions satisfy

(2.5)

with

II. ITERATIVE TECHNIQUES FOR THE COUPLED RADIAL
EQUATIONS

The radial equations to be solved, in the notation
established in, paper I' of this series, are

S ep=&ee S
0

2i
«, p f f,(r))f„(~)R,(r)dr,

I ao ()

(2.7)

which will be used in our discussion of some of the
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(r) = g (r)+c f (r). (2.9)

Substitution of Eq. (2.9) in the matching equations
[Eqs. (2.4) and their r derivatives] yields a set of
2N inhomogeneous linear equations for the coeffi-
cients c and the S-matrix elements S

A. Block and sequential iteration

Vfe first consider the most straightforward of
iterative methods for the solution of Eqs. (2.1).
Suppose that k —1 iterative steps have been com-
pleted, yielding a set of radial solutions ft'~ "(r).
These radial functions are used to construct the
kth approximation to the solutions by solving the
set of N uncoupled inhomogeneous equations

R (k) ~ U R('k-i)
e o ~ og g (2.10)

using the numerical procedure outlined above. The
corresponding S-matrix elements S'»' are obtainedaap
by solution of the matching equations. The new

radial wave functions R' ' are then substituted in

the right-hand side of Eqs. (2.10) and the proce-
dure iterated until convergence to a certain pre-
assigned accuracy is achieved. As a criterion for
convergence, we demand that the maximum (over
channels n) of the magnitudes jS,'~' —S,'» "~ be

Ck CLp

less than some pre-assigned absolute error.
parious initial estimates R ' ' may be used to start
the iterative procedure. %e have found that the
precise choice of starting estimate is rather un-

important and therefore use the optical-model
solution in the incoming channel:

(2.11)

This iterative procedure, wherein at each stage
all channels are treated in the same way and at the
same level of approximation, we refer to as

iterative techniques.
In this section we discuss a number of iterative

techniques for the solution of Eqs. (2.1). All of
them involve replacement of the system (2.1) of
coupled equations by sets of uncoupled inhomo-
geneous equations

D If (r) =Q (r) (a=1, 2, . . . , N), (2.8)

with driving terms specified by the known functions
The numerical solution of these equations

proceeds in the following fashion. Let g be a
particular solution obtained by numerical integra-
tion starting with Z =0 at r = 0 (or at some finite
value of r at which Z is negligibly small) and an
arbitrary choice for (d/dr)g . The most general
regular solution in channel n is obtained by adding
an arbitrary multiple of the regular solution f of
the homogeneous equation

"block iteration. " Each iteration generates one
more term of the Born series for the S matrix
and the wave functions. Because of this it is par-
ticularly ill suited for reactions in which a high-
spin state can be reached only by a sequence of
excitations of low multipolarity. For example in
considering the population of a J' = 20' state by
successive 2' exc itations, the desired S-matrix
element will be zero for the first nine iterations
of the block method.

Haynals has proposed that the iterative scheme
outlined above be carried out sequentially. The
basic idea of sequential iteration is to solve the
N inhomogeneous equations (2.10) i.n some definite
order; each improved solution R '~'(r) is im-
mediately inserted in the inhomogeneous term of
subsequent equations.

Each step of sequential iteration incorporates
many effects absent in block iteration. Suppose
that the channels n are ordered in some fashion
with the elastic channel np first, channels most
strongly coupled to ep next, and so on, with
channels that are strongly coupled grouped close
to each other. The equations to be solved, in
order, are then

8& a
(2.12)

for a=2, 3, . . . , V, and for the elastic channel
(n, =1)

N

D(R( ——~ U(gRg '.(k) (k) (2.13)

B. Pade approximants

It is found that, for heavy-ion as for light-ion
reactions, sequential iteration provides signif i-

As the iteration progresses through the channels,
the initial guesses R k ' are gradually replaced
in the inhomogeneous terms by improved solutions
B' '. It is clear that higher-order corrections are
thereby introduced that are absent from the cor-
responding stage of block iteration. In the ex-
ample mentioned previously, the S-matrix element
for the 20' state is nonzero in the first iteration
with the appropriate ordering of channels. '

