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Exact finite range distorted-wave Born approximation analysis of the ground state reactions
Pb(p, t) Pb and "O(p,t)' 0 are presented. The calculations are carried out using a realistic triton wave

function comprising a spatially symmetric S and mixed symmetric S' and D states. The transfer
interaction is treated consistently with the interaction used in obtaining the triton wave function. The use of
a realistic wave function and transfer potential yields improved agreement between experimental and
theoretical angular distributions. Calculations using the wave function of the transferred neutron pair
suggest it is possible to explain both the absolute magnitude and shape of the angular distribution for these
transitions.

NUCLEAR REACTIONS (P,t), distorted-wave Born approximation analyses.

I. INTRODUCTION

The two nucleon transfer reactions (p, t ) and

(t, P) are enormously rich and useful processes
for the understanding of nuclei as is demonstrated
by the vast amount of experimental work in the
area. ' Despite the great amount of experimental
work, the theoretical development is far from
complete. The zero-range distorted-wave Born
approximation (DWBA) is usually employed' ' in
analyzing data of angular distributions. Unfor-
tunately zero-range analyses can only predict
shapes of angular distributions with arbitrary
normalization introduced to fit absolute magnitudes
of data. Although these analyses can often suggest
the orbital angular momentum being transferred,
they are not a useful tool in studying nuclear wave
functions which differ by two neutrons. Such wave
functions are seldom made up of pure configura-
tions but are composed of linear combinations of
elementary configurations whose amplitudes add
coherently in yielding angular distributions. The
same superposition of elementary configurations
produces the strong correlations responsible for
determining the collective properties of the nuclear
wave functions. For most cases studied' the
shapes of angular distributions are not sensitive
to the individual configurations employed. Thus
in order to properly assess nuclear collectivity
from (p, t ) and (t, p) processes one must use a
theory which can predict absolute magnitudes of
angular distributions.

We present exact finite-range DWBA calcula-
tions' ' which predict both absolute magnitudes
and shapes of angular distributions. Our work

differs from earlier finite-range (P, t) studies' "
in several important ways. A fully realistic tri-
ton wave function is employed comprising a state
of symmetric orbital permutation symmetry and
total orbital angular momentum zero (S state)
and two states of mixed orbital permutation sym-
metry having total orbital angular momentum
zero and two respectively (S' and D states). A
type of consistency is maintained wherein the
realistic two-body potential used in calculating
the triton ground state is also the interaction
causing the transfer. This feature is essential for
reliable predictions" of absolute magnitudes of
angular distributions. Our method employs a
modification of the half-separation energy method
for obtaining neutron pair wave functions, but can
easily be extended to include wave functions de.-
rived from any method. Preliminary results"' "
of our theory demonstrate a systematic agreement
between theory and experiment for the ground
state transitions "0(P, t ) "0, "'Pb(P, t ) "'Pb,
and "Zr(t, p) "Zr which is a significant improve-
ment on the previous finite-range calculations.

It should be emphasized that the spatial part of
the two-neutron wave function employed throughout
is a modification of the standard half-separation
energy method. Our endeavor has been to focus
on the development and improvement of the transi-
tion interactions and the three-body wave func-
tions. However, our formalism, as described
below, is sufficiently general to accommodate any
neutron pair wave function.

In Sec. II we briefly outline the conventions fol-
lowed in obtaining the exact finite-range DWBA
amplitude, the form factor, and the three nucleon
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II. EXACT FINITE-RANGE DKBA AMPI. ITUDE

FIG. 1. The coordinate system for the reaction
&(P,~)&. The three linearly independent vector coor;
dinates appearing in the DWBA amplitude are r&z, r& z,
and r. The form factor is a function of the two vector
coordinates R& and R&.

wave functions. General selection rules for both
natural and unnatural parity tra'nsitions are given
in Sec. III. Results are reported for the reactions
"O(p, t)"O(0'g.s. ) and '"Pb(p, f)'"Pb(0'g. s.) in
Sec. IV. Section V summarizes the major con-
clusions of this work.

