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Direct-reaction calculations for heavy ions require special computational techniques that take advantage of
the physical peculiarities of heavy-ion systems. This paper is the first of a series on quantum-mechanical
coupled-channels calculations for heavy ions. It deals with the problems posed by the long range of the
Coulomb coupling interaction. Our approach is to use the Alder-Pauli factorization whereby the channel
wave functions are expressed as products of Coulomb functions and modulating amplitudes. The equations
for the modulating amplitudes are used to integrate inwards from infinity to a nuclear matching radius
(-20 fm). To adequate accuracy, the equations for the amplitudes can be reduced to first order and solved

in first Born approximation. The use of the Born approximation leads to rapid recursion relations for the
solutions of the Alder-Pauli equations and hence to a great reduction in computational labor. The resulting

coupled-channels Coulomb functions can then be matched in the usual way to solutions of the coupled
radial equations in the interior region of r space. Numerical studies demonstrate the reliability of the
various techniques introduced.

NUCLEAR REACTIONS HI coupled-channel inelastic scattering. Treatment of
long- range Coulomb potential.

I. INTRODUCTION

Models of nuclear direct reactions are based
on the identification of a few privileged reaction
channels, usually the elastic channel and those
particularly strongly coupled to it. The Schro-
dinger equation is then solved in the model space
spanned by these privileged channels. The in-
fluence of channels excluded from the model
space is either taken into account statistically or
expressed by absorptive components in the ef-
fective interaction potentials that act within the
truncated model space. In a partial-wave con-
figuration-space representation, reaction models
of the sort under consideration lead to sets of
coupled integro-differential equations for radial
wave functions. The number of coupled equations
(N) for a given total angular momentum and parity
(t, v) is usually several times as large as the
number of channels in the moddl space because
there are usually several distinct ways to couple
the internal nuclear spins and the orbital angular
momentum of the relative motion to a given total
angular momentum.

The numerical complexity of coupled-channels
calculations has severely inhibited the study of
nuclear direct reactions. The standard procedure
is to solve the N coupled radial equations N times
with linearly independent regular starting values.
The equations are integrated from the origin to
a joining radius R„at which all nuclear and
coupling interactions have become insignificant.
A single linear combination with the appropriate
asymptotic behavior (incoming and outgoing

waves in the elastic channel, outgoing waves in
all others) is then constructed; in the process
the desired S-matrix elements are found. This
method is satisfactory for light-ion reactions but
is particularly inefficient for heavy-ion reactions.
The long range of the Coulomb coupling inter-
action, the small step size necessitated by the
short wavelength, and the large number of partial
waves that contribute significantly have restricted
fully quantum-mechanical coupled-channels cal-
culations for heavy ions to at most three or four
reaction channels —clearly inadequate to address
the key physical questions in the field.

Many-channel calculations have been possible
only within the semiclassical framework pio-
neered by Alder and Winther' for multiple Coulomb
excitation. This approach has a number of limi-
tations. Its accuracy decreases steadily as the
excitation erergy of the reaction channels in-
creases. Its accuracy for particle-transfer re-
actions is largely untested. At energies sig-
nificantly above the Coulomb barrier the com-
putational complexity of accurate semiclassical
calculations increases rapidly; alternatively, the
accuracy of the simplest sort of semiclassical
calculation rapidly decreases. Thus, although
semiclassical methods are indispensable within
their natural bailiwick, their limitations are such
that a fully quantum-mechanical alternative that
can cope with more than three or four reaction
channels is worth seeking.

-This paper is the first of a series that will de-
scribe numerical methods for quantum-mechanical
coupled-channels calculations for heavy ions.
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The methods to be presented in this series differ
from those conventionally used in light-ion stud-
ies in three significant respects.

(1) Exploitation of the semiclassical aspects
of Coulomb excitation. In light-ion coupled-
channels calculations, the solutions of the coupled
equations in the interior region (the region where-
in nuclear and coupling potentials are significant)
are joined to Coulomb functions at a joining radius
A„(-20 fm for light ions) characteristic of the
outer limit of nuclear and coupling interactions.
In heavy-ion reactions the effects of Coulomb
excitation are often large and produce significant
channel-coupling effects out to distances of
hundreds or even thousands of fm. Extension of
the boundary of the interior region to the outer
limit of Coulomb excitation is catastrophically
inefficient. If the coupled. equations for Coulomb
excitation are integrated inwards from infinity
to the nuclear joining radius R„, the channel
wave functions are found to be Coulomb functions
modulated by factors that vary slowly with r. As
first shown by Alder and Pauli, ' the coupled equa-
tions for the modulating amplitudes can be in-
tegrated to adequate accuracy more rapidly by
an order of magnitude than the original equations.
The resulting coupled-channels Coulomb func-
tions are then match'ed to the interior solutions
at the nuclear joining radius R~. The time taken
to calculate the effects of Coulomb excitation is
then at worst comparable. to the time needed to
generate the internal solutions.