The matching equations [Eq. (2.4) and its r
derivative, with Eq. (2.9)j are also modified. In
generating the solution R +' in channel n, the ex-
pansion coefficients c~' and S-matrix elements
S~»' in all other channels Pw n are to be regardedSap
as fixed; this yields a pair of simultaneous linear
equations for c(k', S' ' . Thus the 2N linear equa-
tions of block iteration are replaced in sequential
iteration by N successively solved sets of two
linear equations.
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cantly better convergence than block iteration;
this will be shown in Sec. DI. Nevertheless there
are many interesting heavy-ion reactions for
which sequential iteration diverges. As was sug-
gested by Baynal, 3 the convergence problems of
either block or sequential iteration can be over-
come with the aid of pade approximants. Suppose
that an iterative procedure yields a sequence

S(P) S(i) S(2) S(a) (2.14)

& =S(P)
p

S(1) S(P)
i

b = S(2) S(i)
2

Sg) S(a -i)

(2.16)

By construction, the kth iterate S+) is given by
the sum of k'+1 terms of the power series

S,(x)=g b„x",
@=p

(2.17)

evaluated at x = 1:
S(k) S (1) (2.18)

A Pads approximant to the polynomial S,(x) of
order k is a rational function (ratio of polynomials)

[I./M ] = (L + M =k ),
Qq (x)

(2.19)

whose coefficients are chosen such that the first 0
terms of its Maclaurin expansion coincide with

S~(x). Techniques for evaluating the coefficients in

P~(x) and Q„(x), discussions of the use of [I/M]
as a more accurate representative of the function
approximated by S~, and analyses of convergence
will be found in textbooks on pads theory. We
use the Wynn' algorithm to generate directly the
approximants [L/L] and [L+1/L] for x=1. The
algorithm described by patry and Qupta" is a
reasonably stable method of computing the coeffi-
cients of the polynomials I' and Q in Eq. (2.19).

Numerical studies in Sec. QI will show that se-
quences of Pade approximants to S~(x) such as

[ o/o1 [ 1/0] [ 1/11 [ 2/1] [ 2/21

(k =0) (k =1) (k =2) (k=3) (k =4) . . .
evaluated of course at x =1, accelerate the con-
vergence of the original sequence (2.14) when it
converges, and continue to converge rapidly under
many circumstances in which the original sequence
diverges, providing that the sequence was gen-
erated by either block or sequential iteration. Jt

of approximations to a certain S-matrix element

S=S (2.15)

We define a set of coefficients b„by the relations
x =A/A, , (2.21)

where A, is the value of A for which the sequence
(2.14) was generated. Evaluating Eqs. (2.17) or
(2.19) for values of x different from 1 then gives
the S-matrix element as a function of A. With
this method the S-matrix elements can easily be
found for other values of A once they have been
calculated for any single value. This could be of
practical utility if it were desired to determine a
deformation parameter by fitting computed cross
sections to data; when the coupling potential is
derived from a first order collective model of a
single multipolarity with the equal nuclear and
Coulomb deformations, the overall coupling pa-
rameter A may be identified as the deformation
parameter P.

As is evident from Eq. (2.12), the successive
differences b, computed by sequential iteration
are not proportional to a single power of the cou-
pling potential. Thus in this case we cannot use
Eq. (2.19) with x e1 to evaluate S as a function of
A. One must therefore choose between the more
rapid convergence of the sequential iteration
method and the advantage of being able to compute
S simultaneously for more than one value of A.

C. Method of moments

The method of moments'2 is an iterative tech-
nique for the solution of the integral equivalent
of the coupled differential equations (2.1); a finite
set of basis functions is defined iteratively and at
each stage the integral equations are solved in the
truncated basis constructed up to that point. The
linearly independent basis functions used are in
fact differenc'es of the functions R"' generated
by block iteration; the basis functions are defined
by

s(0) R (0&
C Q QQp Op &

I(i) R (i) R(i -() (i 1 k)

(2.22)

(2.23)

These basis functions are defined only on the in-
terval 0& r& RN, where R„has previously been

should be noted, however, that we have obtained
only converged S-matrix elements; we do not ob-
tain improved wave functions so our results can-
not be used as input to coupled-channels Born-ap-
proximation calculations.