Consider a reactionA(p, t)B with coordinates as
shown in Fig. 1. Following the usual convention in
finite-range DWBA,"we chose the vectors r»,
r,~, and r as the three linearly independent vec-
tors. r» and r,~ are the initial and final channel
vectors designating, respectively, the position of
the proton relative to the target and the position
of the triton relative to the residual nucleus. r
is the relative separation of the two neutrons
transferred in the reaction. The finite-range am-
plitude is obtained by evaluating a nine-dimension-
al integral over the above three vectors. Usually,
this task is separated into two parts. A form fac-
tor is first evaluated by integrating over the vec-
tor r yielding a function of the vectors R~ and R~,
and is characterized by several angular momenta
some of which contribute coherently and the others
incoherently to the cross section. The method of
Austern et al."is used to transform the form fac-
tor to a function of the channel vectors r» and r,~
and the remaining six-dimensional integration is
then carried out 'using a suitably modified finite-
range single particle transfer computer code.

The DWBA transition amplitude is

($)(At~
' ' fdr~„f dr, I& (r, )

"(~g) TsMsMr; JgTgMgM lVlZ„T„M„M; g v )4"'(r „),A A A Fg~ ~ ~
k PA

(+) (-)
where 4& and 4&, are the elastic scattering wave
functions in the initial and final channels, respect-
ively. k~ and k, are the initial and final channel
momenta. The quantum numbers J, T,M, ~~ with
the appropriate suffixe's denote the total angu-
lar momentum, the isospin, and their respective
z-components of the corresponding nuclei A, B or
triton. 0~ and &~ are the z-components of the
spin and isospin of the proton. 8 is the Jacobian
of the transformation to the coordinates r, r,~ I

l

and r» 1.e.,

8= (A/A+1)'(-,')'~'

The constant [(',) (",)]'~' is a normalization factor
for the direct (p, t) amplitude arising from the
antisymmetrization of the initial and final states
of the system.

Following Satchler, "we express the nuclear
matrix element in (1) as

3 A't '~'
0(J~ T~Ms Mr; J,T, M, T„,IVl J„T„M„Mr;0''p &@)

(-x)~(J M JM lZ„M„)(T M 1. —1lT„Mr )(-1)'~' '&(Z, M, 2 —c lSM,)—
x (f,M~ ~Mal ~M,)G,s,„(&n,Rs), (2)

where we have assumed that the transfer interac-
tion is spin independent. G»~„(R~, R~) is the
two-neutron transfer form factor characterized by

the orbital, spin, and total transfer angular mo-
menta L, $, and J which contribute incoherently
to the cross section. M~ is the z-component of L.
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In the analyses presented in this paper, the
transfer interaction which in the prior form is
given by

tails of the wave function are contained in the
paper of Strayer and Sauer" as well as in Ref. 4.

Following Glendenning, "we define the general-
ized two particle fractional parentage coefficients

TABLE I. Classification of basis states and ground
state properties of the triton using the wave function of
Ref. 17.

Percent
State wave function

89.8 2.

2

[3] (111)

[21] (211)

(121)

[21] (211)

(121)

i.e.; the sum of the interactions of the proton with
the two neutrons being transferred is replaced
by (e, -K —V»), where e, is the triton binding
energy, K the triton kinetic energy operator, and
V y 2 the neutron-neut ron interaction. One should
note that for a realistic interaction V»+V~ in-
cludes partial waves from the triplet even chan-
nels and hence have contributions from the short
range N-8 tensor force. These terms are in
principle more complicated to evaluate. Whereas,
V y 2 the neutron -neutron interaction, is diagonal
for all the two-body channels considered and much
simpler in structure. The above replacement is
justifiable provided one uses the same interaction
to calculate the internal state of the triton. We
have used the triton wave function of Strayer and
Sauer, "who obtained it as a variational eigen-
function of a three-body Hamiltonian with the
Reid" soft core potential. We use the variational
binding energy for c. , and the Reid soft core po-
tential for V». The triton wave function of Stray-
er and Sauer" primarily consists of a spatially
symmetric S state, and mixed symmetric S' and
D states. The other components of the triton wave
function have negligible amplitude. The classi-
fication of the states used in the description of
the triton wave function is given in Table I, along
with the variational binding energy and the rms
charge radius. The wave function is obtained
variationally as a linear combination of harmonic
oscillator functions which refer to the internal
coordinates of the triton r/v 2, v 2l3 R~ . The de-

P([ & I ~y2 1~)

xZ T„M„M ri J~T~M~Mr ), (4)

and expand the two-neutron pair wave function in
a complete set of antisymmetrized product of
single neutron wave functions. In the actual cal-
culation, we used the two-neutron amplitudes
P([ l, p, l,j,jJ ) obtained by shell model calcula-
tions and used the half-separation energy method"
for the radial wave functions of the two neutrons.