(2) Iterative solutions of the coupled equations
within the range of nuclear interactions. The
wasteful conventional strategy, whereby the
coupled equations are solved N times to produce
the one desired solution, can be avoided either
by expansion of the channel wave function in
terms of a fixed basis' or by iterative techniques. '
We find that the sequential-iteration method of
Raynal, ' with Pads approximants to accelerate
convergence of the S-matrix elements, is ideally
suited to our present purposes. In all cases con-
sidered, it yields S-matrix elements accurate
to 1 or 2% in about four iterations. (This number
is the average over all contributing partial waves.
Five or six iterations may be needed in grazing
partial waves, only two or three in others. )

(3) Extensive use of partial-wave interpolation
and extrapolation. Huge numbers of partial waves
typically contribute significantly to heavy-ion
cross sections. On the other hand, the underlying
semiclassical features of heavy-ion interactions
result in S matrices that are smooth functions
of the total angular momentum. It is therefore
possible to calculate S-matrix elements directly
at rather widely spaced angular momenta and to

I

supplement these calculated matrix elements by
interpolation and extrapolation. For example,
in computing cross sections for the elastic scat-
tering of 800 MeV Xe ions on Pb and for the
inelastic excitation of the first 2' excited state
of Xe, 2000 partial waves contribute significantly,
but only 25 need be treated explicitly to produce
cross sections accurate to 1 or 2%. The neces-
sary interpolation techniques have already been
used' extensively in distorted-wave Born ap-
proximation (DWBA) studies of heavy-ion in-
duced inelastic scattering and transfer reactions.

We believe that these techniques —the Alder-
Pauli method for multiple Coulomb excitation,
iterative solution of coupled equations in the in-
terior region, and partial-wave interpolation
and extrapolation —will combine to accelerate
heavy-. ion coupled-channels calculations by fac-
tors of 10 to 100 over the previous state-of-the-
art. In this paper we are concerned with the first
of the above aspects, the semiclassical nature of
Coulomb excitation. The other two aspects of
heavy-ion coupled-channels equations will be
discussed in subsequent papers.

In Sec. II the notation to be used in this series
is described, and the structure of the coupled
equations for the radial functions is discussed.
Section III presents the Alder-Pauli factorization
of the radial wave functions for multiple Coulomb
excitation; coupled equations are derived for
the slowly-varying factors that modulate the
asymptotic Coulomb functions. We show that
under certain commonly satisfied conditions it
is possible to solve these equations in first Born
approximation, using integrals similar to those
encountered in the DWBA for inelastic scattering.
Section IV presents numerical studies of the
methods developed in Sec. III, and Sec. V con-
tains our conclusions.

II. COUPLED EQUATIONS FOR INELASTIC SCATTERING

We consider inelastic collisions between nuclei
a andA and ignore all processes that can occur
other than elastic scattering or inelastic excita-
tion. Let r be the relative position vector of the
centers of mass of projectile a and targetA and
let x, and x& be internal nuclear coordinates.
We assume that the Hamiltonian of the system
has the form

a =a.(x.)+a„(x„)+T+V(r,x., x„), (2 ~ 1)

where H„H„are the internal Hamiltonians of
projectile and target and T is the relative kinetic
energy operator. The interaction potential V con-
tains the nuclear and Coulomb components
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V„(r), V, (x) of the optical potential and the nu-
clear and Coulomb transition potentials
V„(r,x„x„), V, (r, x„x„)that couple internal ex-
citations of a, A. with the relative motion:

and U„'~' is 2 p„/k' times the optical potential.
Here N is the number of coupled equations for
angular momentum (Z,v), and the channel wave
number 0 is given by

V(r, x„x„)= V~(r) + V, (r) + V„(r,x„x~)
+ V, (r, x.,x„). (2.2)

(2.8)

Next we construct a complete set of channel
eigenstates of definite angular momentum J and
parity w. The internal states of a andA are eigen-
states of the internal Hamiltonians H, and H&.

(H b a)C, o a(x ) —0

(a„-b„'")4"„„'&(x„)= 0,
(2.3)

where a, A distinguish different internal states of
given angular momentum and the energies are
excitation energies referred to the respective
ground states.