The Padd approximants have a very useful fea-
ture if the original sequence (2.14) was generated
by block iteration. In this case the successive
diff erences b~ are proportional to the 0th power
of the coupling potential. If an overall coupling
parameter A is factored out of the coupling poten-
tial [ U- AU in Eq. (2.1)], we can regard x in
Eqs. (2.17) and (2.19) as
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defined as the boundary of the interior region.
%'e introduce the integral operator

inserting Eqs. (2.32) in Eq. (2.30) and equating the
coefficients of each u(", we obtain

K ~(r, r') = D '(r, r') U ~(r'), 0 & x, x' & P

(2.24) and

a, =1 —b,/q (2.34)

where D ' designates the (outgoing-wave)
Qreen's function associated with the differential
operator D, of Eq. (2.1). The successive basis
functions are related by application of the opera-
tor K:

a&
——a,. &

—b, j(R). (i =1, . . . , 0 —1),
where

k

@=i+
i=0

(2.35)

(2.36)

~ ('k -i) P(» -1)gP(k -i) (2.28)
5

gf we express R'»' as a linear combination of the
basis functions that span K +

»-i
a,.u"' (2.29)

i=p

and substitute in Eq. (2.27), we obtain a set of
linear equations for the expansion coefficients:

»-i k 2

a&u"' r =u' ' r + n,.u'' r

+a, , P"-"u")(r),
where we have made use of

Z"'u«)=u" (~=o, . . . ,u-l).
For the last term of Eq. (2.30), we write

(2.30)

(2.31)

P(k -i)u (k) y (k)u (i) (2.32)

where the b,-'k' satisfy the linear equations

[ u(ru) = f Cr'K, u(r, r')u[' "(r') . (R.RR)
p

For all potentials of interest here the scalar
products

(u' '[u'") =Q f dr[uu'(r)] u,"(r) (R RR)
a 0

of the basis functions are finite. [u"" is a vector
with N components u"'.]

%e let H» "be the space spanned by the k
vectors u ', u ~, . . . , u» i' and let P» ' be a
projection operator onto it. We determine a vec-
tor R'k' in H '" "that is the solution of the inte-
gral equivalent of the coupled equations (2.1) re-
stricted to the space H(k

~(R))(&)

. 8
+ g dr z &.';"(r,r')z("(r')

8 Q

where

The approximation S+' to the S matrix at theCQp
kth iteration is obtained by substituting the ap-
proximate wave function R'»' in the integral identi-
ty (2.7). Equation (2.25) may be rewritten in dif-
ferential form:

(2.37)

Substituting the expansion (2.29) in Eq. (2.7) and
using Eq. (2.37), we find

(k)
(R(RO 55(R (50 ()Ru fp )1/2

0[l
p

k- R

x a,. deaf (r)D (r)u" '"(r). (2.38)
i=0 0

integration by parts and the %ronskian relations
for the Coulomb functions then give the result

(2.39)

where S"' is the S-matrix element associated with
the asymp/otic form of R") by Fq. (2.4). Thus it
is not necessary to evaluate the integral in Eq.
(2.7) because the 8 ",' are available from theOp
construction of the R(".

gt shouM be noted that the improved wave func-
tions R'»' and the associated S-matrix elements
S'»' are not used in the next iteration of the

0
method of moments. Rather R' ' " and S'» ' " are
generated by block iteration from R'~) and tt(e
coupled integral equations (2.27) solved in the re
suiting larger space. Jt has been proved that the
iterative process of the moment method converges
for any local potential, regardless of its strength. 4

The S-matrix elements obtained from the method
of moments are rational functions of the coupling
strength. If we factor out an overall coupling
strength A from U ~, it is clear that u"' is pro-
portional to A'. Hence, as was the case for block
iteration with pade acceleration, given the S' '

lREXp

for a specific A, it is easy to generate S matrices
for other values of A.

(u'" ~s(~') f)&+' (u~" ~u( ') —(i =0 0 —1)
~~ ~~

(2.33)

D. A simplified variant of the Sasakawa method

The original Sasakawa iterative scheme has
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been shown' to converge for a class of potentials
that includes all those of interest here: however,
the multichannel generalization of the Sasakawa
method involves too much computational labor per
iteration to be useful. Austern and Soper have
studied a modification of the Sasakawa method that
reduces the amount of computation to a reasonable
level. The modified iteration scheme, however,
does not have any of the convergence guarantees
of the original method.

The basic idea is to modify the coefficient of the
outgoing part of the radial wave functions obtained
by solution of the inhomogeneous equations (2.10)
such that at each iteration the modified radial func-
tions R' ' and S-matrix elements S'"' satisfy the
integral (2.7). In block iteration, this relation
holds only after a converged solution has been
obtained. Suppose, then, that a set of radial wave
functions R+ "has been generated by (k —1)
iterative steps. The kth step of the Austern-
Sasakawa procedure is then carried out as fol-
lows.