The final expression of the form factor is

GL, szz~(Ru, Rz)

=(z) Q Q (LpMpLsMs I LM~)
Jg )XI )sg

MpN

x (A~)y'~ „(Rs),B B
(5)

26 Pr ~n g g gl.~z,s (k
dQ (2&k ) kt zszu s cJ' g p

where L, , [X~ ], and S, are, respectively, the
orbital angular momentum, orbital permutation
symmetry, and spin of the triton. L~ and L are,
respectively, the orbital angular momentum of
the proton relative to the c.m. of the two neutrons
and that of the residual nucleus 8 relative to the
c.m. of the two neutrons. The angular momenta
L~, L~, L, , and S, contribute coherently to the
cross section. Hence, it is easier to sum over
their contributions as in (5). In reality, Eq. (5)
contains an additional sum over ), the relative or-
bital angular momentum of the two neutrons. This
sum has already been performed and is implicit in (5).
The detailed expression for 9~' ~ ~~~~~ can be ob-

P Q s

tained from Ref. 4.
The differential cross section is given by

Eg = -6.7 MeV (y,h ) ~ =1.85 fm

where the reduced amplitude B~~~~~ is defined as
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The amplitudes B~~~„are computed for fixed
. values of L, S, J, M~, L~, L~ and the allowed
components are summed in the appropriate man-
ner to compute the cross section.

III. SELECTION RULES

The selection rules for (p, f ) reactions using
realistic triton wave functions that include mixed
symmetry components have been reported in Ref.
20 and may be derived from the form factor. An
additional constraint on the selection rules is that
l + S]2 is even as a consequence of the anti sym me-
try of the two transferred neutrons where l is the
relative orbital angular momentum and S» the
total spin of the two-neutron sybsystem. For a
triton wave function composed of only a symme-
tric S state one has S»=0 and l even. Most sim-
ple wave functions allow only l = 0. For triton
wave functions that contain mixed symmetry com-
ponents it is possible for S»= 1 and for l to have
odd values.

If m„and m~ designate the intrinsic parities of
the states of the target and residual nucleic and
B, respectively, then natural parity transitions
are those which satisfy the condition

w„ws = (-1)~,

while unnatural parity transitions satisfy the con-
dition

w„ws = —(-1)~ .

The selection rules for each component of the tri-
ton can be obtained from the following equations
and are given below.

A. Symmetric S state

For this state we have L, =0, S,=2, and Sy2

From Eq. (8) we therefore have S=O, L=L~, and

L =J. The parity change is given by the relation

~w= w„w, =(-1)'"s
However, since l is even for this case, then 6 m

= (-l)~&. Now for &
= 0 we have that L = 0, L = Ls

Thus Aw = (-1)~ and for ) =0 one can only have
natural parity transitions. However, if l~0 one
has aw = (-1)~&+ ~ ~ and unnatural parity transitions
can occur with a leading term corresponding to
l= 2.

/

B. Mixed symmetry S state

The mixed symmetry component of the triton
can have S» =o, 1. For Sy2 0 the selection rules
are the same as for the symmetric state. For the
Sy2 = 1 component, one has l = odd, and
= -(-1) &. Thus unnatural parity transitions are
possible with a leading term corresponding to
l=1.

C. Mixed symmetry D state

Here the total intrinsic and orbital angular mo-
mentum of the triton are S, =-', and L, = 2, re-
spectively. Thus S» = 1 and l will always be odd.
Therefore, this term can contribute to both nat-
ural and unnatural parity transitions with the
leading component corresponding to l = 1.