The space corresponding to a pair (aZ„AZ~)
of internal states of projectile and target will be
referred to as a "channel. " The states in this
channel have a (2Z, + 1)(2J„+1)-fold spin de-
generacy; we introduce eigenstates

C'" "'"'(x x„)= [C'"(x )xe"'"(x )]' (2.4)

of the channel spin S= J, + J&, where we have ig-
nored the effects of antisymmetry between pro-
jectile and target nucleons. A basis state n for
given J, m is specified by a definite channel, a
definite channel spin, and a definite relative orbi-
tal angular momentum l . Solutions of the
Schrodinger equation can then be expressed in
terms of the basis states n in the form

In practice, only a few channels can be included
in the expansion (2.5). Within the truncated model
space so defined, the Schrodinger equation for
each value of J, w reduces to a finite set of coupled
radial equations':

N

(
pop + y 2 gJ' ~ U

J'1 ~1 +i~
8=x

(2.6)

where the coupling matrix is

x [V„(r,x.,x„)+V,(r, x.,x„)]
x g 8'(y, x„x„), (2.7)

4„"(r, x„x„)= —g R„"(r)g '„(f,x„x~), (2.5)
CX

where

q'„"„(r,x.,x„)= [i' 1' (r)xe'" "'"'"(x„x~)]~.

In these formulas, E is the center-of-mass en-
ergy in the incident channel, and p is the re-
duced mass in channel n.

Solutions of the set (2.6) of coupled differential
equations are required that are regular at the
origin [R (0) = 0] and have the asymptotic form

(2.9)

where a, is the incident channel and I~, O~ are
incoming and outgoing Coulomb functions. If the
channel spin for the incident channel is nonzero,
there will be several basis states n, with incom-
ing components; we ignore this minor complica-
tion here. There are N linearly independent regu-
lar solutions of Eqs. (2.6); the asymptotic con-
dition (2.9) uniquely defines the desired element
of the N-dimensional vector space that they span,
including normalization. Conventional techniques
for the solution of the coupled equations involve
explicit construction of a complete set of N regu-
lar solutions, each with a linearly independent
choice of starting conditions (dR„/Ch at r =0).
The coefficients of the linear combination of these
solutions that has the asymptotic form (2.9) are
determined, together with the N S-matrix ele-
ments S, by matching at a radius r =8 suf-
ficiently large that all the potentials except V, (r)
in Eq. (2.2) are negligible. The main point of
iterative solutions of Eqs. (2.6) is to eliminate
the need to solve the coupled equations N times
in order to construct a complete set of regular
solutions.

Complete specification of the coupling matrix
U„q(r) requires the introduction of a detailed
model for the internal nuclear states involved
and specific assumptions about the nuclear inter-
action potential V„. No general discussion of this
complex task will be attempted here. We are
concerned with techniques for the solution of the
coupled equations (2.6). To test and compare
various methods, we consider collisions between
nuclei with 0' ground states and allow one of the
nuclei -to be excited to a single state of natural
parity. We believe that the conclusions drawn
from these two-channel test cases have a wide
range of validity.

The nuclear part of the optical potentials will
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be taken to be of complex Woods-Saxon form,
with the Coulomb part given by the interaction
potential of a point charge with auniform spherical
charge distribution. The couplings U„s(x) are
calculated from the deformed optical model, with
rotational eigenstates for the nuclear wave func-
tions and the transition potential V(r, x„x„)
carried to first order in~he deformation. Because
the unexcited nucleus has spin 0, the quantity S
defined in Eq. (2.4) has the value J„for target
excitation or J, for projectile excitation, and the
coupling potential U„s(r) can be expressed as a
sum over multipoles ~ in the form

U~~, „ss,s(r) =," A. ~(S„I„,Ssls, J)H„(&),2~+

/

A

q+), S~Ssl~lBA. S8 A, S~
A" S~l"'Ssls'J' a 1}

(4 )'~' 0 0 0

1~ A. ls&~ S l~ J
000) l8 S~ A.

(2.10)

1
a+i

y, {r)=&

~l (Rt)2k+1 & c '
c

Here the symbol a stands for v'2a+ I; pq, R„,
p'z, and R, are the deformation parameters and
radii (nuclear and Coulomb) of the excited nu-
cleus, and R,' is the Coulomb radius of the op-
tical potential (the sum of the projectile and
target Coulomb radii}.

III. TREATMENT OF COULOMB EXCITATION

is possible to let R„-~ so that region (iii) is
eliminated.

For r &R„, the coupled equations (2.6) reduce
to the equations that describe multiple Coulomb
excitation':

where g„ is the usual Sommerfeld parameter,
and from Eqs. (2.10) the Coulomb coupling po-
tential U'8 is given by

Ul s, ass s(+)

2PD' PA (S I S I ~)
3ZgZ, e' R, Pg

@2 ~ ""»» (2q+I) &~+~ '

(3.2)

In writing Eq. (3.2) we have assumed that R„
has been chosen such that R„&R,'.