The radial functions R'~ "are substituted in the
right-hand side of Eqs. (2.10) and the resulting in-
homogeneous equations solved for a new set of ap-
proximations R'~' and S'~' . This portion of the
calculation is identical to the kth step of block
iteration. Auxiliary functions J'~' are then de-
fined by

~(a)( )
ft."'(r) —5. of.(r) (2.40)

Seep 6aaoSe
A

Corrected radial wave functions R'~' are given by

ft(l!) 5 f (r) y (S (ll) 5 $ )j (0) (2 41)

where the S-matrix elements S'~' are to be deter-
mined from the integral relation (2.7). Substitution
of (2.41) in (2.7) yields the set of inhomogeneous
linear equations

(2.42)

for the S-matrix elements. The solutions then
determine the modified radial functions R+' with
the help of Eqs. (2.41).

E. Computer requirements

A complete comparison of the relative efficiency
of the various methods must involve not only the
number of iterations needed to achieve a desired
accuracy, but also the time and storage require-
ments for an iteration of each technique. The con-

U 8 (r) = Q X («q) v «(r),
I

where X"~ is independent of & and contains all

(2.43)

vergence rates of the various iterative schemes
are compared in Sec. QI. Here we discuss the
computer time and storage requirements. %e
have identified those parts of the calculations that
demand the most computing time and storage and
estimated the time and storage that would be
needed by efficient programs implementing each
method. The time required to compute Coulomb
wave functions (or coupled- channels Coulomb wave
functions) has not been included in these estimates.

Storage requirements are given in terms of
floating point (real) numbers or "words. » A com-
plex number requires two such words. Vfe have
found that single precision (32 bits) on IBM 370
computers is adequate for all of the large arrays
used in these calculations. Modern large-scale
computers have the ability to overlap the proces-
sing of several operations such as accessing
memory, decoding instructions, computing sub-
script quantities and floating-point operations.
For this reason the execution times of large
scientific programs depend most heavily on the
number of floating-point operations (FLOP) that
must be made —auxiliary computations such as
subscript evaluations may be ignored. We present
timing estimates in terms of the number of
floating-point operations; in calculations similar
to the ones described here the CDC 7600 and IBM
370/195 computers are capable of about 5 x 108

FLOP/sec, the CRAY-I computer about 50 x10'
FLOP/sec.

In the estimates we assume that the Numerov
method as described in Ref. 2 is used to generate
all radial functions R'~'. This method computes
the wave function on a grid of equally spaced co-
ordinate values and requires the potentials on the
same grid. The integration starts at some value of
r (not necessarily at r= 0) for which the wave func-
tion is negligible. If the grid contains I points,
then the Numerov method for inhomogeneous
equations may be executed in 20M floating-point
operations.

There are N complex potential functions for N
coupled equations and each of these is required at
M grid points. Clearly it is impractical to store
such a three-dimensional array for large N or M.
Instead we will make the following assumptions
that seem reasonable for heavy-ion calculations.
The optical potential is the same for all channels.
In addition a separate array containing r is
stored to allow rapid computation of the centrifugal
term in the kinetic energy. The coupling potentials
can be expressed in the form
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angular-momentum-coupling factors while v, (r)
is independent of the labels a and p. There are
separate v,. for each distinct function of w (each
multipolarity and order of coupling) appearing
in U ~. Sine e there are typically only a few v„
separate storage of the X"~' and the v,.(r) allows
the potentials to be saved in a reasonable amount
of core. We use N„ to designate the number of dif-
ferent v, that must be stored. The X "~' may be
chosen to be real. ln many problems each R will
be coupled to only a few of the N functions R~ and
X ~z may have the form of a band matrix. We use
N, to designate the average number of couplings
per channel basis state. gecause the best way to
store the matrices X"z depends on whether or not
they are band matrices, we do not include their size
in the storage estimates that follow.