For a fixed angular momentum transfer J one
can have values of orbital angular momentum
transfer subject to the following conditions:

~Z-S„j-L- ~Z+~„~

S»= L, + S,

( 1)'+s„

J L+ Sy2y

L= L~+ Lp,

Lp= Z„+l,

S, =S»+ g ~

(8)

[ L~ —L~ f
«L ~

[ Ls+ Lp ( .

The conditions on L~ are

[f,„-&„,I- L, ~
I &„,+&„J,

where l„and l„are the relative orbital angular
momenta of the single particle states of neutrons
n, and n, used in constructing the two particle
states. Conditions on L~ are that L~~0 for natural
parity transitions and L~ ~1 for unnatural parity
transitions.
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TABLE II. Optical parameters used in this study.

Target Projectile Vp ro ap

18O

f8O

208pb

208pb

P

P
t

56.0
146.0
47.9

149.8

1.17
1.40
1.25
1.24

0.75
0 44
0.65
0.68

1.70
14.70
0.0

12.0

0.0
0.0

40.0
0.0

1.32
1.40
1.25
1.43

0.588
0.551
0.750
0.870

IV. RESULTS

In this section we discuss details of the finite-
range DWBA analysis of the reactions
"O(p t)"O(0' ) Md "'Pb(p t)"'Ib(0', . ). These
reactions are natural parity transitions and have
been considered by other authors. ' The particular
target "'Pb and "O were chosen since both the

Pb target and the ' 0 residual nucleus are
thought to be very good closed shell nuclei and thus
are systems for which one would expect a shell
model description to be valid.

The optical model potentials used to generate the
distorted waves have the usual form

v(r) =v, (r) -v,f,(r)

—i W,f„(r)+4ia,W,f,'(r),

where

f~(r) = [ 1+exp(r —R ~)/a~]

and where V, (r) is the Coulomb potential due to a
uniformly charged sphere of radius r,A' '. The
radius R is often taken to have the form R~
=r~ Qr or R~ ——r~ (gr +gp ), where+ r and

A~ are the mass numbers of the target nucleus and

projectile, respectively. In our analysis we em-
ploy the former of the two prescriptions since
most of the optical model analyses with light pro-
jectiles utilize this form. The optical parameters
are illustrated in Table II and were obtained from
the literature. One should note that there is some
sensitivity to the choice of these parameters for
reactions in light nuclei. For reactions on "'Pb,
various combinations were employed with virtually
no difference in the results obtained. However, for
the reaction on "O, both the absolute magnitude
and shape of the predicted angular distribution

changed when different optical model parameters
were employed. In this work, we chose that par-
ticular set which gave the best comparison be-
tween the theoretical and experimental angular
distributions.

The two-neutron configurations were assumed
to be identical to those predicted by shell model
calculations"' "except that the radial wave func-
tions were replaced by the eigenfunctions of a
Woods-Saxon potential adjusted to yield eigenval-
ues equal to half the two-neutron separation ener-
gy. The radius and diffuseness parameters of
these potentials are

R = S.25m",

a, =0.65 fm .
The two-neutron spectroscopic amplitudes for
all of the reactions studied are given in Table III.
For the "0(P, t)"0 transition the spectroscopic
amplitudes were obtained from "0 wave functions
computed by Kahana" and are linear combinations
of [Od, ~,]

' and [1S,~,]
' configurations. Those for

the reactions on "'Pb are taken from the work of
True" and are linear combinations of products
of 2P and 1f hole states in the closed "'Pb core.

Form factors for the reactions "0(P, t )"0 and
"'Pb(P, t )' 'Pb are shown for oxygen in Figs. 2
and 3, and for lead in Figs. 4 and 5 for the ground
state transitions. In Figs. 2 and 4 the fully two-
dimensional form factors are shown while in Figs.
3 and 5 one-dimensional "slices" along the zero-
range line R~ = 0 are given.

For the ground state transitions, the allowed
values of the various angular momenta based on
the previously discussed selection rules are given
in Table IV. We find that only the component hav-
ing l = 8 = 0 contributes in any significant way to
the form factor. The corresponding form factors

TABLE III. Spectroscopic amplitudes defined in Eq. (4) and used in obtaining form factors
in Figs. 2-5.