Solutions of Eqs. (3.1) in the region [R„,~] are
Coulomb functions modulated by slowly varying
amplitudes that reflect the influence of the
coupling potentials (3.2). Following Alder and
Pauli' and Alder, Roesel, and Morf, ' we solve
directly for the modulating amplitudes —a much
easier procedure than direct integration of the
original radial equations (3.1). Our procedure,
in fact, is to extend the Coulomb functions 0„,I~
for each basis state inwards from ~ to R„; the
resulting outgoing and incoming solutions of the
coupled Coulomb-excitation equations (3.1) are
then matched at r =R„ to iterative solutions of the
original equations (2.6} in the interior region.
The gain in. efficiency over straightforward inte-
gration of the coupled equations (2.6) from 0 to
R„ is enormous.

Two distinct radii that play an important part
in all subsequent discussions have been intro-
duced. The first is the, outer limit R„of all nu-
clear interactions. The second is the asymptotic
radius R„beyond which only point-Coulomb in-
teractions survive. Three regions are then to be
distinguished:

(i) The interior region 0&r &R„, to which nu-
clear interactions are restricted,

(ii) the intermediate region R„&r&R„, in
which only the Coulomb components of optical-
model and coupling potentials survive,

(iii) the true asymptotic region x&R„, in which
the wave function in each channel reduces to a
combination [Eq. (2.9)] of pure Coulomb func-
tions. We will find that in actual calculations it

A. Introduction of modulating functions

In the intermediate region R~&r&~, the
coupled equations (3.1) have N independent out-
going and N incoming solutions. We define 8, (x)
(a vector whose N components are labeled by
basis states o.} to be that outgoing solution ob-
tained by starting at r =~ with an outgoing wave
O, (k,r) in basis state s, zero in all other chan-
nels, and integrating inwards to R~. The in-
coming solution S,(x) is defined in similar fashion.
Clearly, O, (r) (s= 1, 2, . . ., N) is a complete set
of outgoing solutions andS, (x) (s= 1, 2, . . . , N) a
complete set of incoming solutions of Eqs. (3~ 1).

The Alder-Pauli' representation of the solu-
tions 6„8, is
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n, „(r)= ~ a,' „(r)O„(k„r),
1

s, (r)= „a,„-(r)I„(k„r),1
(3.3)

where 0 is the Coulomb phase shift. Outside the
Coulomb turning point, P is a very slowly vary-
ing function of x that increases monotonically
towards its asymptotic value of unity

where 0,I~ are uncoupled Coulomb functions and
designates the ath component of 6,. The

modulating functions a', (which are also N-com-
ponent vectors) have the asymptotic behavior

&n = & ~ (3.10)

The Wronskian relation for Coulomb functions
reduces to

a, „(r) = Mk„5, ,
(3.4)

—Q„=k r„.
dr (3.11)

"-a,(r) = O.
In this representation, the coefficients in the
coupled equations (3.6) become

In terms of the coupled-channels Coulomb wave
functions just introduced, the asymptotic form
(2.9) of the radial wave functions is

ft'„"(r) = —' s„„(r)-p "' S,'„',c»„(r) .
f' ~ OO 8 8 ~H

(3.5)

The advantage of Eq. (3.5) is that it becomes
valid at r =8„instead of the much larger radius
A„at which Eq. (2.9) becomes valid.

The uncoupled Coulomb functions I and 0~ are
solutions of the homogeneous part of Eqs. (3.1).
Substitution of Eqs. (3.3) in Eqs. (3.1) then yields
a set of coupled second-order equations for the
outgoing amplitudes:

a/2
&(48- 4n)

On &8

(3.12)

(3.13)

d' +
Sa~ « y S,CX

cf& . d'v
(3.14)

and the second-derivative terms in Eqs. (3.6)
may be dropped. (ii) Because the amplitude r„
of the Coulomb functions varies very slowly with

p

Two approximations can now be made to exploit
the fact that the various amplitudes involved vary
slowly with r (i) .Because a,' „(r) varies slowly
with r,

2 da' + ——0 —a, 0(dh' ' 0
X/2

= Z k
' U'8(r)

O a, i ~ (3.6)
8 8 0(

d
&n«&n&n)

and (d/dr)f„may be neglected in Eq. (3.12),
whence

(3.15)

(3.7)

so that only the equations for the outgoing solu-
tions need be considered explicitly.