Table I presents our estimates of the storage
and time requirement of the various iterative
techniques. The first part of the table summarizes
the symbols that are used in the estimates and
gives their values for two extreme computations.
The first is a simple two-channel calculation in-
volving ' p and 4 Ca. The second is sub-Coulomb
E2 excitation of ' 4Sm by 900 Me& pb ions in-
cluding states up to 8=20' in the ground-state
rotational band. We have not yet attempted a
calculation as large as this one. The wavelength
for the reaction is 0.156 fm, so the 1500 steps
(M= 1500) indicated in the table correspond to ten
steps per wavelength starting from 11 fm and going
out to 35 fm, which is a resonable matching radius
if the coupled-channels Coulomb functions are

used.
The second part of Table g presents the core and

time estimates as functions of the relevant param-
eters and for the two reactions. The time esti-
mates are in terms of FLOP/iteration. It can be
seen that an iteration of the Austern-Sasakawa
method is two or three times slower than an itera-
tion of the block method. The method of moments
requires less additional time but needs much more
storage to save the wave functions at each itera-
tion. The last line of the table shows the require-
ments of the traditional method of solving the
coupled equations (construction of N linearly in-
dependent sets of solutions of the N coupled equa-
tions). Because the time for this method varies as
N3, a solution for the second example requires
the equivalent of 2100 block iterations.

Griffen and Koshel have suggested expanding the
R in plane waves as a method of solving the in-
homogeneous differential equations. because it
takes many fewer expansion coeff icients than
values on a coordinate grid to represent each R
with adequate accuracy, the plane-wave method
significantly reduces the storage requirements of
the method of moments. Both the core and time
requirements for the plane-wave method depend
upon the number of plane waves needed to repre-
sent the R . plane-wave matrix elements of the
potentials and operators such as D must be com-
puted and stored. The solution of the inhomo-
geneous equation is then reduced to the solution of
a set of simultaneous equations; the time for this
is proportional to the cube of the number of plane

TABLE I. Core and time estimates for the methods discussed in the text. The first part gives the symbols used and
reasonable values for two calculations. (1) O+ Ca at 60 MeV using the 0+ and 2+ states of 44Ca, (2) pb+ 5 Sm at
900 MeV using the 0, 2+, . . . , 20 ground-state rotational band of Sm with quadrupole coupling. Core estimates are
in floating-point words, time estimates in floating-point operations (FLOP).

Symbol Meaning Example 1
Values

Example 2

NI
N„
Nc

Number of coupled equations
Number of Numerov grid points
Number of v;(r)
Number of couplings per equation
Number of iterations

200
1
4
5

121
1500

1
9
5

Method

Block
Sequential
Austern-Sasakawa
Moments
Conventional

Core
(Floating wo rds)

m(CV + 2N„+ 3)
m(4V + mr„+ 5)
M(6N+ ZV„+ 3)+ 5V'
~[(2m+ 4)N+ m„+ 3]
~(~ +. 3) + 12N2[+2N2~] ~

Time/Iteration
(FLOP)I[30+N„(4V,+ 6)]I[30+N„(4N, + 6)]

MV'[36+N„(14N, + 12)l+ -N'
%Dr[40+ 4n+N„(4N + 6)]
~(1@V'+4N') [+81]'

-5.0
5.0
6.2

11.4
1.6b

41.6
41.6
84
66.6

154b

0.74
0.74
1.13
2.13
0 19b

13.4
13.4
53.9
18.9

290PP P

Example 1 Example 2
Core time Core time

103 words 103 FLOP 10~words 106 FLOP

Required only if wave functions needed.
Wave function computation not included.
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waves. We have made a few. studies of the number
of plane waves needed and conclude that for exam-
ple 1, 30 plane waves are necessary, ' 60 or more
for example 2. In both cases the plane-wave ex-
pansion technique requires somewhat more
storage and more than thrice the time than the
grid method to construct the radial functions R'"'.

V=110 MeV, g =20 MeV,

ro ——1.2 fm, a=0.5 fm, (3.1)

t; =1.2 fm,

where Vand g are respectively the real and
imaginary well depths, ro is the radius parameter,
a is the diffuseness, and ~, is the Coulomb radius
parameter. The potential radii (both Coulomb and
nuclear) are related to the radius parameters by

R' =zo(A' +A'r ),P

where A~ and A~ are the projectile and target

(3.2)

III. COMPARISON OF ITERATIVE METHODS

We have used a rather simple coupled-channels
problem to assess the convergence rates of the
iterative techniques described in Sec. II. The two
coupled channels are 'sO+44Ca (g.s.) and '6O