Reaction Ref. [Od 5g2l' h Sg]2)' t:2P,)2l
' [2P3g2l hf, (2] '

O(p, t) O(0g. )
208Pb(p t)206Pb(0+ )

21
22

0.893 0.450
0.822 0.363 0.401
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FIG. 2. The form factor L&L~( R, R ), for the re-
t' 60(0+ ), in arbitrary units, as a functionaction O(P, t) 0

of Rp and R shown over the range 0 to m
Rz, respectively.

F 2 and 4 respectively, for oxy-are shown in Figs. an
gen and le . oad Both of these form factors com-
prise an8 d S' components and are extreme y non-

I I I I I II I I I

Lss R R ) fFIG. 4. The form factor
action Pb(P, t) g,Pb(0', ) in arbitrary units, as a func-
tionofR an ~, s od R hown over the range 0 to 5 fm or
R& and Rz, respective y.

P
l .

local, nonseparable functions. Thhe form factors
along the zero-range line in Figs. 3 an3 and 5 re-
spectively, for oxygen and lead display a structure
significantly different from that away from the

101

101

I I I I I I II I I I

10'-
10o-

10-1
10 1

10 2
10 2-

10-3

0
I I I I II

4 6 8 10
10 3

0
I I I I II I I I

6 8 10 12 14

Rg (fm)
FIG. 3. 'The form factor xn Fag. p. 2 lotted along the

zero-range line &&=0 in units MeV fm 3.

RB (fm)
. 5. Th form factor in Fig. 4 plotted along the

zero-range line &p =0 in units MeV fm,
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TABLE IV. Allowed values of the angular momentum
quantum numbers for the ground state transitions in this
work.

L S Lgy Lp
Triton and neutron pair

components

0 0 0
2

S and S' states
S(2= S, l =Lp

S' and D states
S(2=S, l =Lp+2)Lp

zero-range line in Figs. 2 and 4. The zero-range
form factors (Figs. 3 and 5) differ in the interior
from those obtained by Ibarra, Feng, and
Vallieres" "using extended shell model basis
techniques to account for the correlation of the
neutrons being transferred. The half-separation
energy method assumes that the neutrons act
independently in a potential well and share the
total separation energy equally. Any correlation
between the two particles is introduced subse-
quently in the spectroscopic amplitudes.

In Fig. 6 a comparison is made between the fin-
ite-range DWBA prediction and the experimental
data for the "O(p, f)"0 reaction at a proton ener-
gy of 20 MeV. The figure displays two sets of ex-
perimental data covering a wide range of angles.
The theoretical calculation has been normalized
by the factor

tl = 0',„p, /c ~(
= 1.63 .

An exact finite-range calculation of this reaction
has been performed by Charlton. ' In his analysis,

Charlton uses two different optical model parame-
ter sets and obtains results for one case which are
comparable with those presented in this study.
However, our calculation differs from Charlton's
in the following respects: The triton wave function
and transfer interaction are treated consistently
in this work. The two-body interaction was the
Reid soft core potential and the triton wave func-
tion was obtained variationally as given in Ref. 17.
In Charlton's calculations the transfer interaction
was not consistent with that used to obtain the tri-
ton wave function. The geometrical parameters
of the bound neutron wave functions employed here
are larger than those of Charlton and we have
omitted spin-orbit terms from the potentials used
to obtain these states. This omission has little
effect on the wave function, however.

In Fig. 7, the theoretical and experimental angu-
lar distributions are compared for the reaction
"'Pb(P, t)"'Pb(og, , ). The two-neutron spectro
scopic factors are obtained from the shell model
wave function of True. The normalization factor
for this reaction is

This reaction was also analyzed by Charlton" and
although he found good agreement with the shape
of the angular distribution, his calculation under-
predicted the absolute magnitude by a factor of
1.6. In calculations presented here, both the sym-
metric and mixed symmetry triton S states con-
tribute, and in Fig. 8, we compare the angular
distributions calculated with and without the 8'
state. The difference between the two is never
more than 5% except at the minimum near 8,

10' 10'
O Pb(p, t) Pb(ops)