It is also seen that the incoming solution 8,(r) is
the complex conjugate of the outgoing solution
&,.(r),

&,(r) = F,*(r),

d0 = iaaf
Ot

(3 16)

With these approximations, the coupled equa-
tions (3.6} for the modulating amplitudes reduce
to the first-order matrix equation

B. Approximations for the modulating functions

—a,'(r) = Stl(r)a,'(r), (3.17)

0 i 8"~
I„p

(3.8}

of the Coulomb functions. The asymptotic phase
is given by

k„r -'I} ln2k„r+g„—L~w

+ 00

(3,9)

By a sequence of approximations, Eqs. (3.6)
can be considerably simplified. To state the ap-
proximations involved, we use the phase-ampli-
tude representation, '

where the matrix OR is defined by

~8( ) ——
2(k ky~g2 I~U~ sOa. (3.18)

Equations (3.17) and (3.18) are identical to those
derived by Alder, Morf, and Roesel' from the
integral equivalent of the coupled equations (3.1);
the differential derivation given here has the
merit of exhibiting the two underlying approxima-
tions more explicitly.

Note that from Eq. (3.8) we can express the ele-
ments of OR as
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—&(4'n - 48)2 (J OL88

2 (k„f k+8)'i'

Because from Eq. (3.9),
—$8- (k„—k~)r = n. k~8r,

(3.19)

(3.20)

where Y and X designate Coulomb functions
(E, G, I, or 0). The lower limit of the integral
may be zero if both Y and X are regular Coulomb
functions. We will use the standard" Coulomb
recursion relations:

it follows that the coupling matrix elements in
Eq. (3.17) are slowly varying functions of r modu-
lated by oscillatory functions of wavelength
2v/(Ak„s). Thus while the quadrature step length
in the original coupled equations (3.1) is propor-
tional to some average of k„', that in the first-
order amplitude equations is proportional to the
minimum (b, k„8) '. For heavy-ion reactions,
(b,k/k) ' is typically of the order 10 or greater.
The original set of second-order equations has
thus been replaced by a first-order set that can be
integrated with a much larger step length.

Yet another major simplification is possible.
For the values of r of interest here (r &R„»R,'),
the deviations of a, (r) from a, (~) are small
enough to permit solution of the amplitude equa-
tion (3.17) by the first term of a Born-Neumann
series:

r
-,;[ (&) =a,'"- (~)+ an(~ )a',"-"(~')d~',

)[()+1)*+6]iK''—„(2,)+I)(q+ l /+1

+ (l + 1)[l'+ r[']'~'X, ,= 0, (3.25)

and

l'——X, + q+ X, —[L2+)L']'~'X, , =O. (3.26)

Equation (3.26) may be used to eliminate X, ,
from Eq. (3.25):

l+1 g l+1 1 d
[(i+1)'+q2]'" 1+1 k k ar

(3.27)

This may be substituted in Eq. (3.24) for I)[~]„,
to yield

where the initial guess to be used is

a,'I'„] (r) =Mk. 5„,.

(3.21)

(3.22)

+1 g (,) l+1(, )+&
[(l + 1)2+@2]1I2 L+ 1 ' ' k

The first iteration of Eq. (3.21) gives the DWBA

contribution to Coulomb excitation from ~ to ~:
oo

a,"„"[r)= Wa„())„,— nr. .(r')ar' ].
r

(3.23)

C. Recursion relations

(3.24)

Efficient techniques for the numerical evalua-
tion of the integral appearing in Eq. (3.23) have
been used for several years in the program
Ptolemys for the DWBA evaluation of inelastic
scattering. Following the suggestion of Belling, '
we can evaluate the integral as an asymptotic
series in the lower limit r. The use of this
asymptotic series makes it unnecessary to intro-
duce the asymptotic radius R„ into the calcula-
tion. Furthermore, simple recursion relations
(in terms of the orbital angular momenta L and
l, ) can be derived for the integrals. The use' of
these recursion relations greatly accelerates
the calculation. We derive the recursion rela-
tions in this subsection; similar relations have
recently" been derived independently.

We consider integrals of the form
oo

I)[~I, = dr ~„ I; (q', k'~)X, (q, kr),
B

1 " 1 d
Y —X~X+1 l g~ l ~

(3.28)

The derivative in the last integral in Eq. (3.28)
may be moved to Y, by integration by parts.
Then using Eq. (3.26) to eliminate (d/dr)L;. , we
obtain

1 d (),) 4"g' (),), Y, X)=-J) )+, I)y' d~
k) (L/2 P ]7)2)1/2

l' Il'-l, l

+ (A. + L'+ 1)IP" (3.29)

where

(x) g„L; (7)') k'R)X, (q) kR) . (3.30)

lf we substitute Eq. (3.29) in Eq. (3.28) and use
Eq. (3.25) to express II"",] in terms of II",
I, &, and I, „„weobtain an expression for(k) (X.)