+44Ca (2', 1.156 Me&). Calculations were made
for a bombarding energy of 60 MeV. The optical
potential is of the Woods-Saxon form with identical
real and imaginary radial dependence; the poten-
tial parameters are

atomic weights. The rotational model [Eq. (2.10)
of Ref. 1] was used for U a. In the calculations
reported here only nuclear coupling was con-
sidered (P, =O). This represents a stringent test
of the methods of solution since the sharply peaked
nuclear coupling results in significantly distorted
wave functions. Coulomb coupling reduces the
distortion and the number of iterations necessary
to achieve a given accuracy. Nuclear reorientation
effects and the diagonal elements of U ~ are in-
cluded in the calculations. Most of the calculations
were made for J' =30 (a near-grazing partial wave)
for which the elastic 8 matrix has the magnitude

lss0. 03'; 30 0+ 1=0 46
Tables II and &D compare the rate of convergence

of the magnitude of one of the inelastic 8-matrix
elements (l Sf0=23%I. 30 0. l) for the various techniques.
Table D is for a physically reasonable deformation
parameter (p=0.25) while Table DI is for a much
larger value (P =0.4). The calculation for this un-
realistic deformation value is of course much
harder; it is of interest as a simulation of realistic
calculations involving the strongly deformed rare-
earth nuclei.

The tables show the convergence as a function of
iteration number k; in comparing the different
techniques we must take into account the time
estimates given in Table I. In the padh columns
the [M/M] Pads estimate is given for the even-
numbered iterations, the [M/M- 1] estimate for
the odd, as illustrated in sequence (2.17).

Table gI shows that with the possible exception

TABLE II. Convergence properties of the modulus of the inelastic S-matrix element )SPD 2+. & 0+(, as a function of
iteration number &, for the reaction Ca( 0, 0) Ca(2+1.156 MeV)E~b= 60 MeV. The numerical techniques are de-
scribed in Sec. II. The potentials used are given in Sec. III. The nuclear deformation is p = 0.25.

Sequential Sequential and Pade Block Block and Pade Method of moments Austern-Sasakawa

1
2
3
4
5

7
8
9

10
11
12
13
14
15
16
17
18
19
20

0.12 69
0.1611
0.1492-
0.14 67
0.14 802
0.14 806
0.14 796
0.14 798
0.14 7976
0.14 7974
0.14 7975
0.14 7975

0.12 69
0.1593
0.14 84
0.14 81
0.14 793
0.14 797
0.14 7971
0.14 7975
0.14 7975

0.16 95
0.14 72
0.1530
0.16 65
0.1340
0.1514 '

0.1535
0.13 84
0.1549
0.14 76
0.14 33
0.1546
0.1438,
0.14 74
0.1525
0.1429
0.1502
0.14 99
0.14 39
0.1514

0.16 95
0.14 87
0.1594
0.15 10
0.14 75
0.14 78
0.14 791
0.14 795
0.14 795
0.14 794
0.14 796
0.14 7971
0.14 7973
0.14 7976
0.14 7976

0.16 95
0.14 36
0.16 11
0.14 81
0.1501
0.14 79
0.14 788-
0.14 807
0.14 798
0.14 796
0.14 7976
0.14 7976

0.12 58
0.14 78
0.14 87
0.14 74
0.14 79
0.14 81
0.14 790
0.14 798
0.14 792
0.14 797
0.14 798
0.14 793
0.14 796
0.14 796
0.14 795
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TABLE III. Convergence properties of the modulus of the inelastic S-matrix element IS~Hoo&+.30&+I for the reaction and
potentials of Table II with P = 0.4.

Sequential Sequential and Pade Block Block and Pade Method of moments Austern-Sasakawa

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

0.1634
0.2906
0.2540
0.1448
0.2035
0.2494
0.2125
0.1747
0.2156

. 0.2293
0.1971
0.1950
0.2182
0.2134
0.1980
0.2054
0.2142
0.2068
0.2023
0.2088

0.16 32
0.23 60
0.20 78
0.20 95
0.20 81-
0.20 70
0.20 72
0.20 713
0.20 717
0.20 7173
0.20 7170
0.20 7175
0.20 7175

0.2713
0.2157
0.2921
0.3390
0.0222
0.4046
0.4645
0.3390
0.9398
0.9914
1.481
2.501
3.296
5.290
8.068

11.79
18.26
27.27
40.80
61.64

0.27 13
0.22 10
0.2536
0.22 20
0.20 47
0.20 41
0.20 58
0.20 63
0.20 63
0.20 59
0.20 65
0.20 69
0.20 69
0.20 713
0.20 717
0.20 719
0.20 7179
0.20 7175
0.20 7176
0.20 7175