Ep=35 MeV

&00-
10-1—

10 2=

io-1-

10 3-

)0 2
I I I I I I I I

0 20 40 60 80 &00 120 140 160

ec.m(deg) 0 10 20 30 40 50 60 70 80 90 100

FIG. 6. The comparison of the theoretical and ex-
perimental angular distribution for the reaction
0(p, t) 0(0g.s.) at the proton energy of 20 MeV. The

experimental points (+, 0) are taken from Refs. 28, 29,
respectively.

ec.m (deg)

FIG. 7. The comparison of the theoretical and exper-
imental angular distributions for the reaction Pb(P, t )

~Pb(0g.L) at a proton energy of 35 MeV. The experi-
mental points are taken from Ref. 30.
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&0O

208Pb(~ t) 206Pb(0+s)
Ep = 35 MeV

Symmetric
S state

40

)0-P

o/G

1

I ]
lu~
l

~

0 10 20 30 40 50 60 70 80 gp

6(; rr) (deg j

FIG. 8. The comparison of the total (8+S') and S con-
tributions to the reaction in Fig. 9.

= 23, where the influence of the mixed symmetry
S state is to fill in the minimum.

One uncertainty in fitting the absolute magnitude
of these angular distributions can be ascribed to
our use of the half-separation energy method.
The half-separation energy method assumes that
the transferred neutrons move independently in
a potential well and share the removal energy
equally. From the work of Ibarra et al."'"we
know that this is not the case, and that treating
the correlated neutron pair more precisely en-
hances the magnitude of the form factor in the
surface of the nucleus. Accordingly, we can
"effect" this enhancement within the framework
of the half-separation energy method by deter-
mining larger geometrical parameters for the
bound particles. One believes this kind of pre-
scription only insofar as absorption and phase
averaging of the distorted waves cause the reac-
tion to be surface peaked. This procedure was
used successfully for the reactions studied in
Refs. 10-13, 20, with the geometrical parame-
ters

R = 1.2(A'~'+ 1) fm,

a, =0.65 fm,
and produces the necessary enhancement needed
to fit the reactions presented in this study.

V. SUMMARY AND CONCLUSIONS

We have presented a finite-range DWBA analysis
of the reactions "'Pb(P, t)"'Pb(0;, ) and
"O(p, t )"O(0;, ) and corresponding calculations of
the two-neutron transfer form factor employing
a realistic triton wave function. The transfer in-

teraction in the prior formulation of DWBA is
eliminated in favor of the binding energy, the in-
ternal kinetic energy, and the interaction between
the neutron pair in the triton. Form factors cal-
culated for these reactions demonstrate the im-
portance of maintaining a manifestly finite-range
theory.

Our work differs significantly from earlier
finite-range calculations in our treatment of the
triton wave function and of the transfer interac-
tion. We have employed a variational triton wave
function having a totally symmetric S state, and
mixed symmetry S and D state components obtain-
ed using a realistic nucleon-nucleon potential.
The same potential is used to construct the trans-
fer interaction thereby maintaining a consistency
between the interactions involving the transferred
neutrons and the interaction between nucleons in
the triton.

Selection rules are obtained from these form
factors which have the following properties:

(i) For two-neutron states in nuclei which have
uniquely S»=0 only the S and S' states can con-
tribute, whereas for states with S»=1 only the
S' and D states contribute.

(ii) The importance of the mixed symmetry
states is enhanced in the two cases when the two-
neutron configuration has natural parity and a
dominant S»=1 component, or the two-neutron
configuration has unnatural parity. For the above
reactions the spatially symmetric S state of the
triton contributes more than S(P/p of the differential
cross section.

Our analysis of the ground state transitions has
demonstrated very good agreement between the
theoretical and experimental angular distribution
shapes but absolute magnitudes which are too
small by 60%%up and 23%, respectively, for the
"O(P, t)"0 and "'Pb(P, t)"'Pb reactions. How-
ever, as has already been discussed, we can ex-
pect enhancements of this order from the use of
more lightly correlated wave functions. '

The results of our calculations indicate the im-
portance of the use of realistic triton wave func-
tions and consistent transfer interactions in the
determination of the absolute magnitude of (p, t)
or (t, p) cross sections.

We have recently received a report on similar
analyses by Takemasa, Tamura, and Udgawa.
We thank the authors for sending us the report.
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