I i', i+, in terms of I&, „I(X) ~ (X) (X) (X)

I, '„,. This may be solved for I',"'„,to yield
the recursion relation:
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k(l+l'+3+1)t(l+1)'+ ')»' l(l+1) l'

(3.31)

By symmetry we can interchange / with l', g with
&7', and k with k' in Eq. (3.31) to yield a recursion
relation for I, ,» in terms of the same quanti-
ties that appear in Eq. (3.31).

Consider even A.. If we have IL, & ~ „& for
6 = —A./2+ 1, —a/2+ 2, . . . , A/2 and Iiz, &, z,,~ for
5 = —&&./2, . . . , A./2, then the two recursion rela-
tions may be used to generate first I&+, & ~,& for
5 = —A/2+1, . . . , 1/2 and then IiL", &, , z,„,~ for
5 = —&&./2, . . . , A/2. These may then be used to go
on to L+2, and so forth. A similar scheme may
be used for odd ~. Thus we need only 2A. +1
initial values of I» to generate all of the re-
quired I, , These initial values may be computed
by numerical quadrature of Eq. (3.24) or, as
previously mentioned, from an asymptotic ex-
pansion in A.

We have tested the stability of these recursion
relations for many cases. Unless R =0, the up-
ward recursion relations are only slightly un-
stable for all combinations of Coulomb functions;
one or two decimal places may be lost in 1000
iterations. Downward recursion relations
analogous to Eq. (3.31) may be developed for
j, drF, F, /r "; we shall not give the results
here.

I

ficients are replaced by four-term recursion re-
lations whose leading terms are proportional to
the energy differences AE 8 between channels.
Such recursion formulas are numerically ill-
conditioned; for extensive use it would probably
be necessary to develop some form of perturba-
tion expansj. on in hE based on the adiabatic limit
as unperturbed solution. The numerical effort
involved for all necessary J values is in any case
considerably greater than that involved in evalu-
ating the Alder-Pauli amplitudes by the tech-
niques described above. This comparison depends
on the accuracy of the first-order reduction of
the equations for the modulating amplitudes and
of the Born solution of the first-order equations.
In case of failure of the Born solution of the re-
duced first-order equations, it would be neces-
sary to reassess the merits of direct use of the
asymptotic expansions for the coupled-channels
Coulomb functions.

IV. NUMERICAL STUDIES OF THE MODULATING

FUNCTIONS

A. Accuracy of approximations for the modulating functions

D. Asymptotic expansions for coupledwhannel Coulomb
functions

Asymptotic series expansions in powers of 1/r
have been given" for the coupled-channels Cou-
lomb functions 6, „and N, „. In the adiabatic
limit, the coupled-channels asymptotic series
are straightforward matrix generalizations of the
single-channel series. The coefficients are given
by three-term recursion formulas. Ten-figure
accuracy can still be achieved from these series
at distances less than twice the turning-point
radius. Inclusion of the effects of nonadiabaticity
significantly complicates matters. The three-
term recursion relations for the expansion coef-

We now discuss the accuracy of the three ap-
proximations introduced in the previous section
for the modulating functions: (1) Neglect of the
second-derivative terms in the Eq. (3.6), resulting
in a set of first-order equations for the ampli-
tudes a„{2)neglect of the derivatives (d/dr)r.
of the amplitudes of the single-channel Coulomb
functions in computing the coupling terms in the
first-order equations; and (3) use of the Born
approximation to integrate the first-order equa-
tions inwards from r =~ to distances r of the
order of the outer limit A~ of the "nuclear" in-
terior region.

The following coupled channels are considered

Channels

Elastic Excited

(a) "0+'"W "0+'8'W(2' 0.111 Me V) 90 41.7

(b) "'Xe+"'Pb "'Xe(2', 0.668 MeV)+'"Pb 800 283.2

(c) "0+"Ca "0+"Ca(2', 1.156 MeV) 60 13.0
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Q=2;

&=3
q

2', L=J —2

2', l=J
2+, I, =J+2.

(4.1)

Reaction (a), "O+'s4W at E„„=90MeV. Figure
1 shows the modulus of the amplitude a,', (J= 50)
in the critical partial wave; a,', is the amplitude
in channel 3 of the outgoing-wave solution of Eqs.
(3.6) that tends asymptotically to an outgoing wave
in channel 1. For comparative purposes the amp-
litudes have been divided by Mk, . In this reaction,
the main source of error is neglect of the second-
derivative terms in Eqs. (3.6); the relative error
in a» is around 2% all the way in to15 fm (the
turning point for I = 50 is at 13.5 fm). The ad-
ditional approximations —neglect of (d/Ch)f and
Born approximation solution of the first-order
equations —introduce negligible errors less than
0.1% for r &15 fm. Figure 1 also shows the modu-