0.27 13
0.21 03
0.26 21
0.21 28
0.22 47
0.20 54
0;20 93
0.20 66
0.20 64
0.20 716
0.20 716
0.20 717
0.20 718
0.20 717
0.20 7176
0.20 7175
0.20 7175
0.20 7175
0.20 7176
0.20 7175

0.1561
0.2050
0.2067
0.1987
0.2075
0.2098
0.2043
0.20 77
0.2056
0.2113
0.2092
0.1995
0.2116
0.2080
0.2013
0.2146
0.2042
0.2036
0.2156
0.2001

of the unmodified block method, all the methods
converge for P =0.25. At P =0.4 (Table III) both the
block and Austern-Sasakawa methods fail to con-
verge and the sequential method is converging very
slowly (we have continued the calculations to 40
iterations to verify these statements).

Sequential iteration with padh acceleration is
clearly the most rapidly convergent method for
P=0.4; it achieves an accuracy of 0.5/o in five
iterations while the method of moments requires
eight and block iteration with pads acceleration
requires 11 iterations to achieve the same ac-
curacy. For P = 0.25 both sequential iteration with
Pade and Austern-Sasakwa require only three
iterations to achieve 0.5 /o accuracy; block itera-
tion with pads and unaccelerated sequential re-
quire five iterations and the method of moments
needs six iterations. For these cases, and all
others studied, pade approximants do not increase
the convergence rates of either the method of mo-
ments or the Austern-Sasakawa method.

Although the Austern-Sasakawa technique con-
verged rapidly for P= 0.25, the divergence for
P=9.4 together with the substantial computer
storage and time requirements suggests that this
method is not competitive for heavy-ion coupled-
channels calculations.

As was described in Sec. II, both block iteration
with pade acceleration and the method of moments
allow straightforward evaluation of S-matrix ele-
ments as a function of P, once they are computed
for a single value of p. Figures I and 2 show the

resulting curves for block iteration with pads ac-
celeration and the method of moments, respective-
ly. The curves are labeled with the number of
iterations that were used to generate them. gn

both cases the first iteration is just the first-order
Born result. For the first nine iterations, the
block method is clearly superior to the method of

0.3—
I I I I I

I

0.2

0
0 0.2 0.4 0.6 0.8 1.0

FIG. 1. The modulus of the inelastic $-matrix element
1830 &,30 OI, plotted as a function of the nuclear deforma-
tion parameter, for the reaction

Ca( 0, 0) Ca(2', 1.156 MeV) at @LA~= 60 MeV. The
lines represent the results of block iteration with Pade
approximants and are labeled by the number of iterations
A. The stars represent the values obtained from sequen-
tial iteration and Pade approximants for k = 1. The
crosses give the corresponding results obtained for k
ranging from 3 to 11. The potential parameters used in
this calculation are listed in Sec. III.
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0.3

0.2

O. l

0
0 0.2 0.4 0.6 0.8 I.O

FIG. 2. The modulus of the inelastic 8-matrix element
shown in Fig. I, for various numbers of iterations ob-
tained by the method of moments.

IV. INWARD-OUTWARD ITERATION MFTHODS

In the first paper of t.his series, we used the
Alder-pauli transformation to solve for the

moments. However, for P& 0.6 the convergence of
block iteration with pade acceleration significantly
slows down for iterations 11 to 17 and the 19th
iteration is only as good as the 11th iteration of the
method of moments. This wandering of the Pade
accelerant appears to be an intrinsic feature of
the Pads method because several different ways
of evaluating the Pade approximants (the Wynn and

epsilon algorithms, ' patry and Gupta's method, "
and matrix inversion~) produce the same results.
The method of moments does not seem to exhibit
this phenomenon of a temporary interruption in its
march towards a fully converged result.

The points in Fig. 1 show the results of separate
pads —accelerated sequential- iteration calculations
for five values of P. It is obvious that if one is not
interested in results for more than one value of P,
this method is far more rapidly convergent than
block iteration with pads or the method of mo-
ments.