-IIO—

L
2

+ l0
O

~ +
+
CV

+R)0&

IO I

20

BORN —FULL SECOND~ ~~
40 80 IOO

r (fm)
200

FlG. 1 A comparison of the modulus of the amplitude
g f 3(J'= 50) calculated using the full second-order equa-
tion (3.6) and the Born approximation (3.23). The modu-
lus of the error in the Born amplitude

~ a& 3{Born)
-a~ 3(exact) ~

is also shown. The amplitudes have been
divided by v k3. The Coulomb coupling had P2

——0.234.

where the projectile is listed first and the values
of q refer to the elastic channel. Optical-model
and deformation parameters for the calculations
to be reported are given in the appropriate figure
captions. In all of the calculations reported in
this section, reorientation effects (couplings with-
in the excited channel) have been ignored; we

have verified that their inclusion does not affect
our conclusions.

To simplify notation for the modulating ampli-
tudes and S-matrix elements, we use the follow-
ing labeling for the four reaction channels for
given angular momentum J' (&2) in the reactions
involving 2' excitation:

@=1;0', l=J

lus of the error in the Born amplitude ~a, ,(Born)
—a, ,(exact)~; this error is of the order of 1% of
the magnitude of the amplitude a, , [the one that
according to Eqs. (3.4) approaches Mk, as r "-].

Reactions (6), "'Xe+20'Pb at E~„=800 MeV.
This reaction may be treated semiclassically with
high accuracy. The first-order reduction of the
amplitude equations introduces negligible errors;
for J= 100, neglect of second-derivative terms
iri Eq (3..6) results in a relative error in
a, , (J=100) of 0.16% atr=25 fm. The Bornap-
proximation is the dominant source of error,
yielding a 10%%uo error in a» at 25 fm, 1% at 40
fm.

Reaction (c), "O+"Ca at E~b=60 MeV. This
reaction does not lend itself to a semiclassical
treatment, and the neglect of the second-deriva-
tive term introduces the largest error —2% in
a, ,(J = 4) at 20 fm. Neglect of (d/dr)g introduces
an additional relative error of 0.06%, and the
Born approximation 0.2% at 20 fm. However, the
departures of the a's from their asymptotic val-
ues are quite small [~a(r =20) a(r ="-)~-0.02]
so that these percentage errors represent negli-
gible absolute errors.

These results illustrate our conclusions, drawn
from studies of a wide variety of reactions. For
very strong Coulomb fields (large q), errors due
to the first-order reduction of the amplitude
equations are small, the amplitudes themselves
deviate strongly from their asymptotic values
[Eqs. (3.4)] and the dominant source of error is
the Born approximation. For reactions with small
values of g, the main source of error is the
neglect of second derivatives in Eqs. (3.6); the
modulating amplitudes for r &R„do not deviate
strongly from their asymptotic values [Eqs. (3.4)],
and the errors due to the Born approximation are
negligible. In such cases, because the deviations
from the asymptotic values are small, the
moderately large relative errors introduced by the
neglect of the second-derivative terms result in
very small errors in S-matrix elements and cross
sections. In general, the Born approximation
(3.23) to the solution of the approximate first-
order equation (3.17) permits calculation of the
modulating amplitudes a,'(x) in Eqs. (3.3) inwards
from r = ~ to typical nuclear matching radii,
A„- 20 to 30 fm, with errors of a few percent.

B. Sensitivity of S-matrix elements and cross sections to errors
in the modulating functions

It remains to be seen whether "few percent"
errors in the modulating amplitudes lead to
significant errors in computed 8-matrix elements
and cross sections. The modulating amplitudes
are used through Eqs. (3.3) to construct a com-
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FIG. 2. The solid lines represent the modulus of the
elastic and one inelastic S-matrix elements obtained by
matching to single channel Coulomb functions at various
radii r. The dashed lines represent the converged re-
sults, and the open circles show the values obtained us-
ing the Born approximation to the amplitude function
with the matching equation (3.5). All calculations- were
performed using complex Woods-Saxon potentials of
equal geometry with the parameters V= 40, 8'=25, x()
=1.29, a=0.508, rc0=1.2, P2 =0.145, and Pp=0.234..

piete set of outgoing solutions 8, and an incoming
solution s., of the coupled equations (3.1) for
Coulomb excitation. These coupled Coulomb func-
tions are then matched at the joining radius R~
to solutions of the original coupled Eqs. (2.6) in
the interior region. The techniques used to pro-
duce interior solutions will be discussed in the
second paper of this series.