We have also tried these six methods for the
~ O+ 4Ca reaction for J=10 with similar con-
clusions. The sequential-iteration method with
pade acceleration has also been used by us for
many other two-channel heavy-ion reactions such
as ~ 6Xe+ 08pb and &80+ ~84W. In an attempt t;o

simulate a multichannel calculation we considered
the excitation of a 16' state by a X=16 transition
with p&6

——0.5 for which the Horn series rapidly
diverged; 0.1% accuracy was achieved in only nine
iterations of the padb-accelerated sequential
method. Except for some extraordinarily large
unphysical values of P, this method has always
been found to converge, usually to 0.1% accuracy
in fewer than seven iterations.

Coulomb part of heavy-ion inelastic scattering.
The channel wave functions in the exterior region
are expressed as products of Coulomb functions
and modulating amplitudes and the coupled equa-
tions for the modulating amplitudes are reduced
to first order and shown to be capable of accurate
solution in first Born approximation; this latter
step permits the use of recursion relations in
angular momentum that in turn eliminate the need
to integrate explicitly in all but a few partial
waves. Iterative techniques for solution of the
radial equations in the interior region are the
topic of the present study.

Alder, Roesel, and Morf' and Ichimura et al."
have proposed a different strategy. The Alder-
pauli transformation is to be used over the entire
range of x values; the distinction between interior
and exterior regions disappears. This involves
finding not only incoming and outgoing solutions,
but also the S-matrix elements. Alder et al. ap-
proach this combined problem of solving the
coupled equations and imposing appropriate
boundary conditions by an iterative procedure.
A first estimate of the S—matrix elements is made
and the coupled equations are integrated inwards
from infinity; regularity is imposed at small r
and the coupled equations integrated outwards to
obtain an improved estimate of the pertinent S-
matrix elements. The whole process is iterated
until adequate accuracy has been achieved in the
S-matrix elements. Recently Tolsma' has
studied a variant of this procedure in which the
asymptotic Coulomb functions of the Alder-pauli
transformation are replaced by Airy functions; the
coupled equations for the modulating functions are
solved by inward-outward iteration.

Tolsma considers Coulomb excitation only and
presents impressive results, including a computa-
tion of excitation of rotational bands in deformed
nuclei up to I=24'; these are by far the largest
quantal Coulomb excitation calculations ever car-
ried out. There is, however, one aspect of
Tolsma's work on which we wish to comment. He
compares inward-outward iteration with sequential
iteration as a method of solution of the equations
for the modulating amplitudes and finds that se-
quential iteration diverges for some cases of in-
terest. He concludes that inward-outward integra-
tion is superior. We have shown, however, that
Pads acceleration (which Tolsma does not con-
sider) eliminates convergence problems when

using sequential iteration to solve the coupled ra-
dial equations in the interior region. It appears
that Tolsma's argument as to the relative merits
of inward-outward and sequential iteration is in-
complete.

We have not made detailed studies of the relative
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efficiency of inward-outward iteration and the
methods discussed here. However, Tolsma im-
plies that his method is some 30 times faster than
the conventional method, for example 2 of Table

As can be seen from the table, ten sequential
iterations with Pade acceleration (which should
be adequate to achieve convergence) should be
some 200 times faster than the conventional
method for the same problem.

V. CONCLUSIONS

Of the iterative methods considered, sequential
iteration with Pade acceleration is the most
reliable and rapidly convergent; typically it gives
0.5%accuracy in three or four iterations. &n ad-
dition it requires considerably less storage and
time per iteration than the more complicated
Austern-Sasakawa and moment methods. Jts
principal defect in the form we have discussed is
that the pade approximants are used to improve
the convergence of the S-matrix elements only.
For calculations requiring converged wave func-
tions it would be possible to apply Pade approxi-
mants point by point to each set of iterated channel
wave functions. Although this would substantially
increase the computer storage required, it will
usually be possible to avoid storing every iterated

wave function in each channel; thus even with
point-by-point pade approximation of the wave
functions, sequential iteration should in practice
require considerably less storage than the method
of moments. Other schemes for computing the
wave functions once accurate S-matrix elements
are known might also be considered, but it seems
to us that the Pade approximants will prove most
useful when it is not necessary to obtain the scat-
tering wave functions.

A hypothetical calculation considered in this
paper is excitation of the ground-state rotational
band of "Sm up to the 20' level by a 900 Me&

Pb projectile. We would expect sequential
iteration with Pads acceleration to complete

-this calculation in about 0.005 of the time re-
quired by the conventional method of solving the
N equations N times. This tremendous increase
in speed makes such calculations fully feasible
on present computers.
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