Figure 2 shows the S-matrix elements S» (elas-
tic) and S» (inelastic), in the J= 50 partial wave
for reaction (a), obtained from matching pro-
cedures of the sort described using a's computed
by the Born approximation. The magnitudes of
the S-matrix elements obtained by matching at
a variety of values R„ from 75 to around 20 fm
are compared with exact values. It is clear that
the modified matching procedure yields S-matrix
elements of satisfactory accuracy. Figure 2 also
shows the S-matrix elements obtained by match-
ing at A„ to single-channel Coulomb functions (the
traditional matching procedure). Accurate re-
sults are not obtained until R~&75 fm, with large
discrepancies at values of R„of practical interest
(~30 fm). The differential cross sections for re-
action (a) obtained using Born a's at various
matching radii are compared in Fig. 3 with each
other and with what is obtained by matching to
single-channel Coulomb functions. The Born a' s

1000
184 180 180 184 eV)-

0.1

0 20 40 60 80 100 120 140

FIG. 3. A comparison of the inelastic cross sections
calculated using S-matrix elements derived from the
matching equations (2.9) and (3.5) at various matching
radii r. The results using Eq. (3.5) are indistinguish-
able for matching radii ~ 20 fm. The cross sections for
8, f„&15' are inaccurate because of the orbital angular
momentum truncation (E,l' ~1000). The potential para-
meters are the same as for Fig. 2.

yield the cross section accurately for matching
radii R~ as small as 20 fm; the errors in the
cross sections obtained by matching to single-
channel Coulomb functions are large.

The main conclusions, confirmed by the results
of many other calculations, are (i) Coulomb-
coupling effects in the intermediate region
(A„(r&8„) have a large influence on S-matrix
elements and cross sections; and (ii) these ef-
fects are accounted for accurately and efficiently
on the basis of the Alder-Pauli factorization (3.3)
of the solutions of the coupled equations for Cou-
lomb excitation, with the first Born approxima-
tion for the modulating amplitudes.

V. QUALITATIVE ASPECTS OF THE ALDER-PAULI

PROCEDURE

The procedure established above for dealing
with intermediate-range effects of Coulomb ex-
citation involves matching interior solutions of
the coupled equations to combinations of incoming
and outgoing solutions 8„6, of the coupled equa-
tions for Coulomb excitation. The matching radii
B„can then be taken to be of "nuclear" size (20
to 30 fm). The coupled-channels Coulomb func-
tions take over the role of ordinary Coulomb
functions I,O in the matching procedures of
conventional optical-model and coupled- channels
calculations. For this modified matching pro-
cedure to be computationally feasible it is essen-
tial that the coupled-channels Coulomb functions
be computed efficiently. Direct integration of the
original coupled equations from R„ to R„ is out
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of the question; indeed it was the extreme inef-
ficiency of such integrations across the inter-
mediate region of r space that triggered the search
for modified procedures. The Alder- Pauli fac-
torization (3.3) is the basis of our technique for
construction of the coupled-channels Coulomb
functions. Its great efficiency depends on the
validity of three approximations for the modulating
functions.

(1) Neglect of second derivatives in the coupled
equations (3.6) for the modulating functions. This
first-order reduction greatly enhances the value
of the Alder- Pauli transformation. Direct nu-
merical integration of the second-order equations
(3.6) is a difficult numerical task, in spite of the
fact that the modulating amplitudes vary slowly
with x, because second-order equations that are
approximately of first order are numerically
awkward.

(2) Neglect of the derivatives (d/dr)f„of the
amplitudes of the single-channel Coulomb func-
tions. It is this approximation that permits the
Born solution (3.23) to be written in terms of the
DWBA matrix elements for Coulomb excitation.
These integrals satisfy simple recursion formulas
that enormously reduce the numerical labor in-
volved in evaluating the coupled-channel Coulomb
functions. Errors due to neglect of (d/dr)g are
always negligible relative to those involved in

the first-order reduction of Eqs. (3.6).
(3) Use of the first Born approximation (3.23)

to' solve the first-order equations for a, . The
accuracy of this approximation depends on the
fact that for distances of interest (r 2 20 fm) in a
large class of reactions, the modulating ampli-
tudes deviate in magnitude by 0.2' or less from
their asymptotic values (3.4). When the Born
approximation is reasonable, the errors involved
should be of the order of the second-order cor-
rection and hence proportional to ~a, „. -ok~&,„~'.
Thus the magnitudes of the Born amplitudes
can be used as an error indicator; if any of
the quantities ~a, ~'/k for n4s at R„exceed
some desired accuracy, consideration should be
given to increasing the matching radius. (Note
that in the Born approximation a, , =Mk, .)

By using these techniques, one can compute
heavy-ion coupled-channels scattering amplitudes
involving strong Coulomb excitation in much the
same time as if there were no long-range com-
ponent to the Coulomb coupling.
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